02

Новые линии в спектрах ИК люминесценции высокого разрешения монокристаллов SiC политипов 4H и 6H

© К.Н. Болдырев^{1,2}, Д.Д. Гуценко^{1,2}, С.А. Климин¹, Н.Н. Новикова¹, Б.Н. Маврин¹ М.Н. Маякова³, В.М. Хныков⁴

¹ Институт спектроскопии РАН,

108840 Троицк, Москва, Россия

² Московский физико-технический институт (национальный исследовательский университет),

141701 Долгопрудный, Московская обл., Россия

³ Институт общей физики им. А.М. Прохорова РАН,

119991 Москва, Россия

⁴ ООО "Гранник",

127051 Москва, Россия

e-mail: kn.boldyrev@gmail.com

Поступила в редакцию 15.03.2020 г. В окончательной редакции 15.05.2020 г. Принята к публикации 20.05.2020 г.

Проведено исследование низкотемпературных спектров ИК люминесценции и поглощения высокого разрешения нелегированных высококачественных монокристаллов SiC гексагональных модификаций 4H и 6H. Обнаружены узкие линии, имеющие ширины менее $0.2 \,\mathrm{cm}^{-1}$, часть из которых наблюдалась впервые. Найдено, что часть линий в модификации 4H и 6H имеют схожую структуру, однако линии в SiC-4H смещены в высокоэнергетичную часть спектра на $\sim 180 \,\mathrm{cm}^{-1}$. Для наиболее интенсивного квартета в области $1.3 \,\mu\mathrm{m}$ по спектрам люминесценции и поглощения удалось построить энергетическую структуру уровней как для модификации 4H, так и для 6H.

Ключевые слова: карбид кремния, SiC, люминесценция, высокое разрешение, центры окраски.

DOI: 10.21883/OS.2020.09.49863.97-20

Введение

Карбид кремния (SiC) представляет собой неорганическое химическое соединение кремния с углеродом. Он существует в виде ряда кристаллических форм политипов [1], характеризующихся разным способом упаковки атомов в элементарной ячейке. Структура кристаллической решетки карбида кремния такова, что для одного и того же химического соединения возможны структурные формы, совпадающие по двум измерениям и отличающиеся в третьем. Таким образом, различные политипы представляют собой атомные слои, расположенные в определенной последовательности. Политипы карбида кремния характеризуются числом атомных слоев в элементарной ячейке и типом решетки Бравэ — 2H, 3C, 4H, 6H, 15R и т.д. Благодаря полиморфизму карбида кремния в нем существует большое разнообразие центров окраски, характерных для различных политипов, схожих по свойствам с хорошо изученным NV-дефектом в алмазе [2], образующимся из-за связи вакансии углерода с атомом азота.

Широкие возможности для применения центров окраски в алмазе (в спектроскопии одиночных квантовых объектов, квантовых вычислениях, квантовой магнитометрии и др.) [3–5] стимулировали исследования по поиску центров окраски в других веществах, в частности

в карбиде кремния [6]. Впервые вакансионные центры в карбиде кремния были обнаружены методом ЭПР [7]. В работах [8,9] в результате экспериментов по оптически детектируемому магнитному резонансу (ОДМР) было показано, что основное состояние вакансионного центра (V-центра, представляющего собой связанные вакансии кремния и углерода) в карбиде кремния обладает спином S = 3/2. Также найдены нейтральные вакансии с основным состоянием S = 1. В работах [10–12] было показано, что на центрах окраски карбида кремния можно создавать оптическое выстраивание спиновых подуровней при комнатных температурах. В работах [13-16] продемонстрирована возможность использования дефектных люминесцирующих центров SiC в квантовой сенсорике (в частности, в создании высокочувствительных датчиков температуры и магнитного поля) благодаря оптическому отклику этих центров окраски на слабые изменения ряда внешних параметров.

Использование центров окраски SiC в качестве источников одиночных фотонов [17,18] имеет дальнейшие применения в квантовой радиометрии, квантовых изображениях со сверхразрешением и др. В работе [19] проведен подробный обзор результатов, полученных в этой области. Согласно данным [19], известно, что в спектрах люминесценции номинально чистого карбида кремния различных политипов наблюдаются многочисленные относительно узкие линии в спектральной области $670-1131 \,\mathrm{cm}^{-1}$. Насколько нам известно, не было сообщений о наблюдении люминесценции в чистом карбиде кремния в важной для телекоммуникаций спектральной области вблизи $1.5\,\mu$ m.

