Исследование стимулированного излучения в гетероструктурах с квантовыми ямами HgTe/CdHgTe в окне прозрачности атмосферы 3–5 мкм

© Л.А. Кушков^{1,2}, В.В. Уточкин^{1,2}, В.Я Алёшкин¹, А.А. Дубинов¹, К.Е. Кудрявцев¹, В.И. Гавриленко¹, Н.С. Куликов^{1,2}, М.А. Фадеев^{1,¶}, В.В. Румянцев¹, Н.Н. Михайлов³, С.А. Дворецкий³, А.А Разова^{1,2}, С.В. Морозов¹

¹ Институт физики микроструктур Российской академии наук,
603950 Нижний Новгород, Россия
² Нижегородской государственный университет им. Н.И. Лобачевского,
603950 Нижний Новгород, Россия
³ Институт физики полупроводников Сибирского отделения Российской академии наук,
630090 Новосибирск, Россия

[¶] E-mail: fadeev@ipmras.ru

Поступила в Редакцию 10 июня 2020 г. В окончательной редакции 17 июня 2020 г. Принята к публикации 17 июня 2020 г.

В гетероструктурах с квантовыми ямами Hg(Cd)Te/CdHgTe в области длин волн 3–4 мкм выполнены исследования стимулированного излучения на межзонных переходах в зависимости от длины волны накачки. Минимальное значение пороговой плотности мощности и максимальная температура, при которых удается получить стимулированное излучение, соответствуют энергиям кванта накачки вблизи ширины запрещенной зоны барьеров. В структуре с толщиной покровного слоя 150 нм при непрерывной накачке и температурах выше 200 К было обнаружено структурное уширение спектра излучения, связываемое с проявлением эффекта Штарка, возникающего из-за влияния электрического поля области пространственного заряда поверхностного барьера.

Ключевые слова: кадмий-ртуть-теллур, стимулированное излучение, окно прозрачности атмосферы, эффект Штарка.

DOI: 10.21883/FTP.2020.10.49962.44

1. Введение

Компактные полупроводниковые лазеры среднего инфракрасного (ИК) диапазона, работающие в окне прозрачности атмосферы 3-5 мкм, необходимы для молекулярной диодной лазерной спектроскопии (МДЛС), которая является удобным инструментом для анализа газов и создания газовых сенсоров. В ИК области спектра находятся несколько выраженных окон прозрачности атмосферы — диапазонов длин волн с низким поглощением (1-1.6, 3-5, 8-13 мкм), что позволяет сканировать в этих диапазонах большие объемы газа; с прикладной точки зрения наиболее интересен спектральный диапазон 3-5 мкм, на который приходится большое количество спектральных линий практически важных газов, таких как HCl, CO, CO₂, NO_x, SO₂ и CH₄ [1]. На данный момент лучшими характеристиками среди полупроводниковых источников в диапазоне 3-5 мкм обладают квантово-каскадные лазеры (ККЛ) и межзонные каскадные лазеры (МКЛ), способные работать в непрерывном режиме при комнатной температуре [2-8]. В то же время высокая технологическая сложность производства ККЛ (МКЛ) наряду с проблемой перестройки по длине волны излучения не позволяют подобным устройствам полностью удовлетворить потребности абсорбционной спектроскопии.

В настоящее время активно ведутся поиски альтернативных решений для излучателей диапазона 3-5 мкм (см., например, [8,9]), одним из которых могут стать межзонные лазерные диоды или оптические конверторы в ИК области на основе узкозонных материалов HgCdTe (КРТ). Так, в ряде работ рассматривались вертикальноизлучающие лазеры с высокой добротностью [10-14]; предложенные конструкции позволили получить лазерную генерацию при комнатной температуре в ближнем ИК диапазоне (1.2–1.6 мкм) [13]. При продвижении в более длинноволновую часть спектра (2-3 мкм) наблюдалось как уменьшение выходной мощности лазеров, так и резкое падение максимальной их рабочей температуры [11,14]. Это связывалось с увеличением роли безызлучательной оже-рекомбинации, скорость которой возрастает при уменьшении ширины запрещенной зоны [15]. В то же время в теоретической работе, посвященной гетероструктурам с узкими квантовыми ямами (КЯ) HgCdTe [16], предсказывалась возможность построения на основе таких структур лазеров среднего ИК диапазона (3-4 мкм) с рабочими температурами вплоть до комнатной. Подобные структуры с КЯ $Hg_rCd_{1-r}Te/Cd_{\nu}Hg_{1-\nu}Te$ возможно выращивать с использованием современной технологии молекулярнопучковой эпитаксии (МПЭ) соединений на основе НgCdTe, развитой в ИФП СО РАН [17,18]. Гетероструктуры с узкими КЯ оказываются предпочтительными (по сравнению с однородными эпитаксиальными пленками HgCdTe и гетероструктурами с потенциальными ямами HgCdTe) при построении лазерных структур [19–22], что обусловлено намного большей пороговой энергией оже-рекомбинации в узких КЯ HgTe/CdHgTe за счет локально симметричных законов в окрестности k = 0 дисперсии для электронов и дырок.

