01

## Электронное строение и оптическое поглощение фуллеренов как сильно коррелированных систем на примере молекулы $C_{96}(C_2)$

© А.И. Мурзашев, М.Ю. Кокурин, С.К. Паймеров

Марийский государственный университет, 424001 Йошкар-Ола, Россия e-mail: nanotubes59@mail.ru

Поступила в редакцию 10.02.2020 г. В окончательной редакции 10.04.2020 г. Принята к публикации 04.05.2020 г.

С учетом внутриузельного кулоновского взаимодействия с параметром  $U \sim 10 \,\text{eV}$  в приближении статических флуктуаций вычислен энергетический спектр изомера № 181 ( $C_2$ ) фуллерена  $C_{96}$ , на основе которого смоделирован его спектр оптического поглощения. Полученная кривая спектра оптического поглощения на хорошем качественном уровне совпадает с экспериментальной кривой. Такая же кривая, полученная в рамках традиционной модели без учета внутриузельного кулоновского взаимодействия, существенным образом отличается от экспериментальной кривой.

Ключевые слова: фуллерен, энергетический спектр, спектр оптического поглощения, *л*-электрон, хаббардовская подзона, оптические переходы.

DOI: 10.21883/OS.2020.09.49858.41-20

### Введение

В последние годы наблюдается растущий интерес исследователей-теоретиков и экспериментаторов, направленный на изучение фуллеренов и аналогичных им углеродных структур. Это объясняется как теми перспективами, которые сулит применение указанных соединений в различных отраслях производства, приборостроения и медицины, так и остающимися недоработками и неясностями в теории их электронного строения. Электронное строение фуллеренов определяется тем, что в этих системах, так же как и в графите, углеродных нанотрубках (УНТ) и графене, углерод находится в *s p*<sup>2</sup>-гибридизированном состоянии. Три из четырех валентных электронов углерода образуют жесткие связи ( $\sigma$ -связи), формирующие остов системы, а состояния четвертого электрона формируют так называемую *п*-зону, в которой электроны частично локализованы. Таким образом, почти все наблюдаемые свойства, в частности электропроводность и оптическое поглощение, определяются состояниями этих электронов. Основополагающими работами, посвященными электронному строению интересующих нас систем, являются работы Уоллеса [1] и Саваги [2]. В работе [1], относящейся к 1948 г., Уоллес в рамках хюккелевского приближения показал, что в графитовой плоскости л-электроны образуют зону проводимости, ширина которой равна 6В, где B — интеграл перескока  $\pi$ -электронов между соседними узлами. В [2] Савага методом оже-спектроскопии измерил плотность электронных состояний в графите. Согласно его результатам, заполненная часть зоны проводимости, которая в данном случае равна половине всей зоны проводимости, имеет ширину ~ 5.8 eV. Из

этого факта был сделан вывод о том, что интеграл перескока  $B \approx -2 \,\text{eV}$ . Более поздние работы [3–5], в которых изучалось оптическое поглощение УНТ, дали примерно такое же значение:  $B \approx -2.6 \,\text{eV}$ . На основе энергетического спектра, полученного с этим значением параметра *B*, удалось объяснить кривые спектра оптического поглощения (СОП) фуллерена C<sub>60</sub>. Однако попытки объяснения СОП других фуллеренов в рамках простой хюккелевской модели с параметром  $B \approx -2.6 \,\text{eV}$ не привели к ясным и однозначным результатам. Ярким примером этого является фуллерен C<sub>74</sub> [6], расчеты энергетического спектра которого, выполненные в хюккелевском приближении с параметром  $B \approx -2.6 \,\text{eV}$ , дают ничтожно малое значение щели ~ 0.01 eV, что никак не согласуется с экспериментом [6].

Безуспешность попыток получить качественное согласие между экспериментальными и теоретическими кривыми СОП фуллеренов, на наш взгляд, связана с тем, что в системах с *s p*<sup>2</sup>-гибридизацией велико внутриузельное кулоновское взаимодействие (ВУКВ) л-электронов, которое, согласно [7], может достигать значений  $\sim 10 \, \text{eV}$ . Как показано в наших предыдущих работах [8–13], ВУКВ приводит к расщеплению каждого энергетического уровня *п*-электронов на два подуровня, разделенных между собой на величину параметра кулоновского взаимодействия U. Вследствие этого совокупность энергетических уровней *п*-электронов разбивается на две группы — "хаббардовские" подзоны, состояния нижней подзоны полностью заняты, верхней — вакантны. В отличие от случая, когда U = 0, каждый *М*-кратно вырожденный энергетический уровень занят не 2М-электронами (М со спинами "вверх" и М со спинами "вниз"), а М-электронами с произвольной ориентацией спина.



