Физико-химические взаимодействия в системе GeSb₂Te₄-PbSb₂Te₄

© Г.Р. Гурбанов, М.Б. Адыгезалова

Азербайджанский государственный университет нефти и промышленности, Az-1010 Баку, Азербайджан E-mail: ebikib@mail.ru; mehpareadigozelova@yahoo.com

Поступила в Редакцию 19 мая 2020 г. В окончательной редакции 27 мая 2020 г. Принята к публикации 2 июня 2020 г.

Впервые комплексными методами (дифференциально-термический, микроструктурный, рентгенофазовый анализы измерением микротвердости и определением плотности) физико-химического анализа исследован разрез GeSb₂Te₄—PbSb₂Te₄ квазитройной системы GeTe—Sb₂Te₃—PbTe и построена диаграмма состояния. Установлено, что разрез является частично квазибинарным сечением квазитройной системы GeTe—Sb₂Te₃—PbTe. Выявлена область твердых растворов на основе GeSb₂Te₄ (15 мол%, PbSb₂Te₄). При соотношении исходных компонентов 1:1 образуется конгруэнтно-плавящееся соединение GePbSb₄Te₈. Методом химических транспортных реакций получены монокристаллы четверного соединения GePbSb₄Te₈. Определены параметры элементарной ячейки GePbSb₄Te₈, кристаллизующейся в ромбической сингонии: a = 5.06 Å, b = 9.94 Å, c = 11.62 Å. Исследованием температурных зависимостей некоторых электрофизических параметров соединения GePbSb₄Te₈ и твердого раствора (GeSb₂Te₄)_x (PbSb₂Te₄)_{1-x} установлено, что сплавы имеют *p*-тип проводимости.

Ключевые слова: квазитройные системы, монокристаллы, физико-химический анализ, твердые растворы, химические транспортные реакции.

DOI: 10.21883/FTP.2020.10.49951.9442

1. Введение

Полупроводниковые материалы по праву занимают одно из ведущих мест в ряду важнейших материалов, определяющих уровень развития мировой цивилизации. Они составляют основу элементной базы современной электронной техники, без которой сегодня немыслим научно-технический прогресс. С развитием твердотельной электроники (и прежде всего микроэлектроники) связано успешное решение проблем крупномасштабной компьютеризации и информатизации, создания современных систем связи и преобразования электроэнергии, разнообразной бытовой, медицинской и специальной электронной аппаратуры. Большую роль играют эти материалы в решении задач развития экологически чистой энергетики и холодильной техники, создания современных систем мониторинга, загрязнений окружающей среды, а также высокочувствительной сенсорной техники широкого функционального назначения [1-3].

Для создания современных полупроводниковых приборов все большее применение находят многокомпонентные твердые растворы. Полупроводниковые многокомпонентные твердые растворы в системах со значительной растворимостью в твердой фазе традиционно являются предметом интенсивных исследований, так как для них характерно монотонное изменение многих свойств (например, ширина запрещенной зоны, параметр элементарной ячейки), что позволяет варьировать функциональные свойства материала, меняя состав [4–6].

Полупроводниковые твердые растворы являются перспективными оптико-электронными и термоэлектрическими материалами. Для нужд полупроводниковой техники представляют интерес квазитройные твердые растворы, так как при их использовании можно независимо задавать два параметра твердого раствора, например, ширину запрещенной зоны и параметр элементарной ячейки [7].

Твердые растворы халькогенидов висмута и сурьмы являются термоэлектрическими материалами, которые могут использоваться в температурном интервале от 77 до 620 К. Эти материалы применяются как в охлаждающих и стабилизирующих температуру устройствах, так и в термоэлектрогенераторах. Такой широкий круг применения этих материалов определяется возможностью управления термоэлектрическими свойствами как за счет изменения состава твердого раствора, так и концентрации носителей заряда [8].

