12

Влияние наночастиц и тонких слоев Au, фталоцианина Eu и наночастиц Er на формирование спектров излучения структур с квантовыми ямами InGaN/GaN

© М.М. Мездрогина¹, М.В. Еременко², С.М. Голубенко², Е.С. Москаленко¹

1 Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Санкт-Петербургский государственный политехнический университет,

Санкт-Петербург, Россия

E-mail: margaret.m@mail.ioffe.ru

(Поступила в Редакцию 16 марта 2011 г. В окончательной редакции 7 июля 2011 г.)

Исследовано влияние наночастиц и тонких слоев Au, фталоцианина Eu и наночастиц Er на формирование спектров излучения структур с квантовыми ямами на основе InGaN/GaN. Показано, что влияние локализованных плазмонов на генерацию носителей определяется размерами наночастиц Au при предположении о доминирующей роли взаимодействия плазмонов с поверхностными состояниями структур. Влияние наночастиц Au на формирование спектров излучения в структурах с множественными квантовыми ямами на основе GaN/InGaN, в отличие от случая слоев Au, определяется концентрацией In. Влияние пленок фталоцианина Eu, нанесенных на поверхность исследованных структур, на их спектры фотолюминесценции аналогично влиянию легирования этих структур европием.

1. Введение

Структуры с множественными квантовыми ямами (MQW) на основе InGaN/GaN используются в качестве источников света внутри и снаружи помещений, а также для подсветки панелей дисплеев. Основной проблемой при использовании светоизлучающих приборов (LED) на основе вышеупомянутых структур является недостаточно высокая (несколько процентов) эффективность их работы. Известно, что особенностью структур с MQW на основе InGaN/GaN является существование пространственных неоднородностей, обусловленных флуктуациями состава тройного твердого раствора InGaN, вплоть до разделения фаз GaN, InN. Линейные размеры неоднородностей (квазидвумерных островков, квантовых точек, макроскопических кластеров) находятся в широком диапазоне – от нано до микрометров как в латеральной плоскости, так и в направлении роста структуры. В свою очередь, эти неоднородности влияют на процессы миграции электронных возбуждений в гетероструктурах InGaN/GaN. Следует также учесть наличие встроенных пьезоэлектрических полей, влияющих на спектры излучения и поглощения, а также на динамику носителей заряда в структурах InGaN/GaN. На основании анализа времяразрешенных спектров фотолюминесценции (ФЛ) и электролюминесценции (ЭЛ) экспериментально обнаружена корреляция между существованием встроенных электрических полей и долгоживущими локализованными состояниями, которые определяют вид спектра излучения в исследованных структурах.

Форма спектра ФЛ квантовых ям в различных структурах на основе InGaN/GaN обусловлена особенностями пространственно-энергетического распределения излучающих локализованных состояний разных типов и процессами миграции возбуждения [1]. Показано, что имеющаяся в настоящее время недостаточная (несколько процентов) эффективность LED на основе III-нитридов обусловлена рядом факторов, одним из которых является малый коэффициент поглощения вследствие отражения света поверхностью структур [2,3]. Увеличение поглощения света при использовании тонких (порядка 12 nm) слоев благородных металлов Ag и Au, обладающих хорошей электропроводностью, широко применяется для увеличения эффективности LED на основе III-нитридов [4]. В настоящее время рассматривается несколько механизмов увеличения эффективности LED на основе III-нитридов при нанесении наночастиц, а также слоев благородных металлов на поверхность структур.

Цель работы состоит в исследовании влияния наночастиц и тонких слоев Au, фталоцианина Eu (EuqPc) и наночастиц Er на формирование спектров ФЛ структур с квантовыми ямами на основе InGaN/GaN.

2. Эксперимент

Оптические измерения проводились на экспериментальной установке, собранной на базе дифракционного спектрометра СДЛ-2 с обратной линейной дисперсией 1.3 nm/mm, обеспечивающей спектральное распределение 0.26 nm. Для возбуждения ФЛ использовался непрерывный He–Cd лазер с длиной волны возбуждения $\lambda = 325$ nm (межзонное возбуждение GaN) и мощностью излучения 15 mW. Для измерения спектров пропускания применялся спектрометр СФ-38. Установка XP-1Арт М использовалась для определения концентрации металлических примесей с помощью метода рентгеновской флуоресценции. Для измерения спектров ЭЛ на поверхность структуры наносились In контакты, к которым прикладывалось постоянное электрическое напряжение от источника питания Б5-70. При измерении спектров ЭЛ использовалась та же схема регистрации, что и при измерении спектров ФЛ. Все измерения выполнены при температуре образцов *T*, равной 77 или 300 К.