Рис. 1. Изомер № 181 фуллерена С<sub>96</sub> — слева, справа — диаграмма Шлегеля.

Вследствие этого энергетический интервал между вакантными и заполненными состояниями, называемый НОМО-LUMO, есть расстояние между хаббардовскими подзонами и равен U - W, где W — ширина хаббардовской подзоны. При этом ширина зоны  $\pi$ -электронов уже будет равна W = 6B + U. Исходя из того, что экспериментальное значение  $W \sim 14 \text{ eV}$  [3–5], а величина экранировки, согласно [7], составляет  $U \approx 7 \text{ eV}$ , интеграл перескока должен быть порядка  $B \approx -1 \text{ eV}$ . Все сказанное коренным образом меняет представления о характере оптических переходов по сравнению с моделями, не учитывающими кулоновское взаимодействие электронов.

Нами в [8-13] с учетом ВУКВ в приближении статических флуктуаций (ПСФ) [8] для модели Хаббарда с параметрами  $B \approx -1 \,\mathrm{eV}$  и  $U \approx 7.0 \,\mathrm{eV}$  были вычислены энергетические спектры и СОП некоторых фуллеренов. Сравнение полученных СОП с экспериментальными кривыми показало хорошее качественное согласие для ряда исследованных нами фуллеренов. Нельзя не отметить, что для эндоэдральных комплексов фуллерена С<sub>74</sub> [8] было получено идеальное совпадение экспериментальной и теоретической кривых. Все это позволяет нам изложенные выше представления об электронном строении фуллеренов использовать для изучения и других подобных систем. В качестве объекта исследования, результаты которого изложены в настоящей работе, является один из изомеров фуллерена С<sub>96</sub>, а именно его изомер, стоящий в Атласе фуллеренов [14] под № 181 (рис. 1), который имеет группу симметрии  $C_2$ . Выбор этого изомера обусловлен тем, что в [15] были выделены четыре изомера этого фуллерена и получены кривые их СОП. Два из синтезированных изомеров были идентифицированы как изомеры № 3 и № 181 (номе-

Оптика и спектроскопия, 2020, том 128, вып. 9

ра даны в соответствии с Атласом фуллеренов [14]). С целью проверки нашего подхода, основанного на учете ВУКВ *п*-электронов, нами в предлагаемой работе вычислен энергетический спектр и с учетом правил отбора смоделирован СОП, который сравнивается с экспериментальными кривыми, полученными в [15].

# Энергетический спектр и СОП изомера № 181 фуллерена С<sub>96</sub> с учетом ВУКВ

Настоящая работа посвящена вычислению энергетического спектра и СОП одного из изомеров фуллерена С96. Этот фуллерен имеет 187 изомеров, подчиняющихся правилу изолированных пятиугольников, т.е. тех изомеров, в которых каждый пятиугольник окружен шестиугольниками. Такие изомеры считаются наиболее устойчивыми [16]. В работе [15] были выделены пять изомеров фуллерена С96. Один из полученных изомеров был в соответствии с Атласом фуллеренов [14] идентифицирован как изомер № 3 с группой симметрии  $D_{3d}$ . Кривая СОП этого изомера, полученная в [15], приведена на рис. 2 под номером I. Другие четыре изомера не были идентифицированы, но было выдвинуто предположение о том, что изомер, СОП которого на рис. 2 приведен под номером IV, относится к изомеру, указанному в Атласе фуллеренов под № 181. Исходя из этого указанный изомер (рис. 1) был выбран нами в качестве объекта исследования. Интересующий нас изомер имеет группу симметрии С<sub>2</sub>.

