08

Многослойные зеркала Cr/Sc с улучшенным отражением для диапазона "окна прозрачности воды"

© В.Н. Полковников, С.А. Гарахин, Д.С. Квашенников, И.В. Малышев, Н.Н. Салащенко, М.В. Свечников, Р.М. Смертин, Н.И. Чхало

Институт физики микроструктур РАН, 607680 Нижний Новгород, Россия e-mail: polkovnikov@ipmras.ru

Поступило в Редакцию 22 апреля 2020 г. В окончательной редакции 22 апреля 2020 г. Принято к публикации 22 апреля 2020 г.

Изучены свойства многослойных зеркал Cr/Sc, синтезированных при пониженном значении электрической мощности на магнетронном разряде. Найдены модельные структурные параметры таких зеркал. Получен рекордный коэффициент отражения 21% на длине волны 3.12 nm.

Ключевые слова: микроскопия, "водное окно", многослойные зеркала, рентгеновское излучение, магнетронное напыление.

DOI: 10.21883/JTF.2020.11.49980.143-20

Введение

Многослойные зеркала (M3) являются важным инструментом, способствующим развитию таких приложений, как проекционная литография, солнечная астрономия, диагностика лабораторной плазмы, рентгенофлуоресцентный анализ, рентгеновская микроскопия и многое другое. В вакуумной ультрафиолетовой области спектра коэффициенты отражения M3 сегодня достигают 60-70%.

Разработка эффективно отражающих МЗ нормального падения в мягком рентгеновском диапазоне остается довольно сложной задачей. Они востребованы, например, в задачах рентгеновской микроскопии в спектральном диапазоне "окна прозрачности воды" (2.3–4.4 nm) [1]. В этой задаче высокий коэффициент отражения имеет большое значение: фактически от него зависит время засветки биологических образцов. При длительной экспозиции, во-первых, значительно снижается качество изображения вследствие дрейфа образца из-за температурных колебаний, внешних вибраций и броуновского движения клеток, во-вторых, увеличивается поглощенная доза, что приводит к деструкции клетки.

В последние десятилетия активно развивается рентгеновская микроскопия для "окна прозрачности воды", основанная на зонных пластинках Френеля [2,3]. Она широко распространена благодаря хорошо отработанной технологии изготовления зонных пластинок. Проекционная микроскопия, основанная на МЗ, представлена в вакуумной ультрафиолетовой области [4,5], поскольку там обеспечиваются высокие коэффициенты отражения M3.

Предложенная около 25 лет назад как наиболее перспективная система для диапазона "водного окна" многослойная структура Cr/Sc теоретически может обеспечить пиковый коэффициент отражения до 60% при почти нормальном падении вблизи края поглощения Sc $L_{2,3}$ при длине волны 3.12 nm [6,7]. Это позволяет рассматривать пару Cr/Sc в качестве кандидата на роль оптической основы микроскопа в мягкой рентгеновской области спектра.

Кроме того, показано, что в M3 Cr/Sc на границах раздела между слоями не образуются интерметаллиды, и для периодов менее 1.8 nm Cr и Sc находятся в аморфном состоянии [8,9]. Все это позволяет рассчитывать на низкое значение величины межслоевой шероховатости.

Межслоевая шероховатость для таких короткопериодных M3 (величина периода порядка 1.6 nm) является критически важной величиной, в наибольшей степени влияющей на отражение. Если идеальная структура с нулевой величиной шероховатости имеет пиковое значение коэффициента отражения R = 60% ($\lambda = 3.12$ nm), то уже при величине шероховатости $\sigma = 0.2$ nm Rснижается до 40%, при $\sigma = 0.3$ nm — до 25%, а при $\sigma = 0.4$ nm R опускается до 10%.

Первые синтезированные зеркала имели отражение ниже 10% на длине волны 3.14 nm [6,7]. В данном случае снижение отражения относительно теоретического предела (около 57% при $\lambda = 3.14$ nm) связано не только с ненулевым значением межслоевой шероховатости, но и с тем, что на практике сложно выдержать строгую периодичность структуры с несколькими сотнями периодов d = 1.58 nm.