Пленки n-GaN и структуры p-GaN/n-GaN получены методом MOCVD на подложках из сапфира. Структуры с MQW, исследованные в настоящей работе, были также получены методом MOCVD и включали набор из пяти квантовых ям $GaN/In_xGa_{1-x}N$ (0.1 < x < 0.4), выращенных на подложке из сапфира. Ширина квантовых ям составляет $\sim 2.0-2.5 \,\text{nm}$ с барьером в $\sim 7 \,\text{nm}$ [1]. Пленки Au толщиной $\leq 12 \, \mathrm{nm}$ и пленки EuqPc различной толщины, полученные термическим напылением из вольфрамового тигля, нанесены на внешнюю сторону структур, как и в работах [2-4]. Наночастицы Аи получены с использованием малой величины межфазной поверхностной энергии на границе раздела между верхним слоем структуры и металлом и большой диффузионной подвижности частиц Аи по поверхности струтуры путем подбора угла и оптимизации температуры нанесения наночастиц. Наночастицы Er получены в результате травления пленок Er в азотной кислоте.

Для определения наличия частиц Аи в работе использовались следующие методики: рентгеновская флуоресценция, сопоставление спектров пропускания исходных структур на основе InGaN/GaN со спектрами пропускания структур с нанесенными на них наночастицами или пленками Au, а также сопоставление морфологии поверхности и сечения структур с нанесенными наночастицами или слоями с помощью метода атомно-силовой микроскопии (AFM). При измерении коэффициента пропускания структур InGaN/GaN с нанесенными на их внешнюю поверхность наночастицами производилось их сравнение с исходной структурой. Пропускание исходной структуры сравнивалось с пропусканием прозрачной сапфировой подложки. Оказалось, что чувствительность метода рентгеновской флуоресценции была недостаточна для обнаружения наночастиц Аи вследствие незначительной интенсивности излучения линии К_а золота, по которой определяется концентрация металлической примеси. С помощью этого метода также не удалось обнаружить присутствие слоев Аи, толщина которых не превышает 12 nm. Наличие наночастиц Ег в структурах InGaN/GaN было обнаружено по присутствию линий, характерных для излучения внутрицентровых 4f переходов Er.

3. Экспериментальные результаты

Известно, что положение максимума (λ_{max}) спектров ФЛ в структурах с MQW на основе InGaN/GaN опреде-

Рис. 1. Спектры пропускания структуры N1 в исходном состоянии (кривая I), с нанесенной пленкой Au (кривая 2) и с наночастицами Au (кривая 3), измеренные при T = 300 K.

Рис. 2. Спектры ФЛ слоя *n*-GaN ($n = 4 \cdot 10^{18} \text{ cm}^{-3}$) трех образцов: исходного (кривая *I*), с нанесенной пленкой (кривая *2*) и с наночастицами Au (кривая *3*), измеренные при T = 77 K и $\lambda = 325 \text{ nm}.$

ляется концентрацией In [1]. Исследованные в данной работе структуры отличаются по положению λ_{max} и в соответствии с изменениями данной величины далее обозначены следующими образом: N1 ($\lambda_{max} = 442.8$ nm), N2 ($\lambda_{max} = 443.9$ nm), N3 ($\lambda_{max} = 457.0$ nm), и N4 ($\lambda_{max} = 544.0$ nm).

Спектры пропускания тонких слоев и наночастиц Au, нанесенных на поверхность структуры N1, представлены на рис. 1. Кривая I представляет собой спектр пропускания (СП) исходной структуры с MQW на основе InGaN/GaN, кривые 2 и 3 показывают соответствующие СП для структуры N1 с нанесенными на ее внешнюю поверхность пленкой Au и наночастицами Au. При сопоставлении спектров I и 3 на рис. 1 можно предположить, что уменьшение коэффициента пропускания обусловлено наличием наночастиц Au.

На рис. 2 представлены спектры ФЛ пленок *n*-GaN с концентрацией носителей $N_d - N_A = 4 \cdot 10^{18} \, {\rm cm}^{-3}$ для

Рис. 3. Спектры ФЛ структуры *p*-GaN/n-GaN в исходном состоянии (кривая *I*), с нанесенной пленкой Au (кривая *2*) и с наночастицами Au (кривая *3*), измеренные при T = 77 K и $\lambda = 325$ nm.