Расчеты энергетического спектра были выполнены нами в рамках ПСФ, которое подробно изложено в работах [8–13]. Не останавливаясь на деталях, отметим



**Рис. 2.** Спектры оптического поглощения изомеров, выделенных в [15].

лишь, что ПСФ применимо при U > W и в области нормальных температур, т.е. при температурах выше температуры Кондо. Энергетический спектр, полученный таким способом при параметрах модели Хаббарда U = 7.0 eV и B = -1.0 eV, приведен в табл 1. Все энергетические уровни являются невырожденными. В таблице буквой обозначено неприводимое представление, к которому относится энергетический уровень и значение энергии этого уровня. Энергетический спектр состоит из 192 невырожденных уровней. Отрицательные значения энергий соответствуют полностью заполненным состояниям, положительные значения отвечают вакантным состояниям. Видно, что щель НОМО-LUMO примерно равна 1.0-1.1 eV. Это значение является характерным экспериментальным значением для всех фуллеренов. Для получения разбиения энергетического спектра по неприводимым представлениям анализируем граф, отвечающий исследуемому изомеру. Системы симметрии С<sub>2</sub>, к которым относится рассматриваемый изомер, имеют два одномерных неприводимых представления А и В. Характеры неприводимых представлений даны в табл. 2. Группа симметрии изомера наряду с единичным элементом Е содержит элемент С2, описывающий симметрию относительно главной оси [17]. С использованием стандартных средств среды Maple на первом этапе определяем нетривиальную подстановку вершин графа, описывающую его автоморфизм. Затем в пространстве  $R^{96}$  при помощи стандартных проекционных операторов [17] выделяются подпространства, преобразующиеся по неприводимым представлениям А и В и

**Таблица 1.** Энергетический спектр изомера № 181 фуллерена С96 (eV)

| A, -6.341         | B, -4.425         | A, -2.081         | A, 0.559         | B, 2.475 | A, 4.819         |
|-------------------|-------------------|-------------------|------------------|----------|------------------|
| <i>B</i> , -6.200 | <i>B</i> , -4.390 | <i>B</i> , -2.073 | B, 0.700         | B, 2.510 | B, 4.827         |
| A, -6.190         | <i>B</i> , -4.383 | A, -2.065         | A, 0.710         | B, 2.517 | A, 4.835         |
| B, -6.178         | A, -4.341         | B, -1.981         | B, 0.722         | A, 2.559 | B, 4.919         |
| B, -5.936         | A, -4.153         | A, -1.934         | B, 0.964         | A, 2.747 | A, 4.966         |
| A, -5.923         | <i>B</i> , -4.145 | <i>B</i> , -1.902 | A, 0.977         | B, 2.755 | B, 4.998         |
| A, -5.903         | <i>B</i> , -4.142 | A, -1.892         | A, 0.997         | B, 2.758 | A, 5.008         |
| A, -5.867         | A, -4.138         | B, -1.808         | A, 1.033         | A 2.762  | B, 5.092         |
| B, -5.863         | A, -4.113         | <i>B</i> , -1.754 | B, 1.037         | A, 2.787 | B, 5.146         |
| B, -5.555         | A, -4.091         | A, -1.749         | B, 1.345         | A, 2.809 | A, 5.151         |
| A, -5.531         | <i>B</i> , -4.036 | A, -1.717         | A, 1.369         | B, 2.864 | A, 5.183         |
| A, -5.521         | B, -3.985         | B, -1.698         | A, 1.379         | B, 2.915 | B, 5.202         |
| B, -5.519         | A, -3.983         | B, -1.587         | B, 1.381         | A, 2.917 | B, 5.313         |
| B, -5.465         | A, -3.855         | A, -1.577         | B, 1.435         | A, 3.045 | A, 5.323         |
| <i>B</i> , -5.414 | B, -3.827         | A, -1.470         | B, 1.486         | B, 3.073 | A, 5.430         |
| A, -5.408         | A, -3.741         | B, -1.392         | A, 1.492         | A, 3.159 | B, 5.508         |
| B, -5.111         | B, -3.450         | A, -1.353         | B, 1.789         | B, 3.450 | A, 5.547         |
| B, -5.059         | A, -3.361         | B, -1.281         | B, 1.841         | A, 3.539 | B, 5.619         |
| A, -5.057         | B, -3.321         | <i>B</i> , -1.211 | <i>A</i> , 1.843 | B, 3.579 | B, 5.689         |
| A, -5.039         | B, -2.981         | A, -1.182         | A, 1.861         | B, 3.919 | A, 5.718         |
| A, -5.020         | A, -2.942         | A, -1.137         | A, 1.880         | A, 3.958 | A, 5.763         |
| B, -4.969         | <i>B</i> , -2.874 | A, -1.083         | B, 1.931         | B, 4.026 | A, 5.817         |
| A, -4.945         | A, -2.598         | B, -1.010         | A, 1.955         | A, 4.302 | B, 5.890         |
| B, -4.892         | B, -2.530         | B, -0.988         | B, 2.008         | B, 4.370 | B, 5.912         |
| A, -4.867         | A, -2.473         | A, -0.979         | A, 2.033         | A, 4.427 | A, 5.921         |
| A, -4.584         | B, -2.389         | B, -0.716         | A, 2.316         | B, 4.511 | B, 6.184         |
| <i>B</i> , -4.548 | A, -2.380         | A, -0.705         | B, 2.352         | A, 4.520 | A, 6.195         |
| B, -4.526         | A, -2.271         | B, -0.669         | B, 2.374         | A, 4.629 | B, 6.231         |
| A, -4.516         | B, -2.260         | A, -0.628         | A, 2.384         | B, 4.640 | A, 6.272         |
| <i>B</i> , -4.509 | <i>B</i> , -2.174 | <i>B</i> , -0.601 | B, 2.391         | B, 4.726 | B, 6.299         |
| A, -4.475         | A, -2.167         | <i>A</i> , -0.564 | A, 2.425         | A, 4.733 | A, 6.336         |
| A, -4.455         | <i>B</i> , -2.093 | <i>B</i> , -0.546 | A, 2.445         | B, 4.807 | <i>B</i> , 6.354 |

