Релаксация возбужденных состояний мышьяка в деформированном германии

© К.А. Ковалевский¹, Ю.Ю. Чопорова^{2,3}, Р.Х. Жукавин¹, Н.В. Абросимов⁴, С.Г. Павлов⁵, Н.-W. Hübers^{5,6}, В.В. Цыпленков¹, В.Д. Кукотенко^{2,3}, Б.А. Князев^{2,3}, В.Н. Шастин¹

¹ Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия
² Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия
³ Новосибирски, Россия
⁴ Leibniz Institute of Crystal Growth, 12489 Berlin, Germany
⁵ Institute of Optical Sensor Systems, German Aerospace Center (DLR), 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
⁷ Institut 400 Pegakuu 15 anpens 2020 г.

Принята к публикации 21 апреля 2020 г.

Исследованы времена релаксации нижних *p*-состояний донора мышьяка в деформированном вдоль кристаллографического направления [111] кристалле германия. Измерения выполнялись методом накачказондирование с использованием излучения лазера на свободных электронах. Накачка состояний осуществлялась из основного состояния $1s(A_1)$. Измеренное время распада состояния $2p_0$ составляет 1.3 нс, $3p_0$ — не более 0.2 нс, $2p_{\pm}$ — 0.4 нс. Показано, что относительно высокий темп релаксации состояния $2p_{\pm}$ обусловлен взаимодействием с внутридолинными ТА фононами.

Ключевые слова: германий, мышьяк, одноосная деформация, накачка-зондирование, внутрицентровое оптическое возбуждение, фононы.

DOI: 10.21883/FTP.2020.10.49959.41

1. Введение

В последнее время новая волна интереса к свойствам мелких примесей в полупроводниках [1], в частности к исследованию релаксации возбужденных состояний, связана с появлением новых задач квантовой радиофизики [2] и квантовых вычислений [3], а также новых экспериментальных возможностей для прямого измерения ультрабыстрой и в то же время спектрально разрешенной динамики неравновесных носителей заряда [4].

Первые экспериментальные результаты по временам релаксации доноров и акцепторов в недеформированном германии были получены еще в 70-е годы с использованием комнатного теплового излучения в качестве возбуждающего источника, в то время как зондирующим было излучение лампы обратной волны [5]. Позднее с применением оптического затвора для уменьшения длительности импульса излучения лазера на свободных электронах (ЛСЭ) до нс было получено время фотоот-клика *p*-Ge с концентрацией акцепторов $N_a = 10^{15} \text{ см}^{-3}$ и компенсацией 50% ~ 1.7 нс [6]. Появление многопользовательских установок типа "накачка–зондирование" при инфракрасных ЛСЭ, имеющих длительности импульса излучения в диапазоне 10–100 пс, позволило зна-

чительно расширить экспериментальные возможности. В частности, было исследовано время захвата в *p*-Ge с различными уровнями легирования и компенсации [7], что позволило на основе полученных данных определить параметры, необходимые для уменьшения времени отклика германиевого детектора, и достичь рекордно коротких откликов фотопроводимости (150 пс) [4].

Методом накачка-зондирование в *n*-Ge были получены времена релаксации самых нижних возбужденных состояний (150-250 пс) в донорах сурьмы и мышьяка [8,9], а также время релаксации (> 1 нс) при различных интенсивностях накачки в зону проводимости [10]. Одноосная деформация вдоль направления [111] приводит к понижению симметрии, и при давлении > 300 бар нижние состояния доноров связаны с долинами только одного из направлений [111]. Такая модификация примесных состояний исключает участие междолинных фононов в процессах внутрицентровой релаксации, играющих важную роль в недеформированных кристаллах. В соответствии с этим следует ожидать существенных изменений времен релаксации. Данная работа имеет целью экспериментальное исследование времени релаксации возбужденных состояний доноров мышьяка в германии при криогенных температурах методом накачка—зондирование при наличии одноосной деформации кристалла вдоль кристаллографического направления [111].