В работе [21] было установлено, что стимулированное излучение (СИ) вблизи длины волны 3 мкм может быть получено в структурах с узкими КЯ при температурах до 265 К. Значительное повышение рабочей температуры в сравнении с предшествующими результатами хорошо согласуется с теоретическими оценками работы [16]. Отметим, что температуры > 205 К могут быть получены с помощью термоэлектрического охлаждения Пельтье, что определяет возможность практического применения лазерных гетероструктур с КЯ HgTe/CdHgTe. В то же время переход к токовой накачке подобных структур требует решения сложной технологической задачи формирования *p*-*n*-перехода, и наиболее реальным на настоящий момент представляется создание на основе гетероструктур HgCdTe-конвертеров излучения ближнего ИК диапазона в диапазон 3-5 мкм. С этой точки зрения важным становится вопрос оптимизации именно оптической накачки лазерных структур на основе КРТ. В данной работе проведено исследование пороговой плотности мощности излучения от длины волны накачки, нацеленное на оптимизацию структур для работы с коротковолновой оптической накачкой. Помимо этого в работе анализируются эффекты, связанные с влиянием поля области пространственного заряда (ОПЗ) поверхностного барьера на излучательные характеристики формируемого массива КЯ HgCdTe/CdHgTe и неоднородного распределения фотовозбужденных носителей в массиве КЯ на наблюдаемые спектры фотолюминесценции.

2. Образцы и методика эксперимента

В работе исследовались две структуры (#170201 и #200222), выращенные в ИФП СО РАН методом МПЭ на полуизолирующих подложках GaAs (013) с использованием буферных слоев ZnTe (50 нм) и CdTe (5 мкм). Активная область лазерных структур состояла из массива КЯ HgCdTe, разделенных широкозонными барьерными слоями CdHgTe. Ширина КЯ составляла 2.5 и 3.5 нм соответственно для структур #170201 и #200222, доля кадмия в барьерных слоях — 65 и 69%; расстояние между отдельными КЯ в активном слое составляло 30 нм. Массив КЯ располагался в пучности ТЕ моды волноведущего слоя для длины волны, соответствующей расчетной энергии межзонного перехода между основными уровнями размерного квантования в КЯ (рис. 1).

Исследуемые структуры обладали приблизительно одинаковой шириной запрещенной зоны (за счет различной доли Cd в KЯ), различаясь при этом числом

Рис. 1. Распределение действительной части показателя преломления (тонкая линия) профиля TE₀ моды (толстая линия) в образцах #170201 (*a*) и #200222 (*b*). Расчет поля TE₀ моды в образцах #170201 и #200222 проведен для длин волны излучения 3 и 3.7 мкм соответственно.

КЯ в активной области и толщиной покровного слоя. В структуре #170201 были выращены 10 КЯ, а толщина покровного слоя составляла 300 нм; образец #200222 содержал 30 КЯ при толщине покровного слоя 150 нм.

Для исследований СИ и фотолюминесценции (ФЛ) образцы помещались в криостат замкнутого цикла с температурным диапазоном 8-300 К. Во время исследований ФЛ в качестве источника возбуждения использовался непрерывный диодный лазер с длиной волны 980 нм и средней мощностью 360 мВт. Для исследований СИ использовался параметрический генератор света ближнего инфракрасного диапазона с накачкой Nd: YAG-лазером (Solar LS LP601), позволяющий реализовать импульсное возбуждение с плотностью мощности накачки до 250 кВт/см², длительностью 10 нс и возможностью перестройки длины волны в диапазоне 0.7-2.3 мкм. Для регистрации спектров использовался инфракрасный фурье-спектрометр Bruker Vertex 80v, работавший в режиме пошагового сканирования; рассеянное излучение источника оптического возбуждения отсекалось с помощью Ge-фильтра. В качестве детектора излучения использовался фотоэлектрический HgCdTe-приемник Kolmar Technologies D317 и InSb-приемник.