По сравнению с NV-центрами в алмазе люминесцирующие центры окраски в карбиде кремния имеют ряд преимуществ, в частности обладают большим временем когерентности [20] даже при комнатных температурах, что открывает новые возможности для квантовых применений. Кроме того, фотолюминесценция центров окраски в карбиде кремния наблюдается в ближнем и среднем ИК диапазонах спектра, что делает их также перспективными в биомедицинских исследованиях и системах волоконной оптики. Принимая во внимание также бо́льшую технологичность изготовления и обработки карбида кремния по сравнению с алмазом, можно заключить, что различные люминесцирующие центры окраски карбида кремния являются подходящими в качестве альтернативы NV-центров в алмазе [17].

Настоящая работа ставит своей целью исследование центров окраски монокристаллов SiC политипов 4H и 6H методами спектроскопии комбинационного рассеяния света (КРС), спектроскопии поглощения и люминесценции с высоким спектральным разрешением. Это позволит уточнить результаты предыдущих исследований по данной теме, а также найти новые центры окраски в нелегированных монокристаллах карбида кремния, потенциально пригодных для практических применений.

1. Методика эксперимента

Образцы для исследования были получены методом физического осаждения из паровой фазы (PVD) в интервале температур 1750-2750 К в разреженной нейтральной атмосфере. В качестве исходного сырья использовался высокочистый поликристаллический карбид кремния. Образцы размерами до $10 \times 10 \times 10$ mm представляли собой однородные слегка окрашенные в желтый цвет кристаллы. Для подтверждения кристаллической структуры (политипа) применялись методы КРС и ИК отражения.

Спектры отражения при комнатной температуре были получены на фурье-спектрометре Bruker IFS 66V с использованием отражательной приставки с углом отражения 15° (близко к нормали) в среднем ИК диапазоне, в качестве детектора излучения служил пироприемник DLaTGS. Спектры КРС при комнатной температуре были получены на многоканальном спектрометре с тройным монохроматором в режиме вычитания дисперсии в геометрии "обратное рассеяние". Для возбуждения КРС использовался аргоновый лазер с длиной волны 514.5 nm, регистрация осуществлялась с помощью охлаждаемой жидким азотом ССD-камеры фирмы Prinston Instruments, спектральное разрешение составляло 2 сm⁻¹.

Измерение спектров поглощения и люминесценции проводилось с помощью фурье-спектрометра высокого разрешения Bruker IFS 125HR, снабженного оптическим гелиевым криостатом замкнутого цикла СгуоМесh ST403 и самодельным люминесцентным модулем-приставкой. Для возбуждения люминесценции использовался диодный лазер с длиной волны 405 nm и мощностью излучения 50 mW (пятно фокуса диаметром 0.5 mm). Регистрация спектров люминесценции проводилась при помощи высокочувствительного приемника InGaAs.

2. Результаты и обсуждение

Для характеризации образцов (определения политипа исследуемых кристаллов SiC) применялись методы ИК отражения и КРС. Эти методы дают взаимодополняющую информацию о фононном спектре. Кроме этого, если в спектрах отражения работает приповерхностный слой на глубине порядка длины волны, в спектрах КРС в случае прозрачных кристаллов, каким является исследуемый карбид кремния, можно получить информацию о более глубоких слоях в объеме, что важно для анализа однородности полученных образцов. Примитивная ячейка кристаллической структуры кристалла SiC-6H содержит большее число атомов, чем ячейка SiC-4H (12 атомов против 8 соответственно) [21]. В соответствии с этим и число оптических колебательных мод для кристалла SiC-4H больше (30 против 21). На рис. 1 представлены спектры отражения от двух монокристаллов. Один образец показал более богатую структуру (синий спектр) в сравнении с другим (красный спектр), что обусловлено появлением новых фононов в случае политипа SiC-6H.

Рис. 1. Спектры отражения монокристаллов SiC (политип 4H — красная линия, 6H — синяя линия) в среднем ИК диапазоне при комнатной температуре.