Нестабильности технологического процесса приводят к разбросу толщин отдельных пленок многослойной структуры. Разброс в толщинах слоев влияет как на пиковый коэффициент отражения, так и на разрешающую способность зеркала $\lambda/\Delta\lambda$, которая связана с периодом1*d* и среднеквадратичным отклонением его от

среднего Δd соотношением

$$\frac{\lambda}{\Delta\lambda} \approx \frac{d}{\Delta d} \approx N_{\rm eff},$$

где $N_{\rm eff}$ имеет смысл числа эффективно отражающих периодов. Отсюда можно оценить допустимое отклонение периодичности как $\Delta d = d/N_{\rm eff}$. Если рассматривать M3 с d = 1.58 nm и $N_{\rm eff} = 300$, то $\Delta d = 0.005$ nm. Эта величина накладывает жесткие условия на стабильность параметров технологического процесса синтеза M3. При превышении указанного значения Δd происходит уширение кривой отражения, сопровождаемое снижением пикового коэффициента отражения.

Дальнейшее совершенствование методов синтеза M3 Сг/Sc позволило достичь R = 14.5% [10] и даже R = 17% [11] при $\lambda = 3.12$ nm. Представляют интерес детали работы [11]. M3 синтезировались методом магнетронного напыления на постоянном токе. Мощность на магнетронах составляла 150 W на каждом. Общее число периодов 400. При этом измеренная $N_{\rm eff} = 397$, что говорит о высоком уровне периодичности структуры. Таким образом, основной причиной снижения R в данном случае можно считать межслоевую шероховатость σ . Ее величина в работе оценивается на уровне 0.35 nm. Однако ничего не сказано о методике оценки.

Для уменьшения величины σ позднее начали применять методики управления межслоевыми границами. К ним относятся: ионное ассистирование (ионная бомбардировка поверхности каждой пленки, составляющей структуру), нитридизация (распыление материалов в смеси аргона и азота с внедрением азота в структуру), методика барьерных слоев (напыление на границу раздела между Сг и Sc третьего материала, как правило, карбида бора B₄C). В этом направлении достигнут заметный успех. Например, совмещение в едином процессе методик нитридизации и барьерных слоев дало возможность достигнуть R = 23% при $\lambda = 3.12$ nm [12].

На наш взгляд, остается неисчерпанной возможность улучшения отражательных характеристик M3 Cr/Sc без применения дополнительных методик. В работе [13] было показано, что в короткопериодных W/B4C многослойных зеркалах ростовая шероховатость и взаимное перемешивание материалов пленок вносят примерно одинаковый вклад в ширины интерфейсов. А в [14] за счет использования высокочастотного распыления вольфрама была понижена энергия распыляющих ионов аргона, что привело к уменьшению ширины интерфейсов и соответствующему увеличению коэффициента отражения. Для Cr/Sc-систем этот эффект ранее не изучался. Соответственно можно ожидать, что если добиться оптимизации технологического процесса и увеличить коэффициенты отражения двухкомпонентных Cr/Sc МЗ, то внедрение дополнительных методик управления межслоевыми границами способно дать еще больший положительный эффект.

В этой работе авторы изучили M3 Cr/Sc, полученные при пониженном значении электрической мощности на магнетронах.

1. Методика эксперимента

В ходе экспериментов многослойные зеркала Cr/Sc синтезировались методом магнетронного напыления на установке, описанной в [15]. Распыление мишеней осуществляется на постоянном токе в среде высокочистого (99.998%) аргона. Рабочее давление газа в технологическом процессе составляет ~ 10^{-1} Ра. Давление остаточных газов было ниже 10^{-4} Ра. Магнитная система магнетронов создает в зазоре между полюсами постоянное магнитное поле напряженностью $(4-7) \cdot 10^{-2}$ Т. Источниками питания магнетронов служат стабилизированные блоки на постоянном токе, разработанные в ИФМ РАН.

Эти условия позволяют существенно понизить электрическую мощность относительно значений, приведенных в [11]. В наших экспериментах ток разрядов составлял величину I = 200 mA, напряжение на магнетронах U = 280 V. Таким образом, электрическая мощность P= 56 W, что почти в три раза ниже мощности [11]. Скорость роста пленок при этом находится на уровне 0.12 nm/s. Толщины пленок в структуре регулировались скоростью прохождения подложки над магнетронами (фактически временем пребывания подложки над разрядом).