3. Результаты и обсуждение

Результаты исследований порога возникновения СИ от длины волны накачки в структуре #170201 представлены на рис. 2. Важно выделить три основных случая, когда энергия кванта излучения накачки меньше, приблизительно равна и значительно больше ширины запрещенной зоны барьерных слоев E_q^{bar} .

Отметим, что в более узкозонных структурах (в которых длина волны СИ лежит в диапазоне 10-20 мкм) оптимальным режимом накачки оказывается "подбарьерное" возбуждение [19], при котором неравновесные носители возникают непосредственно в КЯ. Это позволяет снизить разогрев носителей, который, как показано в работах [22,23], оказывает очень сильное влияние на возможность получения генерации. В частности, использование длинноволновой накачки позволяет предотвратить "гашение" СИ с ростом интенсивности возбуждения и добиться увеличения интенсивности СИ пропорционально мощности накачки [23]. Обратной стороной такого подхода являются высокие пороговые интенсивности возникновения СИ, так как поглощение в одной КЯ составляет ~ 1% и, следовательно, в активной области с 10-30 КЯ поглощается не более 30% излучения накачки.

В противоположном случае, когда энергия кванта заметно больше E_g^{bar} , за счет высокого поглощения в барьерах можно получить большую концентрацию неравновесных носителей. Тем не менее при этом возникает вопрос об эффективности инжекции носителей из барьеров в КЯ. В узкозонных структурах, рассчитанных на длины волн 10 мкм и более, инжекция из толстых (несколько мкм) волноводных/барьерных слоев может быть малоэффективной из-за захвата носителей на глубокие центры в барьерах. Для структур, исследуемых в данной работе, толщина волноводных слоев значительно меньше (сотни нм). Кроме того, длина волны, соответствующая межзонному переходу, достаточно близка к длине волны накачки и влияние разогрева носителей излучением накачки должно быть менее выражено. Критическим параметром с точки зрения практического применения структур становится пороговая интенсивность возникновения СИ и максимальная температура, при которой удается добиться генерации. С этой точки зрения использование накачки в барьеры КЯ представляется более перспективным; кроме того, более коротковолновая накачка предпочтительна из-за большей доступности мощных источников для оптического возбуждения.

Из рис. 2 видно, что при высоких температурах наименьший порог достигается при накачке с энергией

Рис. 2. Зависимость порога возникновения СИ (выражен в относительном числе фотонов) в структуре #170201 от энергии фотона в диапазоне температур 8–200 К.

кванта, равной или немного превышающей ширину запрещенной зоны барьерных слоев (870-900 мэВ). Отметим, что по вертикальной оси отложено число фотонов, поэтому, несмотря на то что в области 900-1350 мэВ порог практически не меняется, пороговая интенсивность накачки растет с увеличением энергии кванта. При уменьшении энергии кванта ниже E_o^{bar} порог резко увеличивается при всех температурах из-за слабого поглощения излучения накачки при "подбарьерном" возбуждении, как сказано выше. При увеличении энергии кванта выше E_g^{bar} порог, выраженный в числе фотонов, практически не меняется для высоких температур, в то время как коэффициент поглощения в барьерных слоях быстро увеличивается с энергией кванта. Это свидетельствует о том, что концентрация носителей, инжектируемых в КЯ, меняется слабо, несмотря на увеличение концентрации носителей, генерируемых накачкой в барьерах. Исключение составляет зависимость при 8К, для которой порог возникновения СИ монотонно уменьшается при увеличении энергии кванта возбуждения. Это позволяет заключить, что в данном случае длина диффузии носителей уменьшается с ростом температуры. По-видимому, это связано со значительным уменьшением времени жизни носителей в барьерах при высоких температурах. При возбуждении с длиной волны, излучение на которой сильно поглощается в верхнем барьерном слое, распределение неравновесных носителей становится сильно неоднородным и вблизи поверхности структуры формируется область высокой концентрации, в которой возможна быстрая рекомбинация как "объемного" типа (излучательная, оже-рекомбинация), так и за счет поверхностных состояний.