В настоящее время активно развивается новое направление поиска эффективных термоэлектрических материалов, заключающееся в получении сложных тройных или четверных узкозонных халькогенидов, обладающих сложными кристаллическими решетками [9-11]. Для этих материалов ожидаются низкие значения теплопроводности. Это связано с тем, что большие элементарные ячейки, которые, как правило, характерны для сложных халькогенидов, способствуют уменьшению скорости распространения фотонов, ответственных за перенос тепла в материале. Относительно слабые связи между слоевыми пакетами и большие атомные массы элементов также способствуют понижению теплопроводности [12–17]. Халькогениды, в частности теллуриды, также представляют интерес для создания топологических изоляторов [18-21]. В этом аспекте разработка на-

Соединение	Сингония	Пр. гр.	Пара элементарн	T _{melt} , K	
			а	С	
GeSb ₂ Te ₄ PbSb ₂ Te ₄	Гексагональная Ромбоэдрическая	$\frac{R\overline{3}m}{R\overline{3}m}$	4.21 4.350	40.6 41.712	888 850

Таблица 1. Кристаллографические параметры исходных соединений

учно обоснованной технологии синтеза и выращивания монокристаллов четверных теллуридов имеет большое значение.

Сведения о кристаллической структуре исходных компонентов представлены в табл. 1.

Цель настоящей работы — получение новых сложных полупроводниковых соединений.

2. Методика эксперимента

Поликристаллические образцы сплавов $GeSb_2Te_4$ – PbSb₂Te₄ синтезировали в вакуумированных кварцевых ампулах из элементов, взятых в соответствующих соотношениях при температуре 1050–1200 К в зависимости от состава сплавов, с последующим их охлаждением со скоростью 6 К/мин до 650 К. С этой температурой сплавы охлаждали на воздухе. В качестве исходных материалов использовали Pb,Ge, Sb, Те высокой чистоты с содержанием основного вещества не менее 99.999%, а также Ge с удельным электросопротивлением 40 Ом · см. Полученные поликристаллические образцы отжигали в течение 240 ч при 650 К, после чего закаливали в воде со льдом.

Для идентификации четверных теллуридов в работе использовали различные методы физико-химического анализа, в частности, дифференциально-термический (ДТ), микроструктурный (МС), рентгенофазовый (РФ) анализы, измерение микротвердости, определение плотности и методы электрофизических измерений.

Рентгеновский анализ проводили с помощью автоматического дифрактометра ДРОН-УМ (графитовый монофроматор, Си K_{α} -излучения $2\theta - \theta$ -сканирования с записью интенсивности по точкам с шагом 0.05°), а также с помощью автоматического монокристального дифрактометра Syntex PI (Мо K_{α} -излучение), ω — методом сканирования (переменная скорость сканирования составляла 2–8 град/мин). Монокристаллические пластинки для рентгеновского анализа выкалывали из слитков вдоль базисных плоскостей (ool).

Для регистрации ДТА на пирометре HTP-73 применяли Pt-Pt/Rh-термопары. Запись кривых нагревания и охлаждения проводили в откачанных до 0.1 Па кварцевых сосудиках Степанова. Эталоном служил прокаленный Al₂O₃. Скорость нагревания составляла 10 град/мин. МСА полированных протравленных шлифов проводили с использованием микроскопа МИМ-8. Микротвердость измеряли на микротвердомере HV(100). Плотность сплавов определяли пикнометрическим взвешиванием, наполнителем служил толуол (C_7H_8).

Слоистые образцы в системе GeSb₂Te₄–PbSb₂Te₄ выращивали вертикальным методом Бриджмена в кварцевых ампулах с коническим дном. Скорость кристаллизации составляла 0.25 мм/мин, а градиент на фронте кристаллизации ~ 60 К/см. Были получены слитки длиной ~ 6 см и диаметром 0.7–0.8 см.

Измерения электропроводности, теплопроводности и коэффициента термоэдс осуществлялись вдоль плоскостей спайности, по которым были направлены электрический ток и тепловой поток. Все измерения указанных параметров проводились на постоянном токе [22].

3. Результаты и их обсуждение

Сплавы в системе GeSb₂Te₄-PbSb₂Te₄ для исследования получали ампульным методом из элементов. Шихту, состоящую из трех граммов исходных компонентов, после откачки до 1.10-3 мм.рт.ст. помещали в систему термического отжига и нагревали до 900 К. При такой температуре реакция между компонентами протекает в течение 40-50 мин. После завершения реакции температуру в системе термического отжига поднимали до 1200 К и выдерживали 40 мин, затем температуру снижали до 650 К со скоростью 30-32°/ч. При этой температуре образцы обжигались в течение 240 ч. По указанному режиму были синтезированы 14 сплавов различного состава (табл. 2). В результате были получены однородные по внешнему виду образцы серого цвета с металлическим блеском. Все сплавы разрезов GeSb₂Te₄-PbSb₂Te₄ при комнатной температуре устойчивы по отношению к воде, кислороду, воздуху, не растворяются в КОН, NaOH, H₂SO₄, а растворяются в концентрированных растворах HCl, HNO₃.

