## 06.1

# Магнитные свойства двухфазных магнитных боросиликатных стекол, содержащих наночастицы $\beta$ -Fe<sub>2</sub>O<sub>3</sub> и Fe<sub>3</sub>O<sub>4</sub>

© С.А. Борисов<sup>1</sup>, А.А. Набережнов<sup>1</sup>, В. Nacke<sup>2</sup>, А. Nikanorov<sup>2</sup>

<sup>1</sup> Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия <sup>2</sup> Leibniz University of Hannover, ETP, Hannover, Germany E-mail: sergey.borisov@mail.ioffe.ru

Поступило в Редакцию 25 марта 2020 г. В окончательной редакции 25 марта 2020 г. Принято к публикации 15 мая 2020 г.

Исследованы магнитные свойства двухфазных боросиликатных стекол, содержащих в каркасе смесь наночастиц  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> и Fe<sub>3</sub>O<sub>4</sub>. Определены размеры наночастиц оксидов, установлено значение температуры блокировки ( $T_B \sim 330$  K) ансамбля суперпарамагнитных наночастиц. Показано, что в сильных магнитных полях наблюдается резкое увеличение удельной намагниченности данных стекол при приближении к температуре Нееля и ниже ее для массивного  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>.

Ключевые слова: оксиды железа, магнитные свойства, наносистемы ядро-оболочка, магнитные стекла.

DOI: 10.21883/PJTF.2020.16.49850.18308

Ранее при оптимизации состава исходной шихты при изготовлении магнитных пористых матриц на основе боросиликатных стекол [1] мы столкнулись с эффектом образования смеси наночастиц оксидов железа β-Fe<sub>2</sub>O<sub>3</sub> и Fe<sub>3</sub>O<sub>4</sub> в процессе проведения плавки этих двухфазных (непористых) стекол. Наиболее интенсивное образование наночастиц фазы *β*-Fe<sub>2</sub>O<sub>3</sub> происходило (в наших экспериментах [1]) в случае концентрации гематита (*α*-Fe<sub>2</sub>O<sub>3</sub>) в исходной шихте около 15 mass%. Следует отметить, что β-Fe<sub>2</sub>O<sub>3</sub> довольно редкий полиморф в семействе оксидов железа (III), который получают в основном только в виде микро- и наночастиц [2], термодинамически он нестабилен. Этот оксид был впервые обнаружен в работе Svendsen [3] в 1958 г. При комнатной температуре он имеет кубическую структуру типа биксбиита (bixbyite) (пространственная группа  $Ia\bar{3}$  с постоянной решетки 9.393 Å). При охлаждении вплоть до температуры Нееля T<sub>N</sub> β-Fe<sub>2</sub>O<sub>3</sub> находится в парамагнитном состоянии, а ниже T<sub>N</sub> проявляет антиферромагнитные свойства. Температура T<sub>N</sub> по различным литературным данным находится в интервале 100-119 К [4] и, как показано в работе [5], зависит от условий приготовления. При нагреве выше 400-600°С (в зависимости от размера и формы частиц) этот полиморф переходит либо в фазу  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, либо в фазу  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> [6]. Свойства  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> в настоящее время исследованы недостаточно, но уже показано, что этот материал является перспективным для использования при фотохимическом расщеплении воды [7,8], в оптоэлектронике [9], при конструировании газовых детекторов и в качестве катализатора [10].

Целью настоящей работы является проведение более детальных исследований магнитных и структурных свойств указанных выше двухфазных боросиликатных стекол, содержащих оксиды железа  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> и Fe<sub>3</sub>O<sub>4</sub>. Стекла были изготовлены в ETP (Institut für Еlektroprozesstechnik) по модернизированной технологии, изложенной в работе [1], с использованием разработанного нами метода индукционной плавки [11] из исходной шихты с составом  $60\% - \text{SiO}_2$ ,  $20\% - \text{B}_2\text{O}_3$ ,  $5\% - \text{Na}_2\text{O}$ ,  $15\% - \text{Fe}_2\text{O}_3$  (гематит), аналогичным полученному в работе [1] (здесь и далее в составе смеси указаны массовые проценты). После плавления и охлаждения расплава проводилась процедура фазового расслоения (ликвация) образцов при температуре 560°C в течение 120 h. Исследования кристаллической структуры стекол проводились методом порошковой рентгеновской дифракции высокого разрешения на длине волны  $\lambda_{\text{CuK}_a} = 1.54$  Å при комнатной температуре в диапазоне углов  $2\theta = 15-100^\circ$ . Магнитные свойства были изучены



**Рис. 1.** Рентгеновская дифрактограмма образца Fe15 при комнатной температуре. Точки — эксперимент, сплошная линия — подгонка, пунктир внизу — невязка, вертикальные штрихи: верхний ряд — упругие пики для Fe<sub>3</sub>O<sub>4</sub>, нижний ряд — для  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>.



**Рис. 2.** Температурные зависимости намагниченности в режимах FC и ZFC для стекол Fe15 (*a*) и Fe20 (*b*). Вертикальная шриховая линия на части a — температура Нееля для  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>, вертикальные стрелки на части b — температура перехода Вервея в массивном Fe<sub>3</sub>O<sub>4</sub> [14].