В этой связи следует отметить наблюдаемые при высоких температурах особенности в спектрах ФЛ.

Рис. 3. Эволюция спектра ФЛ структуры #200222 в зависимости от температуры при непрерывной накачке 980 нм.

На рис. 3 представлены результаты исследования ФЛ структуры #200222 при непрерывной накачке с длиной волны 980 нм в диапазоне температур 80-300 К. При температурах < 200 К наблюдается единственная линия ФЛ, сдвигающаяся в коротковолновую область в соответствии с температурным изменением ширины запрещенной зоны в КЯ. Дальнейшее увеличение температуры приводит к трансформации спектра: появляется несколько максимумов, количество и "выраженность" которых растет с увеличением температуры. Такое поведение спектров может быть связано с влиянием поля ОПЗ, возникающего в поверхностном слое барьера. Нескомпенсированный заряд создает электрическое поле, которое приводит к смещению уровней размерного квантования, ближайших к поверхности КЯ, за счет эффекта Штарка. Как следствие, возникает "лестница" межзонных переходов начиная от КЯ, расположенных близко к поверхности барьера, до более глубоких КЯ, где поле ОПЗ слабее.

При низких температурах (до 200 K) проявления эффекта Штарка практически не выражены в спектрах, поскольку благодаря большей длине диффузии неравновесные носители, которые возникают при оптической накачке, могут проникать в глубь структуры и компенсируют электрическое поле ОПЗ поверхностного барьера за счет экранировки. С увеличением температуры время жизни носителей уменьшается, а с ним и длина диффузии, и свободные носители располагаются ближе к поверхности. Как следствие, возникает электрическое поле ОПЗ поверхностного барьера, которое приводит к уменьшению ширины запрещенной зоны в ближайших к поверхности КЯ, что отражается в спектрах межзонной ФЛ. Таким образом, электрическое поле ОПЗ приводит к уширению и структурированию спектров ФЛ при высоких температурах. Этот эффект должен приводить к "размыванию" профиля усиления и в конечном счете к подавлению СИ.

Температурная зависимость спектров излучения при импульсном возбуждении структуры #200222 показана на рис. 4. При температуре 200 К удалось получить СИ на длине волны 3.8 мкм. При температурах > 200 К наступает "гашение" СИ и преобладает спонтанное излучение (ФЛ). Отметим, что данная температура соответствует границе, при которой происходит существенное структурирование спектров спонтанной ФЛ.

Как видно из рис. 4, при температуре 220 К спектр излучения имеет вид, аналогичный спектру, полученному в непрерывном режиме. Это свидетельствует о наличии эффекта Штарка в импульсном режиме и говорит о том, что максимальная температура получения СИ в структуре #200222 может быть ограничена уширением профиля усиления за счет малой длины диффузии неравновесных носителей.

В структуре #170201 для снижения влияния ОПЗ поверхностного барьера на положение уровней размерного квантования КЯ толщина покровного слоя была увеличена до 300 нм. Поэтому по сравнению со структурой #200222 с толщиной покровного слоя 150 нм влияние электрического поля ОПЗ поверхностного барьера на положение уровней размерного квантования в КЯ, расположенных в активной области структуры, должно быть снижено. Эволюция спектров излучения структуры #170201 в импульсном режиме в зависимости от температуры показана на рис. 5. Выраженная линия

Рис. 4. Эволюция спектра СИ структуры #200222 при температурах 90–200 К в условиях импульсной накачки на длине волны 1.5 мкм. Штриховой линией показан спектр ФЛ.

Физика и техника полупроводников, 2020, том 54, вып. 10

Рис. 5. Эволюция спектра СИ структуры #170201 при температурах 20-300 К в условиях импульсной накачки на длине волны 1.5 мкм. Штриховой линией показан спектр спонтанной ФЛ при T = 267 К.

СИ наблюдается в спектре вплоть до 256 К, а при более высоких температурах доминирует спонтанное излучение ФЛ. Как и в структуре #200222, спектр ФЛ при высоких температурах содержит несколько выделенных максимумов. Это может говорить о влиянии поля ОПЗ даже при увеличении ширины покровного слоя до 300 нм, но при более высоких температурах.