Измерения методом малоугловой рентгеновской дифракции проводились в диапазоне углов падения излучения на образец $\theta = 0 - 10^\circ$ с использованием четырехкристального высокоразрешающего дифрактометра PANalitycal X'Pert Pro, а также на станции ФАЗА Курчатовского центра синхротронных исследований [16] $(\lambda = 0.154 \,\mathrm{nm})$. Измерения в мягкой рентгеновской области спектра проводились на лабораторном рефлектометре со спектрометром-монохроматором РСМ-500 $(\lambda = 3.14 \text{ nm})$. Лабораторный рефлектометр обеспечивает оперативность рентгеновских измерений, однако работает на характеристических линиях. В случае рассматриваемого диапазона — на *L*-линии титана с максимумом на длине волны 3.14 nm. Спектр линии титана в три раза шире спектральной полосы пропускания зеркала Cr/Sc. По этой причине при измерениях происходит занижение и уширение пика отражения. Прецизионные измерения выполнялись на трехосном рефлектометре на оптической линии накопительного кольца BESSY-II [17]. Здесь изучались как угловые (при фиксированной энергии фотонов), так и спектральные (при фиксированном угле падения излучения) зависимости коэффициентов отражения многослойных зеркал.

Параметры структур (период, толщины материалов, межслоевая шероховатость) определялись методом одновременной подгонки кривых отражения, снятыми на $\lambda = 0.154$ nm и в мягкой рентгеновской области спек-

тра, с использованием модели восстановления значений параметров МЗ, описанной в [18].

2. Результаты и обсуждение

На первом этапе изучалась зависимость пикового коэффициента отражения R от толщины хрома в периоде. Период структур d = 1.58 nm оптимизирован под близкое к нормальному (5 градусов от нормали) падение излучения с длиной волны 3.14 nm. Общее число периодов в изучаемых структурах 250. Измерения проводились на лабораторном рефлектометре. Результаты представлены на рис. 1.

Из приведенной зависимости следует, что оптимальное значение толщины слоя хрома в периоде находится около 0.7 nm. Важно отметить, что при толщинах хрома менее 0.6 nm наблюдается резкое снижение *R*. Это, скорее всего, связано с потерей сплошности тонких пленок хрома и, как следствие, с увеличением межслоевой шероховатости.

Данный результат особенно важен применительно к методике барьерных слоев. Третий материал (например, карбид бора) при сохранении периода может быть добавлен в структуру только за счет двух других. Уменьшать толщину скандия нежелательно — так мы увеличим поглощение в структуре. Остается уменьшать долю хрома. Приведенная зависимость показывает, что уменьшать толщины пленок хрома можно лишь до предела в 0.6 nm.

В работах [11,12] МЗ Сг/Sс имели по 400 периодов. Возникает вопрос: необходимо ли напылять такое количество слоев? Не проявляются ли с увеличением толщины структуры ростовые особенности, приводящие к соответствующему увеличению межслоевой шероховатости σ ?

Для ответа на этот вопрос на следующем этапе экспериментов были синтезированы три структуры Cr/Sc,

Рис. 1. Зависимость коэффициента отражения от толщины слоя хрома в периоде (период 1.58 nm). Общее число периодов 250. Измерения на лабораторном рефлектометре со спектрометром-монохроматором PCM-500, длина волны 3.14 nm.

100 0.34 0.39 200 0.35 0.4 300 0.35 0.41 0.18 0.15 R, abs. units 0.12 0.09 0.06 0.03

Таблица 1. Значения межслоевой шероховатости в M3 Cr/Sc

Шероховатость

Sc-на-Cr, nm

в структурах с различным числом периодов

Число

периодов

0 **∟** 72

74

Рис. 2. Угловые зависимости коэффициентов отражения трех структур: со 100 периодами (круглые символы), с 200 периодами (треугольные символы), с 300 периодами (квадратные символы). Измерения выполнены на синхротроне BESSY-II, длина волны 3.14 nm.

76

78

Grazing angle, deg

80

82

отличающиеся только числом периодов: 100, 200 и 300. При этом толщина слоя хрома выбиралась приближенной к значениям, обеспечивающим максимум коэффициента отражения в соответствии с рис. 1. Точнее d(Cr) = 6.95 nm, d(Sc) = 9.2 nm. Восстановление параметров по методике [18] дало значения σ , приведенные в табл. 1.

Действительно, в пределах нашей модели можно отметить некоторый рост σ , негативный эффект от которого, впрочем, перекрывается увеличением числа эффективно отражающих слоев. В итоге это приводит к серьезному увеличению коэффициента отражения (рис. 2).

Следует отметить, что приведенный на рис. 2 пиковый коэффициент отражения структуры с 300 периодами составляет 17% на длине волны 3.14 nm. Более подробная зависимость R, снятых на различных длинах волн в диапазоне 3.115–3.15 nm, приведена на рис. 3 (измерения на синхротроне BESSY-II).