Характер химического взаимодействия в разрезе $GeSb_2Te_4 - PbSb_2Te_4$ изучали методами рентгенофазного, дифференциально-термического и микроструктурного анализов. Была также измерена микротвердость сосуществующих фаз. В качестве травителя использовали разбавленную азотную кислоту и хромовую смесь ($K_2Cr_2O_7$ + конц. H_2SO_4 + H_2O).

На основе полученных результатов построена диаграмма состояния разреза GeSb₂Te₄-PbSb₂Te₄ квазитройной системы GeTe-Sb₂Te₃-PbTe (рис. 1). Как видно

Nº –	Состав сплавов, моль%		Термические эффекты,	H_{μ} ,	Плотность,
	GeSb ₂ Te ₄ PbSb ₂ Te ⁴		нагревание, К	МПа	г/см ³
1	100	0.0	900	675	6.467
2	95	5.0	875,910	685	6.51
3	90	10	805, 890	699	6.54
4	85	15	775, 875	719	6.57
5	80	20	755, 860	740	6.62
6	70	30	750, 780	724	6.69
7	65	35	750 (евт)	не.изм	не.изм
8	60	40	750-980	757	6.77
9	50	50	1000	725	6,85
10	40	60	650,975	735	6.93
11	30	70	650, 875	746	7.01
12	20	80	650, 775, 995	757	7.10
13	10	90	650, 825, 1060	768	7.19
14	0.0	100	850, 1155	770	7.28

Таблица 2. Результаты ДТА, плотность и микротвердость сплавов системы GeSb₂Te₄-PbSb₂Te₄

Таблица 3. Режим выращивания монокристаллов GePbSb₄Te₈

Соединение	$T_{\rm melt}$	Температурный режим		Носитель,	Время ч	Размер	
		T_1, K	T_2, K	$\sim 5{ m mg/cm}^3$	Dpenni, 1	монокристаллов, мм ³	
GePbSb ₄ Te ₈	1000	700	800	J_2	72	$2 \times 6 \times 7$	

из рис. 1, разрез GeSb₂Te₄—PbSb₂Te₄ является частично квазибинарным. При соотношении исходных компонентов GeSb₂Te₄—PbSb₂Te₄ = 1 : 1 установлено образование конгруэнтно появляющегося соединения состава GePbSb₄Te₈, которое плавится при 1000 \pm 5 K. Область гомогенности у соединения практически отсутствует.

Систему $GeSb_2Te_4 - PbSb_2Te_4$ условно можно разделить на две подсистемы: $GeSb_2Te_4 - GePbSb_4Te_8$ и

Рис. 1. Фазовая диаграмма системы GeSb₂Te₄-PbSb₂Te₄.

GePbSb₄Te₈—PbSb₂Te₄. Первая подсистема относится к эвтектическому типу с ограниченной растворимостью на основе GeSb₂Te₄. Координаты эвтектической точки: 750 K и 35 мол% GeSb₂Te₄. Вторая подсистема из-за инконгруэнтного плавления PbSb₂Te₄ сложная и относится к неквазибинарным сечениям. Квазибинарность нарушается выше температуры инконгруэнтного плавления PbSb₂Te₄. При понижении температуры от 850 до 650 K жидкость исчезает по перитектической реакции:

$\# + PbTe \leftrightarrow GePbSb_4Te_8 + PbSb_2Te_4.$

Монокристаллы четверного соединения GePbSb₄Te₈ получали из газовой фазы методом химических транспортных реакций (XTP) [19] в кварцевых ампулах, вакуумированных до 0.133 Па. Запаянные ампулы помещали в горизонтальную двухсекционную систему термического отжига печь. Температуру измеряли с помощью хромель-алюмелевой термопары.

Оптимальные параметры для выращивания монокристаллов четверного соединения $GePbSb_4Te_8$ методом XTP приведены в табл. 3.

Механизм получения монокристаллов GePbSb₄Te₈ по методу XTP можно представить следующим уравнением:

$$GeJ_2 + PbJ_2 + 4SbJ_3 + 8Te = GePbSb_4Te_8 + 8J_2$$

Микроструктурный анализ выявил однофазность сплава GePbSb₄Te₈ (рис. 2).