2. Эксперимент

Кристаллы германия были выращены методом Чохральского с концентрацией мышьяка $N_0 = 10^{15} \, {
m cm^{-3}}$ и малой компенсацией ($\sim 10^{12} \, \mathrm{cm}^{-3}$). Образец имел размеры 2 × 5 × 7 мм. Угол между полированными гранями 5 × 7 мм составлял ~ 1.5°. Образец помещался в проточный гелиевый криостат Janis ST-100 с окнами TPX (полоса пропускания > 15 мкм) при температуре $T \approx 4$ К. Давление к образцу прикладывалось к грани 2×5 мм с помощью рычага и составляло $S \approx 2.5$ кбар. Все измерения проводились на экспериментальной установке накачки-зондирования при Сибирском центре синхротронного и терагерцового излучения [11]. В качестве источника терагерцового (ТГц) излучения использовался ЛСЭ NovoFEL. В данном эксперименте была задействована первая очередь ЛСЭ с возможностью перестройки в диапазоне $\lambda = 90-220$ мкм, длительность импульса ~ (100-150) пс, частота повторения в квазинепрерывном режиме 5.6 МГц. Выходное излучение ослаблялось с помощью поляризатора и делилось на пучок накачки и пучок зондирования с помощью делителя на основе лавсана в соотношении 20:1. Пучок зондирования проходил через линию задержки, а время прихода импульса зондирующего пучка после импульса накачки варьировалось в автоматическом режиме от отрицательных значений 1 нс до положительных значений задержки $\tau = 4$ нс. Пучки фокусировались таким образом, что диаметр пятна на поверхности образца составлял D = 1 мм для пучка зондирования и D = 2 мм для пучка накачки. Угол между пучками $\alpha \approx 15^{\circ}$. После прохождения образца излучение собиралось линзой на приемнике Голея. При помощи системы из двух поляризаторов в каждом канале мощность пучка можно было изменять независимо с сохранением поляризации. Для уменьшения влияния излучения накачки на сигнал приемника в канале зондирования поляризации в пучках ставились под углом 90°. Дополнительно в канале зондирования (перед приемником) стоял поляризатор в позиции, при которой прохождение излучения накачки минимально. Излучение накачки модулировалось с помощью прерывателя на частоте 15 Гц, а исследуемый сигнал подавался на синхронный усилитель (SR-830 lock-in amplifier). Частота излучения ЛСЭ в эксперименте соответствовала возбуждению *p*-состояний донора As в деформированном германии из основного состояния.

При фотовозбуждении самого нижнего возбужденного состояния $2p_0$ (рис. 1) (энергия связи 4.75 мэВ, $1s(\Gamma_1) \rightarrow 2p_0$, при $S \approx 2.5$ кбар длина волны накачки $\lambda = 190$ мкм) отклик (временная зависимость интенсивности прошедшего через образец пробного сигнала от задержки по отношению к накачивающему импульсу)

Рис. 1. Схема уровней донора мышьяка в германии при деформации ($\Delta > 0$) в кристаллографическом направлении [111]. Давление в 1 кбар соответствует междолинному расщеплению ~ 10.81 мэВ.

Рис. 2. Сигнал в системе накачка-зондирование при возбуждении различных уровней донора мышьяка в германии при T = 4 K и S = 2.5 кбар.

показывает экспоненциальный спад с характерным временем 1.3 нс (рис. 2). Здесь же на рис. 2 представлен результат измерения сигнала (ритр-ргове, PP signal) для $3p_0$ -состояния (энергия связи 8.6 мэВ, используемая длина волны накачки $1s(\Gamma_1) \rightarrow 3p_0$ при $S \approx 2.5$ кбар $\lambda = 150$ мкм) при температуре ~ 4 К. Временная зависимость сигнала достаточно хорошо аппроксимируется экспоненциальной функцией с характерным вре-

Рис. 3. Сигнал в системе накачка-зондирование при возбуждении состояния $3p_0$ донора мышьяка в германии при различных температурах.

Рис. 4. Сигнал в системе накачка-зондирование при возбуждении состояния $2p_{\pm}$ донора мышьяка в германии при различных температурах.

менем ~ 1.3 нс. На рис. 3 представлены зависимости исследуемого сигнала от температуры в диапазоне $T \approx 4-45$ К для случая возбуждения $3p_0$.