Рис. 2. Спектры КРС монокристаллов SiC (политип 4H — красная линия, 6H — синяя линия) при комнатной температуре. Пунктирными линиями показаны спектры в масштабе ×20.

На рис. 2 представлены спектры КРС для двух исследуемых образцов, по которым удалось однозначно идентифицировать политипные структуры SiC-4H и SiC-6Н. Так же как и в случае спектров ИК отражения, для образца SiC-6H наблюдается большее число колебательных мод. Наиболее характерной для идентификации политипов SiC является низкочастотная область спектра, в которой наблюдаются линии, проявляющиеся из-за складывания зоны Бриллюэна. Акустические фононы модификации 2Н из середины зоны становятся оптически активными для политипов с удвоением (4Н) и утроением (6Н). При этом в спектре КРС кристалла SiC-6Н появляются моды вблизи 147 ст⁻¹, а в случае кристалла SiC-4H — моды вблизи 202 ст⁻¹ [22,23]. Исследование в разных точках образца не показало изменений в спектрах, что говорит об однородности полученных образцов.

На рис. 3 представлены обзорные спектры ИК люминесценции при температуре 5 К. По спектрам видно множество очень узких линий, некоторые сгруппированы в дублеты, триплеты и квартеты. В таблице приведены более подробные результаты измерений для сходных по характеру наборов линий для политипов 4Н и 6Н, смещенных друг относительно друга (в таблице сходные линии отделены друг от друга двойными линиями). Некоторые из наблюдаемых линий по положению были близки к представленным в работах [19,24,25], однако нами также обнаружено множество новых линий, отсутствующих в литературе. Примечательной особенностью спектра являются четыре высокоинтенсивные узкие линии (для каждого из исследуемых политипов, рис. 4), расстояния между которыми практически одинаковы для образцов SiC-4H и SiC-6H. Эти линии проявляются также в спектрах поглощения, и анализ их температурных зависимостей в соответствии с распределением

Больцмана позволил построить схему энергетических уровней, ответственных за возникновение этого высокоинтенсивного квартета для обоих политипных модификаций. Схема представлена на вставке рис. 4.

Еще одна особенность обнаруженных спектральных линий заключается в том, что несколько дублетов и одиночных линий политипа 4Н находятся на прибли-

Рис. 3. Обзорный спектр люминесценции в ближнем ИК диапазоне гексагональных модификаций SiC (4H — красный спектр, 6H — синий) при температуре 5 К.

Рис. 4. Спектр люминесценции SiC в области $1.3 \,\mu$ m при температуре 5 K. Красный спектр принадлежит модификации 4H, синий — 6H. На вставке представлены схемы энергетических уровней для наблюдаемых линий, величины расщепления основного и возбужденного уровней, энергии переходов (слева для SiC-4H, справа для SiC-6H).

Положение линий в низкотемпературных спектрах	ИК люминесценции для моди	ификации SiC-4H (левая частя	ы для модификации
SiC-6H (правая часть)		-	<i>,</i>

SiC-4H			SiC-6H				
cm^{-1}	nm	eV	Описание	cm^{-1}	nm	eV	Описание
7825.6 7819.6 7808.1 7802.1	1277.86 1278.84 1280.72 1281.71	0.97025 0.96951 0.96808 0.96734	Очень интенсивная и узкая $D = 23.5 \mathrm{cm}^{-1}$	7647.4 7641.9 7630.0 7624.4	1307.63 1308.58 1310.62 1311.58	0.94816 0.94747 0.94600 0.94531	Очень интенсивная и узкая $D = 23.5 \mathrm{cm}^{-1}$
7638	1309.24	0.94699	Слабая	7462	1340.12	0.92517	Слабая
7488.68 7487.24	1335.349 1335.606	0.92848 0.92830	Дублет $D = 1.5 \mathrm{cm}^{-1}$	7397.4 7396.5	1351.83 1351.99	0.91716 0.91705	Дублет $D = 0.9 \mathrm{cm}^{-1}$
7133.9 7109.40 7104.72	1401.76 1406.588 1407.515	0.88449 0.88145 0.88087	Дублет (+3-я линия) $D = 29.2 \text{ cm}^{-1}$ $d = 4.7 \text{ cm}^{-1}$	6956.5 6931.5 6927	1437.50 1442.69 1443.63	0.86250 0.85940 0.85884	Дублет (+3-я линия) $D = 29.5 \text{ cm}^{-1}$ $d = 4.5 \text{ cm}^{-1}$
6940	1440.92	0.8605	Слабая, широкая	6760	1479.29	0.83813	Слабая, широкая