трех образцов: исходного (кривая I) с нанесением пленки Au (кривая 2) или наночастиц (кривая 3). Из рисунка видно, что параметры спектров ФЛ, такие как интенсивность излучения (I), ширина спектральной линии на ее полувысоте (FWHM) и λ_{max} практически не меняются после нанесения частиц Au. В то же время нанесение пленок Au приводит к уменьшению I и к увеличению FWHM (ср. кривые I и 2 на рис. 2). Следует отметить, что, как правило, концентрация носителей в легированном n^+ -слое структур на основе InGaN/GaN сопоставима с концентрацией носителей в исследуемом в данной работе слое n-GaN.

На рис. З показаны спектры ФЛ трех образцов со структурой *p*-GaN/*n*-GaN, отличающихся наличием нанесенных на поверхность структуры слоев Au (кривая 2) или наночастиц (кривая 3). В отличие от случая нанесения как наночастиц, так и пленок Au на слой *n*-GaN (рис. 2, кривые 3 и 2), наличие *p*-слоя в структурах *p*-GaN/*n*-GaN не привело к существенным изменениям вида спектра ФЛ: незначительно уменьшилась величи-

Рис. 4. Спектры ФЛ структур N1 (*a*), N2 (*b*) и N3 (*c*) в исходном состоянии (кривая *I*), с нанесенной пленкой (кривая 2) и наночастицами Au (кривая 3), измеренные при T = 77 K и $\lambda = 325$ nm. На части d — спектр ЭЛ структуры N3 с нанесенными наночастицами Au, измеренный при T = 77 K и токе 200 mA. Вертикальными стрелками на рисунке указаны положения λ_{max} для соответствующих спектров.

Рис. 5. Профиль сечения и морфология поверхности структуры N3 с нанесением наночастиц (*a* и *c* соответственно) или пленки Au (*b* и *d* соответственно), измеренные методом AFM.

на *I*, а положение λ_{max} практически не изменилось (сравните кривые *I* и *3* на рис. 3). В то же время, как показано ниже, в структурах с MQW на основе InGaN/GaN обнаружено существенное влияние на спектры ФЛ нанесения на внешнюю поверхность структур наночастиц или слоев Au, или пленок EuqPc.

На рис. 4, *а* представлены спектры ФЛ структуры N1 ($\lambda_{max} = 442.8$ nm), с нанесением на внешнюю поверхность пленки (кривая 2) или наночастиц Au (кривая 3). Изменений λ_{max} не наблюдается ни в результате нанесения наночастиц, ни в результате нанесения наночастиц, ни в результате нанесения слоев Au. Наблюдается изменение величины FWHM: в исходной структуре эта величина составляет 81 meV, при нанесении слоев Au — 91 meV, при нанесении наночастиц Au (по сравнению с исходной структурой) составляет приблизительно 2 раза, а после нанесения пленок Au наблюдается уменьшение I.

На рис. 4, *b* представлены спектры Φ Л структуры N2 ($\lambda_{max} = 443.9 \text{ nm}$) с нанесением на внешнюю поверх-

ность структуры пленки (кривая 2) или наночастиц Au (кривая 3). В отличие от структуры N1, наблюдается сдвиг λ_{max} (сравните кривые 1 и 3 на рис. 4, b) в длинноволновую область спектра на 2.1 nm после нанесения наночастиц Au, а I увеличивается в 6 раз. После нанесения пленки Au на поверхность структуры наблюдается сдвиг λ_{max} в коротковолновую область на 5.8 nm и незначительное уменьшение I. Величины FWHM составляют 81 (кривая 1), 82 (кривая 2), 66 (кривая 3) meV.

На рис. 4, с представлены спектры ФЛ структуры N3 $(\lambda_{\text{max}} = 457.0 \text{ nm})$ с нанесением на внешнюю поверхность структуры пленки (кривая 2) или наночастиц Au (кривая 3). Видно, что в результате нанесения наночастиц в спектре (кривая 3) наблюдается наличие двух пиков излучения, которые сдвинуты в коротковолновую область спектра более чем на 40 nm по сравнению с λ_{max} исходной структуры (кривая 1 на рис. 4, с). При этом изменение FWHM незначительно (от 89 meV в исходной структуре до 84 meV в структуре с нанесенными частицами Au), а I увеличивается в 1.6 раза.

Таким образом, положение λ_{\max} , т.е. концентрация In в структурах с MQW на основе InGaN/GaN, определяет вид спектра ФЛ, а именно *I*, FWHM, величину сдвига λ_{\max} ($\Delta\lambda_{\max}$).