вместе с ними определяются искомые наборы энергетических уровней, принадлежащих указанным представлениям. Теоретико-групповой анализ с использованием данных, представленных в табл. 2, показывает, что в рассматриваемой системе возможны все переходы, т.е.



Рис. 3. Спектр оптического поглощения изомера № 181- $C_2$  фуллерена С<sub>96</sub>. Нижняя кривая получена в рамках модели U = 6.65 eV, B = -1.0 eV и  $\alpha = 0.06 \text{ eV}$ . Средняя кривая — эксперимент [15]. Верхняя кривая получена в рамках модели  $U = 0, B = -2.6 \text{ eV}, \alpha = 0.06 \text{ eV}.$ 

**Таблица 2.** Характеры неприводимых представлений группы C<sub>2</sub>

| Представления, классы | Ε | $C_2$ |
|-----------------------|---|-------|
| A                     | 1 | 1     |
| B                     | 1 | -1    |

 $A \rightarrow A, A \leftrightarrow B, B \rightarrow B$ . Методика исследования описана, например, в [17].

С учетом разрешенных переходов СОП вычисляется как мнимая часть многочастичной функции Грина [18]:

$$In(\omega) \sim \delta(E_k - E_i - \omega).$$
 (1)

Здесь  $\delta(x) - \delta$ -функция Дирака,  $E_k$ ,  $E_i$  — энергии вакантного и заполненного уровней, между которыми разрешены оптические переходы,  $\omega$  — частота поглощаемого фотона. Воспользуемся известным представлением  $\delta$ -функции:

$$\delta(x) = \lim_{\alpha \to 0} \frac{\alpha}{\pi (x^2 + \alpha^2)},\tag{2}$$

где предел понимается в смысле обобщенных функций. Учитывая, что в реальных системах вследствие различных процессов, например температурных флуктуаций и других, не учитываемых в ПСФ, состояния  $E_k$ ,  $E_i$  затухают, для интенсивности поглощения  $In(\omega)$  на разрешенных переходах можно записать

$$In(\omega) \sim \sum_{i,k} \frac{\alpha}{(E_i - E_k - \omega^2) + \alpha^2}.$$
 (3)

В (3) суммирование ведется по тем  $E_k$ ,  $E_i$ , переходы между которыми разрешены, а  $\alpha$  — феноменологический параметр, учитывающий затухание электронных состояний. Спектр оптического поглощения, полученный в рамках предложенной модели с параметрами  $U = 6.65 \text{ eV}, B = -1.0 \text{ eV}, \alpha = 0.06 \text{ eV},$  представлен на рис. 3 (нижняя кривая). На графике по оси ординат отложена интенсивность поглощения в произвольных единицах, по оси абсцисс —длина волны в нанометрах. Нижняя кривая соответствует полученным теоретическим результатам, средняя — результаты эксперимента [15]. Видно, что в СОП присутствуют ярко выраженные полосы поглощения с максимумами при 530, 680 и 850 nm. Эти значения достаточно хорошо совпадают с экспериментальными значениями, максимальное отклонение максимумов полос поглощения не более 60 nm (для полосы поглощения 680 nm). В области длин волн от 1000 до 1200 nm как на теоретической, так и на экспериментальной кривых наблюдается плато, связанное с поглощением на переходах между уровнями, лежащими близи границы HOMO-LUMO. Значение предельной длины волны ~ 1200 nm, граница поглощения на теоретической и экспериментальной кривых совпадает и соответствует длине волны  $\lambda \approx 1200$  nm. Эта величина соответствует значению ширины щели HOMO–LUMO  $\sim 1 \, \text{eV}$ .