Примечание. Группы одинаковых линий, смещенных относительно друг друга для различных модификаций, разделены двойными линиями. *D* — полное расщепление группы линий

зительно одинаковом расстоянии (176–180 ст⁻¹) от своих "аналогов" в спектре политипа 6Н. Причем видна тенденция, что спектры в модификации 4Н смещены в высокоэнергетичную область (синее смещение). Это, вероятно, говорит об одинаковой природе таких центров окраски, находящихся, однако, в различных политипных структурах. Из того, что исследуемые образцы являлись номинально чистыми, не содержали примесей других элементов, можно сделать вывод, что наблюдаемые линии люминесценции и поглощения связаны с собственными дефектами кристаллической решетки карбида кремния, такими как вакансии углерода и кремния (Si-VC, SiC-V и др.), собственный межузельный атом, примесные атомы замещения (CSi-C, SiC-Si), а также их комбинации.

Заключение

Впервые были зарегистрированы чрезвычайно узкие линии в спектрах ИК люминесценции в области $1.5-1.2\,\mu$ m гексагональной модификации SiC (4H, 6H) и проведена их частичная идентификация. Обнаружены особенности спектра, не упомянутые в предшествующих работах и подлежащие дальнейшему экспериментальному и теоретическому исследованию, а именно смещение линий люминесценции в зависимости от политипной модификации кристалла. Полученные результаты дают основу для более детальных исследований, в частности для определения конкретных дефектов, обусловливающих те или иные линии, а также для поиска их возможных практических применений в различных областях, таких как квантовая сенсорика, оптическая квантовая память, источники одиночных фотонов.

Финансирование

Работа выполнена на Уникальной научной установке (УНУ) ИСАН "Мультифункциональная широкодиапазонная спектроскопия высокого разрешения" (УНУ МШСВР ИСАН) при финансовой поддержке гранта РНФ № 19-72-10132.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Fisher G.R., Barnes P. // Phil. Mag. B. 1990. V. 61. P. 217-236. doi 10.1080/13642819008205522
- Gruber A., Dräbenstedt A., Tietz C., Fleury L., Wrachtrup J., von Borczyskowski C. // Science. 1997. V. 276. P. 2012–2014. doi 10.1126/science.276.5321.2012
- Beveratos A., Kühn S., Brouri R., Gacoin T., Poizat J.-P., Grangier P. // Eur. Phys. J. D. 2002. V. 18. P. 191–196. doi 10.1140/epjd/e20020023
- [4] Taylor J., Cappellaro P., Childress L., Jiang L., Budker D., Hemmer P.R., Yacoby A., Walsworth R., Lukin M.D. // Nat. Phys. 2008. V. 4. P. 810–816. doi 10.1038/nphys1075
- [5] Neumann P., Jakobi I., Dolde F., Burk C., Reuter R., Waldherr G., Honert J., Wolf T., Brunner A., Shim J.H., Suter D., Sumiya H., Isoya J., Wrachtrup J. // Nano Lett. 2013. V. 13. P. 2738–2742. doi 10.1021/nl401216y
- [6] Anisimov A.N., Soltamov V.A., Breev I.D., Khalisov M.M., Babunts R.A., Ankudinov A.V., Baranov P.G. // Jetp Lett. 2018. V. 108. P. 610–615. doi 10.1134/S0021364018210063
- [7] Veinger A.I., Il'in V.A., Tairov Yu.M., Tsvetkov V.F. // Soviet Physics: Semicond. 1979. V. 13. P. 1385.
- [8] Vainer V.S., Il'in V.A. // Soviet Physics: Solid State. 1981. V. 23.
 P. 2126.