4. Заключение

Результаты работы показывают, что для реализации оптических конвертеров на основе исследуемых структур наиболее подходящей является длина волны накачки, при которой энергия кванта равна или немного превышает ширину запрещенной зоны в барьерных слоях, так как такой режим обеспечивает минимальный порог возникновения СИ. Таким образом, для наиболее эффективной накачки коротковолновым излучением структуры должны иметь барьеры с высоким содержанием кадмия (> 70%). Так, при использовании источников возбуждения с рабочей длиной волны 0.9–1 мкм для генерации излучения в области длин волн 3–4 мкм при температуре 250 К оптимальная концентрация кадмия в барьерах составляет 90%.

В спектрах ФЛ структур при высоких температурах были обнаружены несколько максимумов, связываемых с проявлением эффекта Штарка, который изменяет энергию межзонных переходов в различных КЯ из-за влияния электрического поля ОПЗ поверхностного барьера. Этот эффект приводит к уширению спектра ФЛ, а при импульсном возбуждении может уменьшать усиление и ограничивать возможность возникновения СИ при высокой температуре. Непосредственное сравнение двух исследованных структур по максимальной

Физика и техника полупроводников, 2020, том 54, вып. 10

температуре, при которой возможно получение СИ, сделать затруднительно из-за разных длин волн генерации (2.8 и 3.75 мкм). Однако, принимая во внимание, что в аналогичных структурах с более толстыми волноводными (которые являются фактически покровными) слоями удается получить СИ на длине волны 7 мкм при 175 К [24] и 2.5 мкм при 300 К [25], считаем, что в диапазоне длин волн 3-4 мкм "рабочая" температура излучателей на основе КРТ может быть существенно выше 200 К. Для минимизации влияния электрического поля ОПЗ поверхностного барьера следует использовать структуры с толщиной покровного барьера > 300 нм, а также более длинноволновую накачку.

Благодарности

Работа выполнена с использованием оборудования УСУ "Фемтоспектр" Центра коллективного пользования ИФМ РАН.

Финансирование работы

Исследования спектров стимулированного излучения при различной длине волны накачки были выполнены при поддержке Российского научного фонда (проект № 17-12-01360).

Исследования спектров фотолюминесценции и эффекта Штарка были выполнены при поддержке Российского фонда фундаментальных исследований (проект № 19-02-00827).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] F.K. Tittel, D. Richter, A. Fried. In: *Solid-state mid-infrared laser sources* (2003) p. 458.
- [2] R. Maulini, I. Dunayevskiy, A. Lyakh, A. Tsekoun, C.K.N. Patel, L. Diehl, C. Pflügl, F. Capasso. Electron. Lett., 45 (2), 107 (2009).
- [3] Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi. Appl. Phys. Lett., 98 (18), 181102 (2011).
- [4] N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi. Appl. Phys. Lett., 101 (24), 241110 (2012).
- [5] T. Kruczek, K.A. Fedorova, G.S. Sokolovskii, R. Teissier, A.N. Baranov, E.U. Rafailov. Appl. Phys. Lett., **102** (1), 11124 (2013).
- [6] P. Laffaille, J.C. Moreno, R. Teissier, M. Bahriz, A.N. Baranov. AIP Adv., 2 (2), 22119 (2012).
- [7] I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, C.D. Merritt, J. Abell, J.R. Lindle, J.R. Meyer. Nature Commun., 2, 585 (2011).
- [8] A. Bauer, K. Roßner, T. Lehnhardt, M. Kamp, S. Hofling, L. Worschech, A. Forchel. Semicond. Sci. Technol., 26 (1), 014032 (2011).
- [9] D. Jung, S. Bank, M. L. Lee, D. Wasserman. J. Opt., 19, 123001 (2017).