Таким образом, учет ВУКВ, т.е. рассмотрение  $\pi$ -электронной подсистемы рассматриваемого изомера в рамках концепции сильно коррелированного состояния, позволяет на очень хорошем качественном уровне описать электронные и оптические свойства изомера No 181 фуллерена С<sub>96</sub>.

# Энергетический спектр и СОП изомера № 181 фуллерена С<sub>96</sub> без учета ВУКВ

Так как многие исследователи при анализе экспериментальных спектров оптического поглощения фуллеренов все еще не учитывают наличие сильного

| A, -7.516         | A, -3.684         | B, 0.000 | <i>B</i> , 4.4101 |
|-------------------|-------------------|----------|-------------------|
| B, -7.150         | A, -2.948         | A, 0.232 | A, 4.4231         |
| A, -7.123         | <i>B</i> , -2.854 | B, 0.336 | A, 4.5063         |
| B, -7.092         | B, -2.797         | B, 1.220 | B, 4.5557         |
| B, -6.463         | A, -2.771         | A, 1.321 | B, 4.8443         |
| A, -6.429         | B, -2.753         | B, 1.497 | A, 4.8703         |
| A, -6.377         | A, -2.665         | A, 2.216 | A, 5.1485         |
| A, -6.284         | A, -2.613         | B, 2.393 | B, 5.3513         |
| B, -6.273         | B, -2.535         | A, 2.540 | A, 5.4527         |
| B, -5.473         | B, -2.444         | B, 2.759 | B, 5.6399         |
| A, -5.410         | B, -2.425         | A, 2.783 | B, 5.8219         |
| A, -5.384         | A, -2.316         | A, 3.066 | A, 5.8973         |
| B, -5.379         | A, -1.827         | B, 3.095 | A, 6.0143         |
| B, -5.239         | B, -1.808         | B, 3.318 | A, 6.1547         |
| B, -5.106         | B, -1.798         | A, 3.336 | B, 6.3445         |
| A, -5.090         | A, -1.789         | B, 3.529 | B, 6.4017         |
| <i>B</i> , -4.318 | A, -1.724         | A, 3.559 | A, 6.4251         |
| B, -4.183         | A, -1.667         | B, 3.581 | B, 7.1089         |
| A, -4.178         | B, -1.524         | A, 3.602 | A, 7.1375         |
| A, -4.131         | B, -1.390         | B, 3.820 | B, 7.2311         |
| A, -4.082         | A, -1.385         | A, 3.942 | A, 7.3377         |
| B, -3.949         | A, -1.054         | B, 4.025 | B, 7.4079         |
| A, -3.886         | B, -0.980         | A, 4.051 | A, 7.5041         |
| B, -3.7487        | A, -0.757         | B, 4.270 | B, 7.5509         |
|                   | -                 | . !      |                   |

**Таблица 3.** Энергетический спектр фуллерена С<sub>96</sub> в рамках модели  $B = -2.6 \,\mathrm{eV}, \ U = 0 \,\,(\mathrm{eV})$ 

ВУКВ  $\pi$ -электронов и считают, что интеграл перескока  $\pi$ -электронов  $B \approx -2.6 \text{ eV}$ , нами был вычислен энергетический спектр исследуемого фуллерена без учета ВУКВ с этим значением интеграла перескока. Результаты представлены в табл. 3. Видно, что энергетический спектр содержит 96 невырожденных уровней, 48 уровней полностью заполнены (каждый двумя электронами с противоположными спинами), а 48 уровней вакантны. Щель между вакантными и заполненными состояниями, НОМО–LUMO, как видно из таблицы, составляет  $\approx 0.757 \text{ eV}$ , что никак не согласуется с длиной волны, соответствующей краю полосы поглощения, которая, как видно из рис. 3, соответствует значению  $\approx 1.0 \text{ eV}$ .