Случай фотовозбуждения $2p_{\pm}$ -состояния представлен на рис. 2 (энергия связи 9.4 мэВ, $1s(\Gamma_1) \rightarrow 2p_{\pm}$, при $S \approx 2.5$ кбар $\lambda = 130$ мкм). Для сигнала характерен более быстрый экспоненциальный спад с характерным масштабом 0.4 нс. Влияние температуры на сигнал представлено на рис. 4.

3. Обсуждение

При одноосной деформации $S \approx 2.5$ кбар состояние $2p_0$ является самым нижним среди возбужденных уровней донора, поэтому экспериментально измеренное вре-

мя отклика 1.3 нс соответствует времени жизни $2p_0$. Вычисление этого времени дает меньшее, но близкое значение, $\sim 1 \, \text{нc}$ [12]. Сравнение с экспериментальным значением в отсутствие одноосного давления (0.8 нс) [9] показывает увеличение времени релаксации с деформацией, что качественно совпадает с результатом теоретических оценок. В недеформированном германии время релаксации уровня 2 ро связано с переходами не только в основное состояние, $2p_0 \rightarrow 1s^{(1)}(\Gamma_1)$, но и в состояние триплета, $2p_0 \rightarrow 1s^{(3)}(\Gamma_5)$, энергия связи триплета 9-94 мэВ. Последнее при давлении в 2.5 кбар вдоль направления [111] оказывается выше по энергии, чем нижняя компонента уровня $2p_0$, и не участвует в релаксации, увеличивая время жизни 2ро. Некоторая компенсация возникает за счет уменьшения энергетического зазора между $2p_0$ и основным уровнем донора, так как вероятность акустической релаксации растет с уменьшением энергии перехода.

Состояние $3p_0$ располагается выше $2p_0$ и 2s (рис. 1). Поскольку измеренное время релаксации $3p_0$ совпадает с $2p_0$ (с точностью до временно́го разрешения метода ~ 0.15 нс), можно предположить, что релаксация идет через $2p_0$, причем темп перехода $3p_0 \rightarrow 2p_0$ должен быть бо́льшим в сравнении с величиной 1.3 нс. Таким образом, время распада состояния $3p_0$ не превышает 0.15–0.2 нс (временно́е разрешение установки). Расчет темпов безызлучательной релаксации состояния $3p_0$, выполненный в работе [11], также указывает на преимущественный канал релаксации $3p_0 \rightarrow 2p_0 \rightarrow 1s(\Gamma_1)$ с соответствующими временами ~ 0.15 и ~ 1 нс. Прямой же переход $3p_0 \rightarrow 1s(\Gamma_1)$ в случае $S \approx 2.5$ кбар оказывается подавленным.

Другая ситуация наблюдается при накачке в состояние $2p_{\pm}$. Время релаксации, полученное в эксперименте, составляет ~ 0.4 нс, что близко к значению в недеформированном кристалле, где экспериментальная оценка дает не более 0.6 нс [9]. Поскольку $2p_{\pm}$ лежит выше $3p_0$ и 2ро, измеренный темп релаксации должен определяться переходом в основное *s*-состояние, $2p_{\pm} \rightarrow 1s(\Gamma_1)$, а не каналом релаксации, включающим 3p₀ и 2p₀. (Возможно, промежуточным в этом процессе может оказаться уровень 2s или 3s, однако на дальнейших рассуждениях это не отразится.) Такое поведение отличается от случая Sb, где экспериментально наблюдалось увеличение времени релаксации $2p_{\pm}$ до 3.2 нс в одноосносдавленном германии, а основной канал релаксации был определен как $2p_{\pm} \rightarrow 3p_0 \rightarrow 2p_0 \rightarrow 1s(\Gamma_1)$. Поскольку возбужденные состояния различных мелких доноров германия фактически идентичны, темпы релаксационных процессов между верхними возбужденными состояниями $2p_{\pm} \rightarrow 3p_0 \rightarrow 2p_0$ в разных донорах также схожи. Различие этих примесей заключается в положении уровня $1s(\Gamma_1)$, что также указывает на наличие прямого перехода в основное состояние в случае мышьяка.