В результате рентгенографических исследований выращенных монокристаллов установлено, что

GePbSb₄Te₈ кристаллизуется в ромбические решетки, a = 5.06 Å, b = 9.94 Å, c = 11.62 Å, пр. гр. *Рппт*, Z = 2, $V^0 = 584.45$ Å. Кристаллографические характеристики соединения GePbSb₄Te₈ приведены в табл. 4.

Полученные игольчатые кристаллы подвергали химическому анализу [23] (табл. 5).

Плотность четверного соединения GePbSb₄Te₈ составляет 6.85 г/сm^3 , микротвердость 725 мПа.

Монокристаллы из области твердых растворов на основе GeSb₂Te₄ для физических измерений получали направленной кристаллизацией по методу Бриджмена [24]. При этом получали блестящие монокристаллы метал-

Таблица 4. Результаты рентгеновского анализа порошков соединения $GePbSb_4Te_8$

$d_{lpha}, \mathrm{\AA}$	$J/J_{\rm max}$	hkl	$1/d_{\exp}^2$	$1/d_{\rm calc}^2$
7.551	10	011	0.0175	0.0175
4.640	8	101	0.0464	0.0464
4.510	5	110	0.0492	0.0492
3.875	60	003	0.0665	0.0666
3.819	15	102	0.0685	0.0686
3.610	20	013	0.0767	0.0767
3.314	100	030	0.0912	0.0910
3.186	70	031	0.0984	0.0985
3.078	15	103	0.1056	0.1056
2.906	15	004	0.1182	0.1184
2.530	10	200	0.1562	0.1562
2.325	50	005	0.1850	0.1850
1.902	80	016	0.2765	0.2764
1.851	15	150	0.2917	0.2919
1.810	20	106	0.3052	0.3052
1.773	8	240	0.3180	0.3181
1.638	5	017	0.3722	0.3721

Таблица 5. Результаты химического анализа монокристаллов $GePbSb_4Te_8$

Химический состав, мол%							
Расчет				Эксперимент			
Ge	Pb	Sb	Te	Ge Pb Sb T			
4.06 11.59 27.24 57.11 3.66 11.33 26.79 58							58.22

Рис. 2. Микроструктуры сплавов соединение GePbSb₄Te₈.

лического цвета размером $7 \times 18-7 \times 20$ мм (табл. 6). В таблице дается режим получения монокристаллов, установленный на основании многочисленных опытов.

Монокристаллические твердые растворы, полученные на основе GeSb₂Te₄, кристаллизуются в гексагональные сингонии (табл. 7). Как видно из данных табл. 7, с увеличением концентрации PbSb₂Te₄ параметры элементарной ячейки увеличиваются и это связано с замещением мелких по радиусам катионами Ge²⁺ (0.065 нм) большими по радиусам катионами Pb²⁺ (0.126 нм).

Сохранение молекул, относящихся к элементарной ячейке, и изменение параметров решетки подтверждают образование в разрезе GeSb₂Te₄-PbSb₂Te₄ твердого раствора типа замещения.

Изучены некоторые электрофизические свойства выращенных монокристаллов GePbSb₄Te₈ и твердых растворов на основе GeSb₂Te₄ в температурном интервале 300-900 К. Установлено, что все они является полупроводниками *р*-типа.

В монокристаллических образцах твердых растворов (GeSb₂Te₄)_{1-x} (PbSb₂Te₄)_x были измерены термоэлектрические параметры при комнатной температуре: коэффициент термоэдс (α), электропроводность (σ), теплопроводность (общая (K) и решеточная (K_l)), коэффициент термоэлектрической эффективности (Z).

Таблица 6. Оптимальный режим выращивания монокристаллов твердых растворов $(GeSb_2Te_4)_{1-x}(PbSb_2Te_4)_x$

<i>х</i> , мол%	Т,К	Скорость движения в ампулах, мм/ч	Вес монокристаллов, г	Размер монокристаллов, мм
2.5	700-800	3.0	6.5	7 imes 16
5	700 - 800	3.0	6.7	7 imes 16
7.5	700 - 800	3.0	6.7	7 imes 16
10	700 - 800	3.5	6.4	7 imes 20
12.5	700 - 800	3.5	6.3	7 imes 20
15	700 - 800	4.0	6.3	7 imes 20