На рис. 4, *d* приведен спектр ЭЛ структуры N3 с нанесенными частицами Au. Вид спектра ЭЛ несколько отличается от вида спектра ФЛ (сравните кривую *3* на рис. 4, *c* и спектр на рис. 4, *d*). В спектре ЭЛ имеется один пик с $\lambda_{\text{max}} = 420$ nm, т.е. этот спектр подобен спектру ФЛ структуры N3 после введения наночастиц и, по-видимому, как и в работе [5], он соответствует излучению ямы, ближайшей к *p*-*n*-переходу. Известно [5], что вид спектров ФЛ структур с МQW на основе InGaN/GaN коррелирует с морфологией поверхности.

С помощью AFM исследовано влияние наночастиц, а также слоев Au на морфологию поверхностей исследуемых структур InGaN/GaN, при этом морфология поверхности исходной структуры была одинакова. По данным AFM можно оценить размеры частиц dв интервале 10 nm < d < 20 nm, хотя имеются частицы с бо́льшими размерами. В работе [6] было показано, что усиление излучения имеет место около больших кластеров или их скоплений, в то время как уменьшение интенсивности излучения наблюдается при размерах частиц 5 < d < 10 nm.

Согласно данным AFM (рис. 5, a и b), влияние наночастиц Au сводится к изменению морфологии поверхности, то есть к большей дисперсии высот неоднородностей. Это приводит к увеличению интенсивности излучения структур с нанесенными на их поверхность наночастицами (по сравнению со структурами с нанесенными слоями) вследствие многократного рассеяния света этими неоднородностями. На рис. 5, c и d представлена морфология поверхности структур, профили которых показаны соответственно на рис. 5, a и b. Сравнивая рис. 5, c и d, можно сделать вывод о большей гетерогенности морфологии поверхности структуры, на которую были нанесены наночастицы Au.

На рис. 6 показаны спектры ФЛ структуры N4 с аналогичной вышеописанным структурам N1, N2 и N3 постростовой обработкой (в смысле нанесения наночастиц или пленки Au). Спектр исходной структуры N4 (кривая 1 на рис. 6) характерен для структур InGaN/GaN, λ_{max} которых находится в "зеленой" области спектра и имеет два пика ($\lambda_{max} = 527.3$ и 535.4 nm). В отличие от структур N1, N2 и N3, максимум излучения которых находится в "синей" области спектра, в спектре ФЛ структуры N4 после нанесения пленок или частиц Au появляются интенсивные полосы излучения, характерные для барьерного слоя n-GaN. Они имеют два максимума излучения при 367.3 и 389.0 nm (кривые 2 и 3 на рис. 6), что характерно для полосы излучения донорноакцепторной рекомбинации. В то же время при нанесении наночастиц и слоев Аи наблюдается существенное увеличение интенсивности излучения в зеленой области спектра и сдвиг положения λ_{max} в коротковолновую область спектра 3-7 nm.

Рис. 6. Спектры ФЛ исходной (кривая *I*) структуры N4 и после нанесения пленки (кривая *2*) или наночастиц Au (кривая *3*), измеренные при T = 77 K и $\lambda = 325$ nm.

Рис. 7. Спектры ФЛ исходной структуры InGaN/GaN (кривая I) с нанесенной тонкой пленкой EuqPc (кривая 2) и с толстой пленкой (кривая 3), измеренные при T = 77 K и $\lambda = 325$ nm.

В отличие от частиц и пленок Au, пленки EuqPc имеют на несколько порядков меньшую концентрацию носителей и, следовательно, меньшую величину проводимости [7]. Известно, что, как правило, фталоцианины обладают дырочным типом проводимости, дающим основание для рассмотрения другого механизма взаимодействия нанесенной органической пленки и поверхности структуры из неорганического полупроводника (дипольдипольного механизма).

Нами также исследовано влияние толщины пленок ЕиqPc на спектр ФЛ структуры InGaN/GaN. На рис. 7 представлены спектры ФЛ структуры InGaN/GaN, имеющей $\lambda_{\text{max}} = 448.8$ nm, с нанесенной тонкой (< 0.1 μ m) пленкой ЕuqPc (кривая 2) и с толстой (> 0.1 μ m) пленкой ЕuqPc (кривая 3). Видно, что спектры ФЛ су-

Рис. 8. Спектр ФЛ структуры InGaN/GaN с нанесенными наночастицами Er, измеренный при T = 77 K и $\lambda = 325$ nm.