Экспериментальное наблюдение высокого темпа релаксации для высоко лежащего состояния $2p_{\pm}$ является неожиданным результатом. Так как при достаточ-

но большой деформации вдоль кристаллографического направления [111] волновые функции как основного, так и возбуждаемого состояний доноров образованы вкладом лишь одной долины (вдоль которой приложено давление), междолинные процессы электрон-фононного взаимодействия не могут давать вклад в релаксацию состояний примесного центра. Таким образом, необходимо допустить, что релаксация определяется внутридолинными переходами с испусканием акустических фононов с большим волновым вектором (0.5–1 от размера зоны Бриллюэна).

Как известно, вероятность релаксации достаточно быстро спадает с увеличением волнового вектора фонона (следовательно, и энергии перехода), когда он начинает превосходить радиусы локализации волновых функций состояний доноров в обратном пространстве. Следовательно, при использовании волновых функций примеси, вычисленных в приближении эффективных масс с гамильтонианом, содержащим чисто кулоновский потенциал, вероятность релаксации должна быть мала. Таким образом, можно предположить, что в донорах мышьяка в германии велика роль короткодействующего потенциала (потенциала центральной ячейки), который обеспечивает медленное спадание волновой функции $\Psi(\mathbf{k})$ в обратном пространстве с увеличением волнового вектора к и обеспечивает возможность взаимодействия с фононами с большим волновым вектором. Предположение о роли короткодействующего потенциала частично основано на данных о самом большом среди доноров V группы долинно-орбитальном расщеплении ($\sim 40\%$ от энергии триплета). Другой важной особенностью является то, что в области энергий, соответствующих переходу $2p_{\pm} \rightarrow 1s(\Gamma_1)$, в сдавленном германии плотность состояний фононных поперечных акустических (ТА) мод сильно возрастает [13], что усиливает обоснованность сделанных предположений о существенности внутридолинных переходов с излучением фононов, волновой вектор которых сравним с размером зоны Бриллюэна кристалла.

В представленных температурных зависимостях (рис. 3) для уровня $3p_0$ наблюдается увеличение темпа релаксации с ростом температуры, что вполне ожидаемо и связано с возросшей ролью индуцированных процессов. В случае уровня $2p_{\pm}$ (рис. 4) такая зависимость не выглядит столь явной, по-видимому, частично вследствие того, что время релаксации при температурах < 10 К уже достаточно малое, составляет 3–4 длительности импульса возбуждения.

4. Заключение

В заключение можно отметить, что в условиях одноосного давления вдоль [111], когда волновые функции нижних состояний донора можно описывать как однодолинные, проведено измерение времен релаксации возбужденных состояний мышьяка в германии. Измерения выполнялись методом накачка—зондирование с использованием излучения лазера на свободных электронах. Накачка состояний осуществлялась из основного состояния $1s(A_1)$. Показано, что время распада состояния $2p_0$ составляет 1.3 нс, $3p_0$ — не более 0.2 нс, $2p_{\pm}$ — 0.4 нс. В случае релаксации уровня $2p_{\pm}$ можно сделать вывод о наличии быстрого канала релаксации в основное состояние донора с участием внутридолинных ТА фононов.

Благодарности

Авторы благодарят за участие в работе операторов лазера на свободных электронах NovoFEL. Работа выполнена в ИЯФ СО РАН с использованием оборудования ЦКП "СЦСТИ" на базе УНУ "Новосибирский ЛСЭ".