Состав, мол% PbSb ₂ Te ₄	Параметры решетки, Å		$V Å^3$	Плотность, г/см ³		Микротвердость,
	а	С	, , , , ,	Эксперимент	Расчет	МПа
0.0	4.21	40.6	659.4	6.467	6.527	675
2.5	4.23	40.7	674.6	6.517	6.567	725
5.0	4.25	4.08	689.2	6.567	6.627	755
7.5	4.29	4.10	718.5	6.627	6.667	785
10.0	4.32	4.12	744.7	6.707	6.767	795
15.0	4.35	4.14	777.0	6.787	6.817	865

Таблица 7. Кристаллографические данные твердых растворов на основе GeSb₂Te₄

Таблица 8. Термоэлектрические свойства твердых растворов $(GeSb_2Te_4)_{1-x}(PbSb_2Te_4)_x$ при 300 К

Состав твердых растворов, <i>х</i>	а, мкВ/К	<i>σ</i> , См/см	$K imes 10^3$, Вт/(см \cdot К)	$K_I imes 10^3, \ { m Bt}/({ m cm} \cdot { m K})$	$Z \times 10^{3},$ K^{-1}
0.02 0.04 0.06 0.08	-240 -245 -295 -273	323 325 225 440	10.7 10.3 11.1 13.3	9.2 8.8 9.9 11.4	1.7 1.9 2.0 2.5
0.10	-215	1030	15.4	10.1	3.0

В табл. 8 приведены термоэлектрические свойства сплавов твердых растворов $(GeSb_2Te_4)_{1-x}(PbSb_2Te_4)_x$.

Как видно из табл. 8, при увеличении содержания PbSb₂Te₄ в твердых растворах увеличивается термоэлектрическая эффективность. Термоэлектрическая эффективность образца твердых растворов $(GeSb_2Te_4)_{1-x}(PbSb_2Te_4)_x$ (x = 0.15) имеет максимальное значение $Z = 3.0 \cdot 10^{-3}$ K⁻¹ при 300 K.

4. Заключение

1. Методом физико-химического анализа изучен квазибинарный разрез $GeSb_2Te_4 - PbSb_2Te_4$ — квазитройной системы $GeTe-Sb_2Te_3-PbTe$. При соотношении $GeSb_2Te_4 : PbSb_2Te_4 = 1:1$ образуется конгруэнтно плавящееся соединение состава $GePbSb_4Te_8$.

2. Методом химических транспортных реакций получены игольчатые монокристаллы соединения GePbSb₄Te₈. Определены параметры элементарной ячейки монокристалла GePbSb₄Te₈, кристаллизующегося в ромбической сингонии: a = 5.06 Å, b = 9.94 Å, c = 11.62 Å.