щественно зависят от толщины пленки EuqPc (сравните кривые 2 и 3 на рис. 7). В случае нанесения пленки толщиной < 0.1 µm наблюдается увеличение I в семь раз, спектр имеет полосу излучения ($\lambda_{max} = 440$ nm,), характерную для структур с MQW на основе InGaN/GaN. Кроме нее в спектре наблюдаются еще два пика (при $\lambda_{max} = 375.5 \, \text{nm}$ и 384.4 nm) с интенсивностью, сопоставимой с интенсивностью излучения с $\lambda_{max} = 440 \, \text{nm}$, характерные для барьерного слоя n-GaN (кривая 2 на рис. 7). Нанесение пленок EuqPc привело к изменениям вида спектров ФЛ, аналогичным изменениям спектров ФЛ структуры N4 после нанесения наночастиц Au. В "зеленой" области спектра видна линия излучения с малой интенсивностью с $\lambda_{max} = 533$ nm, характерная для внутрицентровых 4f переходов Eu. Те же изменения спектров ФЛ видны и в случае нанесения толстой пленки EuqPc (кривая 3 на рис. 7), но интенсивность излучения значительно меньше, чем в случае тонких пленок.

Влияние полупроводниковой подложки GaAs на оптические свойства пленок фталоцианинов меди (CuPc) было исследовано ранее [8]. Показано, что ориентация молекулы по отношению к поверхности подложки определяется кристаллическим полем полупроводника в том случае, если толщина пленки <0.1 μ m. Таким образом, толщина пленки CuPc, с нанесенной на поверхность GaAs, определяет вид спектра ФЛ структуры неорганический полупроводник–органический полупроводник.

Кроме того, в настоящей работе исследовалось влияние нанесения пленок и наночастиц Ег на формирование спектров ФЛ структур InGaN/GaN. Изменение вида спектров ФЛ структур при нанесении пленок Ег аналогично изменению спектров ФЛ при легировании этих структур методом диффузии [8]. При нанесении наночастиц Ег на поверхность структуры InGaN/GaN в спектре ФЛ видна линия излучения с $\lambda_{max} = 558$ nm, характерная для внутрицентровых 4f переходов Er [9]. Интенсивность излучения этих линий мала, поскольку мала концентрация Er (рис. 8).

4. Обсуждение результатов

Вид спектров излучения структур InGaN/GaN определяется неоднородным пространственно-энергетическим распределением неравновесных носителей, обусловленным различием пространственного распределения и типом структурных неоднородностей, эффективным электрическим полем и процессами переноса возбуждения как к излучающим состояниям, так и от них к диссипативной системе [9]. Также известно, что концентрация In определяет профили потенциального барьера между n-GaN и слоями InGaN, формирующими квантовые ямы [9]. Полученные в настоящей работе экспериментальные результаты позволяют заключить, что изменение величины λ_{max} в структуре с постростовой обработкой по сравнению с исходной структурой $(\Delta \lambda_{\max})$, наблюдаемое в спектрах ФЛ исследованных структур после нанесения на них наночастиц или пленок Au, определяется концентрацией In. Как следует из представленных выше экспериментальных результатов, Δλ_{max} принимает существенно различные значения (от единиц до десятков nm), как положительные, так и отрицательные. Кроме того, наблюдается существенное (от 2 до 6 раз) увеличение интенсивности ФЛ в структурах с нанесенными наночастицами по сравнению с исходными структурами. Для объяснения этого факта представляется целесообразным рассмотрение следующих обстоятельств.

1. Нанесение антиотражающих слоев, текстурирование поверхности и отделение исследуемой структуры от сапфировой подложки ведет к увеличению коэффициента поглощения структур [4–6].

2. Роль диполь-дипольного взаимодействия носителей заряда наночастиц благородных металлов и носителей заряда из квантовых ям. Отметим, что реализация механизма диполь-дипольного взаимодействия требует определенного пространственного расположения тонких (~ 10 nm) пленок благородных металлов по отношению к активному слою структур с MQW InGaN/GaN [6]. В то же время толщина легированного слоя *p*-GaN или *p*-AlGaN в исследованных структурах составляет примерно 100 nm вследствие необходимости обеспечения достаточной величины подвижности носителей [1]. Поэтому механизм диполь-дипольного взаимодействия в исследованных структурах представляется эффективным.

3. Взаимодействие локализованных поверхностных плазмонов с носителями, захваченными на антиотражающие поверхности. В этом случае снимаются ограничения на пространственное положение наночастиц и слоев благородных металлов по отношению к активному слою структур. Как следствие, по нашему мнению, это обстоятельство и является определяющим для объяснения полученных в настоящей работе экспериментальных результатов.