Спектр оптического поглощения, полученный согласно табл. 3, приведен на рис. 3 (верхняя кривая). Из рисунка видно, что как и ожидалось из значения НОМО– А.И. Мурзашев, М.Ю. Кокурин, С.К. Паймеров

LUMO  $\approx 0.757 \, \text{eV}$ , полоса поглощения обрывается на длинах волн ~ 1400 nm, положения максимумов полос поглощения, как видно из сравнения теоретической (верхняя кривая на рис. 3) и экспериментальной кривых (средняя кривая на рис. 3), не соответствуют экспериментальным значениям. Из рис. 3 видно, что трудно идентифицировать максимумы полос поглощения на теоретической и экспериментальной кривых. В какой-то степени это удается сделать, если максимумы полос поглощения теоретической кривой сместить  $\approx$  на 150 nm, но при этом остается максимум при 885 nm, для которого на экспериментальной кривой нет аналога. Таким образом, в рамках традиционного представления об электронном строении фуллеренов в модели U = 0,  $B = -2.6 \, \text{eV}$ , оптическое поглощение рассмотренного изомера фуллерена С<sub>96</sub> объяснить не удается.

#### Заключение

В настоящей работе с учетом ВУКВ вычислен энергетический спектр изомера № 181 фуллерена С<sub>96</sub>. Спектр оптического поглощения, полученный на основании вычисленного энергетического спектра, на хорошем качественном уровне совпадает с экспериментальными данными. Моделирование СОП на основе энергетического спектра, найденного без учета ВУКВ, дает результаты, существенным образом отличающиеся от экспериментальных. Это обстоятельство подтверждает важную роль ВУКВ в формировании электронных и оптических свойств *π*-электронной подсистемы фуллеренов.

#### Финансирование работы

Работа выполнена в рамках государственного задания Министерства образования и науки Российской Федерации по Марийскому государственному университету "Исследование фуллеренов и углеродных нанотрубок как сильно коррелированных *π*-электронных систем" № 3.5976.2017/8.9.

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

### Список литературы

- [1] Wallace P.R. // Phys. Rev. 1947. V. 71. P. 622.
- [2] Sagawa T. // J.Phys. Society of Japan. 1966. V. 21. P. 49.
- [3] Wildoer J.W.G., Venema L.C., Rinzler A.G. et al. // Nature. 1968. V. 59. P. 391.
- [4] Kuzmany H., Burger B., Hulman M. et al. // Europhys. Lett. 1998. V. 44. P. 518.
- [5] Kim P., Odom T.W., Huang J.L. et al. // Phys. Rev. Lett. 1999.
  V. 82. P. 1225.
- [6] Michael D.D. // Nature. 1998. V. 393. P. 668.
- [7] Wehling T.O., Şaşioğlu E., Friedrich C. et al. // Phys. Rev. Lett. 2011. V. 106. P. 236805.

- [8] Мурзашев А.И., Назарова Т.Э. // ЖЭТФ. 2014. Т. 146. С. 1026.
- [9] Мурзашев А.И. // ЖЭТФ. 2009. Т. 135. С. 122.
- [10] Лобанов Б.В., Мурзашев А.И. // Изв. вузов. Физика. 2016.
  Т. 59. 6. С. 88.
- [11] Кареев И.Е., Бубнов В.П., Мурзашев А.И., Лобанов Б.В. // ФТТ. 2015. Т. 57. С. 2254.
- [12] Бубнов В.П., Кареев И.Е., Лобанов Б.В., Мурзашев А.И., Некрасов В.М. //ФТТ. 2016. Т. 58. С. 1639.
- [13] Кареев И.Е., Бубнов В.П., Котов А.И., Лобанов Б.В., Мурзашев А.И., Румянцев И.А. // ФТТ. 2017. Т. 59. С. 200.
- [14] Fowler P.W., Manolopoulos D.E. An Atlas of Fullerenes. Oxford: Oxford University Press, 1995. 416 p.
- [15] Yang H., Jin H., Che Y. et al. // Chem. Eur. J. 2012. V. 18. P. 2792.
- [16] Schmalz T.G., Seitz W.A., Klein D.G. et al. // J. ACS. 1988. V. 110. P. 1113.
- [17] *Любарский Г.Я.* Теория групп и ее применения в физике. М.: ЛЕНАНД, 2018. 360 с.
- [18] Абрикосов А.А., Горьков Л.П., Дзялошинский И.Е. Методы квантовой теории поля в статистической физике. М.: Физматгиз, 1961. 444 с.