3. Изучены некоторые электрофизические свойства выращенных монокристаллов GePbSb₄Te₈ и твердых растворов на основе $GeSb_2Te_4$ (15 мол% PbSb₂Te₄) в температурном интервале 300–900 К. Установлено, что все они являются полупроводниками *p*-типа.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- А.А. Волыхов, Л.В. Яшина, В.И. Штанов. Неорг. матер., 72 (6), 662 (2006).
- [2] Г.Р. Гурбанов, Ш.Г. Мамедов, М.Б. Адыгезалова. ЖНХ, 62 (11), 1530 (2017).
- DOI: https://doi.org/10.7868/S0044457X17110174
- [3] Т.Е. Свечникова, И.Ю. Нихезина, Н.В. Поликарпова. Неорг. матер., **36** (8), 924 (2000).
- [4] Г.Р. Гурбанов. Журн. неорган. матер., 53 (7), 691 (2017). https://doi.org/10.7868/S0002337X1707003X
- [5] М.Г.Мильвидский, В.Б. Уфимцев. Неорг. матер., 36 (3), 360 (2000).
- [6] Г.Р. Гурбанов, Ш.Г. Мамедов, И.Б. Бахтийарлы. ЖНХ, 61 (9), 1240 (2016). https://doi.org/10.7868/S0044457X16090142
- [7] Т.П. Сушкова, Г.В. Семенова, Е.В. Стрычина. Вестн. ВГУ, 1, 94 (2004).
- [8] Р.Г. Гурбанов, М.Б.Адыгезалова, А.Н. Мамедов, С.А. Гулиева. Moscow University Chemistry Bulletin, 74 (3), 134 (2019). DOI: 10.3103/S0027131419030064
- [9] A.R. West. *Solid State Chemistry and its Applications*, 2nd edn (Wiley, Chichester, West Sussex, UK, 2014).
- [10] A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uni, S. Yamanaka. Phys. Status Solidi (RPL), 2, 65 (2008).
- [11] L.D. Ivanova, L.I. Petrova, Yu.V. Granatkina, D.S. Nikulin, O.A. Raikina. Inorg. Mater., 52, (3), 248 (2016).
 DOI: 10.7868/S0002337X16030040
- [12] Л.И. Анатычук. Физика термоэлектричества (Киев, ИТЭ, 2000) т. 1.
- [13] А.А. Волыхов, Л.В. Яшина, В.И. Штанов. Неорг. матер., 42 (6), 662 (2006). DOI: 10.1134/S0020168506060045
- [14] Л.Е. Шелимова, О.Г. Карпинский, В.С. Земсков, П.П. Константинов, Е.С. Авилов, М.А. Кретова. Перспективные матер., № 5, 23 (2000).
- [15] M.G. Kanatzidis. In: Semiconductors and Semimetals, (ed.) Terry M. Tritt.(San Diego, San Francisco, N.Y., Boston, London, Sydney, Tokyo: Academ. Press, 2001) v. 69, p. 51.
- [16] Л.И. Анатычук. Термоэлементы и термоэлектрические устройства (Киев, Наук. думка, 1979).
- [17] Л.Д. Иванова, М.А. Коржуев, Л.И. Петрова. и др. Сб. докл. Межгос. семинара (Санкт-Петербург, 2004) с. 422.
- [18] T.V. Menshchikova, S.V. Eremeeva, E.V. Chulkov. Appl. Surf. Sci., 267, 1, (2013).
 - https://doi.org/10.1016/j.apsusc.2012.04.048
- [19] Marco Caputo, Mirko Panighel, Simone Lisi, Lama Khalil et al. Nano Lett., 16, 3409 (2016). DOI: 10.1021/acs.nanolett.5b02635.

1104

- [20] Marco Papagno, S.V. Eremeev, Jun Fujii, Ziya S. Aliev. ACS Nano, 10, 3518 (2016). https://doi.org/10.1021/acsnano.5b07750
- [21] L.E. Shelimova, P.P. Konstantinov, O.G. Karpinsky, E.S. Avilova, M.A. Kretova, V.S. Zemskov. J. Alloys Compd., 329 (1-2), 50 (2001).
- [22] Г.Р. Гурбанов, Ш.Г. Мамедов. ЖНХ, Т. 64 (3), 308 (2019).
 DOI: 10.1134/S0044457X19030103
- [23] Г.Р. Гурбанов. ЖНХ, 55 (3), 495 (2010).
 DOI: 10.1134/S0036023610030265
- [24] Г.Р. Гурбанов, М.Б. Адыгезалова. ЖНХ, 63 (1), 106 (2018). DOI: https://doi.org/10.7868/S0044457X18010154

Редактор А.Н. Смирнов

Physicochemical interactions in the $GeSb_2Te_4$ -PbSb₂Te₄ system

G.R. Gurbanov, M.B. Adygezalova

Azerbaijan State Oil and Industry University, Az-1010 Baku, Azerbaijan

Abstract For the first time, the GeSb₂Te₄-PbSb₂Te₄ section of the GeTe-Sb₂Te₃-PbTe quasitrack system was studied by the complex methods (dta, xrd, msa, microhardness measurement and density determination) of a physicochemical analysis and a state diagram was constructed. It has been established that the section is partly a quasibinary section of the quasi-three GeTe-Sb₂Te₃-PbTe system. The region of solid solutions based on GeSb₂Te₄ (15 mol%, PbSb₂Te₄) was revealed. When the ratio of the starting components is 1:1, a congruently melting GePbSb₄Te₈ compound is formed. Single crystals of the qup compound GePbSb₄Te₈ were obtained by chemical transport reactions. The parameters of the GePbSb₄Te₈ unit cell crystallizing in rhombic syngony were determined: a = 5.06 Å, b = 9.94 Å, and c = 11.62 Å. Investigation of the temperature dependences of some electrophysical parameters of the GePbSb₄Te₈ compound and $(GeSb_2Te_4)_x(PbSb_2Te_4)_{1-x}$ solid solution showed that the alloys are of the *p*-type conductivity.