- [9] Kraus H., Soltamov V., Riedel D., Väth S., Fuchs F., Sperlich A., Baranov P.G., Dyakonov V., Astakhov G.V. // Nat. Phys. 2014. V. 10. P. 157–162. doi 10.1038/nphys2826
- [10] Koehl W.F., Buckley B.B., Heremans F.J., Calusine G., Awschalom D.D. // Nature. 2011. V. 479. P. 84–87. doi: 10.1038/nature10562
- [11] Soltamov V.A., Soltamova A.A., Baranov P.G., Proskuryakov I.I. // Phys. Rev. Lett. 2012. V. 108. P. 226402. doi 10.1103/PhysRevLett.108.226402
- [12] Soltamov V.A., Kasper C., Poshakinskiy A.V., Anisimov A.N., Mokhov E.N., Sperlich A., Tarasenko S.A., Baranov P.G., Astakhov G.V., Dyakonov V. // Nat. Commun. 2019. V. 10. P. 1678. doi 10.1038/s41467-019-09429-x
- Kraus H., Soltamov V., Fuchs F., Simin D., Sperlich A., Baranov P.G., Astakhov G.V., Dyakonov V. // Sci. Rep. 2015.
 V. 4. P. 5303. doi 10.1038/srep05303
- [14] Simin D., Soltamov V.A., Poshakinskiy A.V., Anisimov A.N., Babunts R.A., Tolmachev D.O., Mokhov E.N., Trupke M., Tarasenko S.A., Sperlich A., Baranov P.G., Dyakonov V., Astakhov G.V. // Phys. Rev. X. 2016. V. 6. P. 031014. doi 10.1103/PhysRevX.6.031014
- [15] Soltamov V.A., Tolmachev D.O., Il'in I.V., Astakhov G.V., Dyakonov V.V., Soltamova A.A., Baranov P.G. // Physics of the Solid State. 2015. V. 57. P. 891-899. doi 10.1134/S1063783415050285
- [16] Anisimov A.N., Simin D., Soltamov V.A., Lebedev S.P., Baranov P.G., Astakhov G.V., Dyakonov V. // Sci. Rep. 2016. V. 6. P. 33301. doi 10.1038/srep33301
- [17] Castelletto S., Johnson B.C., Ivády V., Stavrias N., Umeda T., Gali A., Ohshima T. // Nat. Mater. 2014. V. 13. P. 151–6. doi 10.1038/nmat3806
- [18] Baranov P.G., Bundakova A.P., Soltamova A.A., Orlinskii S.B., Borovykh I.V., Zondervan R., Verberk R., Schmidt J. // Phys. Rev. B. 2011. V. 83. P. 125203. doi 10.1103/PhysRevB.83.125203
- [19] Lohrmann A., Johnson B.C., McCallum J.C., Castelletto S. // Rep. Prog. Phys. 2017. V. 80. P. 034502. doi 10.1088/1361-6633/aa5171
- [20] Christle D.J., Falk A.L., Andrich P., Klimov P.V., Hassan J.U., Son N.T., Janzén E., Ohshima T., Awschalom D.D. // Nat. Mater. 2015. V. 14. P. 160–163. doi 10.1038/nmat4144
- [21] Feldman D.W., Parker J.H., Choike W.J., Patrick L. // Phys. Rev. 1968. V. 173. P. 787. doi 10.1103/PhysRev.173.787
- [22] Nakashima S., Harima H. // Phys. Stat. Sol. A. 1997. V. 162.
 P. 39. doi 10.1002/1521-396X(199707)162:1<39::AID-PSSA39>3.0.CO;2-L
- [23] Chikvaidze G., Mironova-Ulmane N., Plaude A., Sergeev O. // Latv. J. Phys. Tech. Sci. 2004. V. 51. P. 51–57. doi 10.2478/lpts-2014-0019
- [24] Sörman E., Son N.T., Chen W.M., Kordina O., Hallin C., Janzén E. // Phys. Rev. B. 2000. V. 61. P. 2613. doi 10.1103/PhysRevB.61.2613
- [25] Zargaleh S.A., Eble B., Hameau S., Cantin J.-L., Legrand L., Bernard M., Margaillan F., Lauret J.-S., Roch J.-F., von Bardeleben H.J., Rauls E., Gerstmann U., Treussart F. // Phys. Rev. B. 2016. V. 94. P. 060102(R). doi 10.1103/PhysRevB.94.060102