4. Кроме того, как выяснено в настоящей работе, важную роль при взаимодействии локализованных поверхностных плазмонов с полупроводниковой структурой InGaN/GaN играют размеры наночастиц благородных металлов. Этот вывод находится в полном согласии с результатами теоретического рассмотрения проблемы влияния формы и размеров наночастиц на свойства локализованных поверхностных плазмонов [10].

5. Также можно предположить, что наночастицы Au, меняя зарядовое состояние центров безызлучательной рекомбинации, уменьшают плотность поверхностных состояний, что приводит к увеличению интенсивности излучения.

Однако в случае использованных в настоящей работе тонких пленок EuqPc механизм взаимодействия системы полупроводниковая структура-пленка может отличаться от рассмотренного выше механизма локализованных поверхностных плазмонов с носителями заряда исследованных структур. Таким образом, влияние тонких пленок EuqPc на вид спектров $\Phi\Pi$ обусловлено, по всей вероятности, существенным изменением профиля поверхностного потенциального барьера вследствие взаимодействия центрального иона Eu в EuqPc с центрами безызлучательной рекомбинации. Исследование влияния центрального иона Eu на вид спектров ФЛ исследуемых структур дает основание предположить, что центральный ион, играя основную роль в формировании спектров ФЛ в ЕиqPc, определяет механизм генерации носителей на границе раздела неорганический полупроводник-органический полупроводник.

5. Выводы

Введение наночастиц Аи на поверхность исследованных структур приводит к изменению зарядового состояния центров безызлучательной рекомбинации, рождению электронно-дырочных пар, увеличению интенсивности излучения в структурах MQW на основе GaN/InGaN. Размеры наночастиц Аи, существенно увеличивающие интенсивность излучения, составляют по данным исследований AFM от 10 до 20 nm. Спектры электролюминесценции структур при наличии наночастиц Аu, а также нанесенных слоев Аи в основном подобны спектрам фотолюминесценции, хотя и имеют дополнительный максимум излучения в коротковолновой области. Следует отметить, что использование наночастиц Аи дает возможность существенного увеличения интенсивности ЭЛ структур с MQW на основе GaN/InGaN по сравнению с интенсивностью ЭЛ аналогичных структур без нанесения наночастиц. Влияние нанесения пленок EuqPc на спектры ФЛ исследованных структур InGaN/GaN аналогично влиянию легирования этих структур европием.

Авторы благодарят А.В. Зиминова за синтез EuqPc, В.В. Лундина — за предоставленные структуры

GaN/InGaN. Работа выполнена при частичной поддержке Программы Президиума РАН "Сильно коррелированные системы".

Список литературы

- В.В. Криволапчук, М.М. Мездрогина. ФТТ. 48, 11, 2067 (2006).
- [2] J.J. Wierer, M.RKrames, J.E. Epler, N.F. Gardner, M.G. Kraford, J.R. Wendt, J.A. Simmons, M.M. Sigals. Appl. Phys. Lett. 84, 3885 (2004).
- [3] T. Fuhii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBarrs, S. Nakamura. Appl. Phys. Lett. 84, 855 (2004).
- [4] K. Okamoto, I. Niki, A. Shvartzer, Y. Narukawa, T. Mukai, A. Sherer, Nature Mater. 3, 601 (2004).
- [5] А.А. Арендоренко, Е.Г. Ермошин, Ю.Н. Свешников, И.Н. Цыпленков. Тез. докл. 6-й Всерос. конф. "Нитриды галлия, индия и алюминия. Структуры и приборы". СПб, (2008). С. 123.
- [6] Т.В. Шубина, С.В. Иванов, А.А. Торопов, П.С. Копьев. Успехи физ. наук, 179, 1007 (2009).
- [7] А.В. Зиминов, Т.А. Юрре, С.М. Рамш, М.М. Мездрогина. ФТТ 52, 9, 1789 (2010).
- [8] В.Л. Берковиц, А.Б. Гордеева, Е.И. Теруков. Сб. тр. VII Междун. конф. "Аморфные и микрокристаллические полупроводники", 179, СПб, 2010.
- [9] М.М. Мездрогина, В.В. Криволапчук, Ю.В. Кожанова. ФТП **42**, 2, 157 (2008).
- [10] V.V. Klimov, D.V. Guzatov. Phys. Rev. B 75, 024 303 (2007).