Финансирование работы

Работа проведена при поддержке Российского научного фонда (проект № 19-72-20163).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] A.K. Ramdas, S. Rodriguez. Rep. Prog. Phys., 44, 1297 (1981).
- [2] К.А. Ковалевский, Н.В. Абросимов, Р.Х. Жукавин, С.Г. Павлов, Г.-В. Хьюберс, В.В. Цыпленков, В.Н. Шастин. Квант. электрон., 45, 113 (2015).
- [3] K.J. Morse, R.J.S. Abraham, A. DeAbreu, C. Bowness, T.S. Richards, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, M.L.W. Thewalt, S. Simmons. Sci. Adv., 3, e1700930 (2017).
- [4] N. Deßmann, S.G. Pavlov, A. Pohl, N.V. Abrosimov, S. Winnerl, M. Mittendorff, R.Kh. Zhukavin, V.V. Tsyplenkov, D.V. Shengurov, V.N. Shastin, H.-W. Hübers. Appl. Phys. Lett., 106, 171109 (2015).
- [5] Б.М. Гершензон, Г.Н. Гольцман, Н.Г. Птицина. Письма ЖЭТФ, 25, 574 (1977).
- [6] F.A. Hegmann, J.B. Williams, B. Cole, M.S. Sherwin, J.W. Beeman, E.E. Haller. Appl. Phys. Lett., 76, 262 (2000).
- [7] N. Deßmann, S.G. Pavlov, V.V. Tsyplenkov, E.E. Orlova, A. Pohl, V.N. Shastin, R.Kh. Zhukavin, S. Winnerl, M. Mittendorff, J.M. Klopf, N.V. Abrosimov, H. Schneider, H.-W. Hübers. Phys. Status Solidi B, 254, 1600803 (2017).
- [8] Р.Х. Жукавин, К.А. Ковалевский, С.М. Сергеев, Ю.Ю. Чопорова, В.В. Герасимов, В.В. Цыпленков, Б.А. Князев, Н.В. Абросимов, С.Г. Павлов, В.Н. Шастин, Г. Шнайдер, Н. Дессманн, О.А. Шевченко, Н.А. Винокуров, Г.Н. Кулипанов, Г.-В. Хьюберс. Письма ЖЭТФ, 106, 555 (2017).
- [9] Р.Х. Жукавин, К.А. Ковалевский, Ю.Ю. Чопорова, В.В. Цыпленков, В.В. Герасимов, П.А. Бушуйкин, Б.А. Князев, Н.В. Абросимов, С.Г. Павлов, Г.-В. Хьюберс, В.Н. Шастин. Письма ЖЭТФ, **110**, 677 (2019).
- [10] N. Deßmann, S.G. Pavlov, V.N. Shastin, R.Kh. Zhukavin, V.V. Tsyplenkov, S. Winnerl, M. Mittendorff, N.V. Abrosimov, H. Riemann, H.-W. Hübers. Phys. Rev. B, 89, 035205 (2014).

- [11] Yu.Yu. Choporova, V.V. Gerasimov, B.A. Knyazev, S.M. Sergeev, O.A. Shevchenko, R.Kh. Zhukavin, N.V. Abrosimov, K.A. Kovalevsky, V.K. Ovchar, H.-W. Hübers, G.N. Kulipanov, V.N. Shastin, H. Schneider, N.A. Vinokurov. Phys. Procedia, 84, 152 (2016).
- [12] В.В. Цыпленков, В.Н. Шастин. ФТП, 52, 1469 (2018).
- [13] P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni. Phys. Rev. B, 43, 7231 (1991).

Редактор Л.В. Шаронова

Relaxation of excited states of arsenic in stressed germanium

K.A. Kovalevsky¹, Yu.Yu. Choporova^{2,3}, R.Kh. Zhukavin¹, N.V. Abrosimov⁴, S.G. Pavlov⁵, H.-W. Hübers^{5,6}, V.V. Tsyplenkov¹, V.D. Kukotenko^{2,3}, B.A. Knyazev^{2,3}, V.N. Shastin¹

 ¹ Institute for Physics of Microstructures, 603950 Nizhny Novgorod, Russia
 ² Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
 ³ Novosibirsk State University, 630090 Novosibirsk, Russia
 ⁴ Leibniz Institute of Crystal Growth, 12489 Berlin, Germany
 ⁵ Institute of Optical Sensor Systems, German Aerospace Center (DLR), 12489 Berlin, Germany
 ⁶ Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany

Abstract The relaxation times of the lower p states of the arsenic donor in a germanium crystal deformed along the [111] crystallographic direction are studied. The measurements were performed by the "pump-probe" method using THz radiation of a free-electron laser. The states were pumped from the ground state $1s(A_1)$. The measured decay time of the $2p_0$ state is 1.3 ns, $3p_0$ — not more than 0.2 ns, $2p_{\pm}$ — 0.4 ns. It was shown that a relatively high rate of relaxation of the $2p_{\pm}$ state is associated with interactions with intra-valley TA phonons.