Как и следовало ожидать, наибольший коэффициент отражения соответствует длине волны 3.12 nm и составляет 21%. На данный момент это наибольший коэффициент отражения для M3 Cr/Sc, напыленных без применения методик управления межслоевыми границами.

При этом в отличие от МЗ, описанного в [11], наша структура содержит не 400, а 300 периодов. Можно

Шероховатость

Cr-на-Sc, nm

Рис. 3. Угловые зависимости коэффициентов отражения M3 Cr/Sc с 300 периодами, снятые на пяти длинах волн из диапазона 3.115–3.15 nm. Измерения выполнены на синхротроне BESSY-II.

Рис. 4. Моделирование угловых зависимостей коэффициентов отражения M3 Cr/Sc с 300 периодами, снятых на $\lambda = 0.154$ nm (*a*) и $\lambda = 3.12$ nm (*b*). Экспериментальные данные – квадратные символы, теоретическая модель — сплошная линия.

ожидать, что увеличение числа периодов позволит увеличить и коэффициент отражения. Об этом, в частности, говорит определенная по данным измерения величина $N_{\rm eff}=297$, с точностью до 1% соответствующая количеству периодов структуры.

Приведенные в таблице значения межслоевых шероховатостей (σ (Cr) = 0.35 nm и σ (Sc) = 0.41 nm) определены нами по результатам одновременного моделирования кривых отражения, снятых при λ = 0.154 nm (станция ФАЗА Курчатовского центра синхротронных исследований) и λ = 3.12 nm (оптическая линия синхротрона BESSY-II). Результаты моделирования приведены на рис. 4.

Несколько слов необходимо сказать о наличии некоей поверхностной пленки, обнаруживаемой по колебаниям кривой отражения на 0.154 nm (в диапазоне углов 1–2 градуса). Она возникает в ходе измерений на станции ФАЗА. Предположительно является следствием разложения клея, с помощью которого M3 крепится на измерительный столик. Полная таблица параметров моделирования приведена в табл. 2 и 3.

В данном моделировании, кроме самих величин шероховатостей, важно выделить функции, описывающие межслоевой переход от показателя преломления одного материала к другому. В работе [18] описывается физический смысл этих математических функций. В частности, там указывается, что каждая функция соответствует одному или нескольким физическим процессам или явлениям. Например, функция ошибок соответствует шероховатости с гауссовым распределением по высоте.

Поскольку именно функция ошибок наилучшим образом описывает поверхность пленок скандия в структуре, можно сделать предположение о том, что здесь имеет

Таблица 2. Параметры верхней пленки из трех слоев модельной структуры, соответствующие моделированию, приведенному на рис. 4

Материал слоя	Толщина слоя, nm	σ , nm	Функция
Sc_2O_3	0.89	0.58	линейная
Sc	0.45	0.3	линейная
Cr_2O_3	0.36	0.48	линейная

Таблица 3. Параметры 299 периодов модельной структуры, соответствующие моделированию, приведенному на рис. 4

Материал слоя	Толщина слоя, nm	σ , nm	Функция
Sc	0.92	0.41	ошибок
Cr	0.695	0.35	0.65 ошибок, 0.54 гиперболический тангенс

Подложка Si $\sigma = 0.3$ nm

место именно геометрическая шероховатость, вызванная особенностями роста пленки. Несмотря на выводы [8,9], видимо, в пленках скандия с толщинами более 0.9 nm зарождается рост кристаллитов.

Поверхность более тонких слоев хрома описывается уже не одной функцией ошибок, а линейной комбинацией функций ошибок и гиперболического тангенса с весовыми коэффициентами 0.65 и 0.54 соответственно. В данный момент без дополнительных исследований трудно сказать, каким именно процессам соответствует такое распределение.

Заключение

Таким образом, в работе изучены M3 Cr/Sc, изготовленные при пониженном значении электрической мощности на магнетронном разряде (56 W). Показано, что при толщинах слоя хрома в периоде менее 0.6 nm коэффициент отражения начинает быстро снижаться. Оптимальная с точки зрения отражательной способности толщина слоя хрома в периоде структуры составляет величину около 0.7 nm. В ходе экспериментов показано, что с увеличением числа периодов межслоевая шероховатость вырастает незначительно. При этом основным процессом образования шероховатости является, скорее всего, зарождение кристаллитов в металлических слоях. Однако для подтверждения данного утверждения требуются дополнительные исследования. Наконец, в работе получен рекордный коэффициент отражения (R = 21% на $\lambda = 3.12$ nm) для M3 Cr/Sc, синтезированных без применения методов управления межслоевыми границами.