- [10] J. Bonnet-Gamard, J. Bleuse, N. Magnea, J.L. Pautrat. J. Appl. Phys., 78 (12), 6908 (1995).
- [11] E. Hadji, J. Bleuse, N. Magnea, J.-L. Pautrat. Appl. Phys. Lett., 67 (18), 2591 (1995).
- [12] E. Hadji, J. Bleuse, N. Magnea, J.-L. Pautrat. Appl. Phys. Lett., 68 (18), 2480 (1996).
- [13] C. Roux, E. Hadji, J.-L. Pautrat. Appl. Phys. Lett., 75 (12), 1661 (1999).
- [14] C. Roux, E. Hadji, J.-L. Pautrat. Appl. Phys. Lett., 75 (24), 3763 (1999).
- [15] В.Н. Абакумов, В.И. Перель, И.Н. Яссиевич. Безызлучательная рекомбинация в полупроводниках (СПб., Изд-во ПИЯФ, 1997) гл. 11, с. 235.
- [16] I. Vurgaftman, J.R. Meyer. Opt. Express, 2, 137 (1998).
- [17] S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, S. Ganichev. J. Electron. Mater., 39, 918 (2010).
- [18] N. Mikhailov, R. Smirnov, S. Dvoretsky, Y.G. Sidorov, V. Shvets, E. Spesivtsev, S. Rykhlitski. Int. J. Nanotechnol., 3, 120 (2006).
- [19] S. Morozov, V. Rumyantsev, A. Kadykov, A. Dubinov, K. Kudryavtsev, A. Antonov, N. Mikhailov, S. Dvoretskii, V. Gavrilenko. Appl. Phys. Lett., **108**, 092104 (2016).
- [20] В.В. Румянцев, А.М. Кадыков, М.А. Фадеев, А.А. Дубинов, В.В. Уточкин, Н.Н. Михайлов, С.А. Дворецкий, С.В. Морозов, В.И. Гавриленко. ФТП, **51** (12), 1616 (2017).
- [21] M.A. Fadeev, V.V. Rumyantsev, A.M. Kadykov, A.A. Dubinov, A.V. Antonov, K.E. Kudryavtsev, S.A. Dvoretskii, N.N. Mikhailov, V.I. Gavrilenko, S.V. Morozov. Opt. Express, 26, 12755 (2018).
- [22] S.V. Morozov, V.V. Rumyantsev, M.A. Fadeev, M.S. Zholudev, K.E. Kudryavtsev, A.V. Antonov, A.M. Kadykov, A.A. Dubinov, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko. Appl. Phys. Lett., **111** (19), 192101 (2017).
- [23] V.V. Rumyantsev, N.S. Kulikov, A.M. Kadykov, M.A. Fadeev, A.V. Ikonnikov, A.S. Kazakov, M.S. Zholudev, V.Y. Aleshkin, V.V. Utochkin, N.N. Mikhailov, S.A. Dvoretskii, S.V. Morozov, V.I. Gavrilenko. Semiconductors, **52** (11), 1375 (2018).
- [24] V. Rumyantsev, M. Fadeev, V. Aleshkin, N. Kulikov, V. Utochkin, N. Mikhailov, S. Dvoretskii, S. Pavlov, H.-W. Hübers, V. Gavrilenko, C. Sirtori, Z.F. Krasilnik, S. Morozov. Phys. Status Solidi B, 256 (6), 1800546 (2019).
- [25] A.A. Andronov, Y.N. Nozdrin, A.V. Okomel'kov, N.N. Mikhailov, G.Y. Sidorov, V.S. Varavin. J. Luminesc., 132 (3), 612 (2012).

Редактор Л.В. Шаронова

Investigation of stimulated emission from HgTe/CdHgTe quantum well heterostructures in the $3-5\mu$ m atmospheric transparency window

L.A. Kushkov^{1,2}, V.V. Utochkin^{1,2}, V.Ya. Aleshkin¹, A.A. Dubinov¹, V.I. Gavrilenko¹, N.S. Kulikov^{1,2}, M.A. Fadeev¹, V.V. Rumyantsev¹, N.N. Mikhailov³, S.A. Dvoretskii³, A.A. Razova^{1,2}, S.V. Morozov¹

 ¹ Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
² Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
³ Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract Stimulated emission from HgTe/CdHgTe heterostructures with quantum wells in the $3-4\mu$ m wavelength range was studied depending on the excitation wavelength. The results show a decrease in power density threshold and an increase in maximum temperature of stimulated emission observation when the photon energy of pumping radiation approaches the bandgap value of barrier layers. In a structure with a coating layer with thickness of about 150 nm under continuous pumping at the temperatures above 200 K a structural broadening of the radiation spectrum was detected, which is a manifestation of the Stark effect due to the influence of the electric field of spatial charge density in the surface barrier.