Финансирование работы

Работа выполнена в рамках государственного задания № 0035-2014-0204 и при поддержке гранта РФФИ № 20-02-00364 с использованием оборудования ЦКП "Физика и технологии микро- и наноструктур" при ИФМ РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Малышев И.В., Пестов А.Е., Полковников В.Н., Салащенко Н.Н., Торопов М.Н., Чхало Н.И. // Поверхность. Ренттеновские, синхротронные и нейтронные исследования. 2019. № 1. С. 3–13.
- Berglund M., Rymell L., Peuker M., Wilhein T., Hertz H.M. // J. Microscopy. 2000. Vol. 197. N 3. P. 268–273.
- [3] Hanssen E., Knoechel C., Dearnley M., Dixon M.W.A., Gros M.L., Larabell C., Tilley L. // J. Structur. Biol. 2012. Vol. 177. P. 224–232.
- [4] Артюков И.А., Асадчиков В.Е., Виноградов А.В., Касьянов Ю.С., Кондратенко В.В., Серов Р.В., Федоренко А.И., Юлин С.А. // Квантовая электроника. 1995. Т. 22. № 9. С. 951–954.

- [5] Ejima T., Ishida F., Murata H., Toyoda M., Harada T., Tsuru T., Hatano T., Yanagihara M., Yamamoto M., Mizutani H. // Opt. Express. 2010. Vol. 18. N 7. P. 7203– 7209.
- [6] Шамов Е.А., Прохоров К.А., Салащенко Н.Н. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 1996. № 9. С. 60–63.
- [7] Salashchenko N.N., Shamov E.A. // Optics Commun. 1997. Vol. 134. N 1. P. 7–10.
- [8] Kuhlmann T., Yulin S., Feigl T., Kaiser N., Gorelik T., Kaiser U., Richter W. // Appl. Opt. 2002. Vol. 41. N 10. P. 2048–2052.
- [9] Ghafoor N., Eriksson F., Mikhaylushkin A.S., Abrikosov I.A., Gullikson E.M., Kressig U., Beckers M., Hultman L., Birch J. // J. Mater. Res. 2009. Vol. 24. N 01. P. 79–95.
- [10] Eriksson F., Johansson G.A., Hertz H.M., Gullikson E.M., Kreissig U., Birch J. // Opt. Lett. 2003. Vol. 28. P. 2494–2496.
- [11] Schäfers F., Yulin S., Feigl T., Kaiser N. // Proc. SPIE. 2003.
 Vol. 5188. P. 138–145.
- [12] Burcklen C., de Rossi S., Meltchakov E., Dennetiére D., Capitanio B., Polack F., Delmotte F. // Opt. Lett. 2017. Vol. 42. N 10. P. 1927–1930.
- [13] Вайнер Ю.А., Пестов А.Е., Прохоров К.А., Салащенко Н.Н., Фраерман А.А., Чернов В.В., Чхало Н.И. // ЖЭТФ. 2006. Т. 130. Вып. 3. С. 401–408.
- [14] Bibishkin M.S., Chkhalo N.I., Fraerman A.A., Pestov A.E., Prokhorov K.A., Salashchenko N.N., Vainer Yu.A. // Nucl. Instrum. Methods Phys. Res. 2005. Vol. 543. P. 333–339.
- [15] Забродин И.Г., Закалов Б.А., Каськов И.А., Клюенков Е.Б., Полковников В.Н., Салащенко Н.Н., Стариков С.Д., Суслов Л.А. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2013. № 7. С. 37–39.
- [16] Электронный ресурс. Режим доступа: http://kcsni.nrcki.ru/ pages/main/sync/beamlines/phaza/index.shtml
- [17] Schäfers F., Mertins H.-Ch., Gaupp A., Gudat W., Mertin M., Packe I., Schmolla F., DiFonzo S., Soullie G., Jark W., Walker R.P., Le Cann X., Nyholm R., Eriksson M. // Appl. Opt. 1999. Vol. 38. N 10. P. 4074–4088.
- [18] Svechnikov M., Pariev D., Nechay A., Salashchenko N., Chkhalo N., Vainer Y., Gaman D. // J. Appl. Cryst. 2017. Vol. 50. P. 1428–1440.