с помощью СКВИД-магнитометра модели MPMS-5T производства фирмы "Quantum Design" в Helmholtz-Zentrum Berlin в диапазоне температур от 4.5 до 340 К. Исходное двухфазное магнитное стекло перетиралось до микропорошка, тщательно взвешивалось, прогревалось для исключения влияния паров воды и помещалось в герметичную капсулу. Температурные зависимости намагниченности в режимах ZFC (zero field cooling) и FC (field cooling) получались в поле 100 Ое. Кривые гистерезиса намагниченности регистрировались при температурах 4.5, 12, 113, 254, 287 и 310 К в полях  $\pm 10$  kOe. Все измерения в поле и без поля проводились после предварительного отжига образцов при T = 340 К в течение 5–10 min.

На рис. 1 представлена дифрактограмма для данного двухфазного стекла (далее будем использовать аббревиатуру Fe15), диффузный фон от рассеяния на самом стекле вычтен. С помощью подгонки методом профильного анализа было установлено присутствие двух фаз: Fe<sub>3</sub>O<sub>4</sub> (параметр ячейки  $a = 8.4213 \pm 0.0004$  Å) и  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> (параметр ячейки  $a = 9.4239 \pm 0.0007$  Å), включения других фаз не обнаружены. На основе анализа уширения упругих отражений установлены характерные размеры наночастиц оксидов: для Fe<sub>3</sub>O<sub>4</sub> — 17(1) nm, для  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> — 12(2) nm. Проведенный фазовый анализ показал, что в стекле Fe15 71 ± 2% железа находится в фазе магнетита, а остальные 29 ± 3% — в фазе  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>.

Хорошо известно, что ультрадиспергированные магнитные частицы являются монодоменными. Так, в частности, для сферической частицы магнетита это справедливо при размере менее 128 nm [12]. Для ансамбля частиц меньшего размера характерно появление суперпарамагнетизма, основными чертами которого являются существование температуры блокировки ( $T_B$ ), выше которой ансамбль демонстрирует свойства обычного парамагнетика, и расхождение кривых намагничивания (в небольших полях) при охлаждении в поле (FC) и нагреве в поле после охлаждения в нулевом поле (ZFC).

На рис. 2 приведены температурные зависимости намагниченности, измеренные в режимах FC и ZFC в поле 100 Ое для стекла Fe15 (рис. 2, a) и для сравнения для образца Fe20, содержавшего 20% гематита [1] в исходной шихте (рис. 2, b) [13].

Действительно, для стекла Fe20 (рис. 2, b) наблюдаются типичные для ансамбля суперпарамагнитных частиц температурные зависимости в режимах FC и ZFC с температурой блокировки  $T_B \sim 300$  К. Аномалии при  $T \sim 120 \,\mathrm{K}$  мы связываем с переходом Вервея (Verwey) [14], характерным для массивного магнетита. Для стекла Fe15 (рис. 2, a) эти зависимости принципиально отличаются от наблюдаемых для Fe20, а положение аномалий соответствует температуре Нееля для  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>. На самом деле, скорее всего, в силу случайного совпадения температур мы имеем дело с влиянием как перехода  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> в антиферромагнитную фазу, так и перехода Вервея, поэтому на FC-зависимости аномалия выражена существенно более явно. С другой стороны, как видно из рис. 2, b, для Fe20 переход Вервея практически не влияет на величину намагниченности при режиме FC, и поэтому общее уменьшение намагниченности в данном режиме для образца Fe15 ниже T<sub>N</sub> можно однозначно связать с антиферромагнитным переходом в  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>. Температура блокировки  $T_B$  определена исходя из пересечения кривых FC и ZFC и оказалась равной  $\sim 330 \, {\rm K}$ , поэтому для уменьшения влияния остаточных явлений в дальнейшем все измерения проводились после отжига образцов при 340 К.

Показанное на рис. 2, *а* температурное поведение кривой FC довольно характерно для структур типа ядро-оболочка (core-shell) [15,16]. Согласно данным

**Рис. 3.** Температурные зависимости петель гистерезиса для Fe15.

исследования морфологии наночастиц в стекле Fe15 методом магнитно-силовой микроскопии [17], их форма близка к сферической. Полагая, что меньший размер ( $\beta$ -Fe<sub>2</sub>O<sub>3</sub>) представляет собой ядро, а внешняя оболочка состоит из магнетита, из простых геометрических соображений можно оценить количество каждой фазы: 65% Fe<sub>3</sub>O<sub>4</sub> и 35%  $\beta$ -Fe<sub>2</sub>O<sub>3</sub>. Эта оценка хорошо согласуется с результатами фазового анализа, приведенными выше.

На следующем этапе были проведены исследования температурной зависимости петель гистерезиса в полях от  $\pm 10 \,\mathrm{kOe}$  (рис. 3). Здесь следует отметить, что при температурах 310, 287 и 254 К в полях больше 3 kOe намагниченность практически достигает насыщения (соответствующие кривые совпадают и не приведены на рис. 3), а при приближении к температуре Нееля наблюдается ее достаточно резкий рост. Так, при 4.5 К в поле 10 kOe величина намагниченности возрастает в 1.2 раза по сравнению со значением при 310 К в том же поле, при этом насыщения мы не достигли. Аналогичного роста для стекла Fe20 мы не наблюдали [17], поэтому наиболее вероятной причиной роста намагниченности стекла Fe15 при низких температурах в сильных полях, по-видимому, является частичное подавление антиферромагнитного перехода в β-Fe<sub>2</sub>O<sub>3</sub>. Величина коэрцитивного поля составляет порядка 100 Ое и практически не зависит от температуры.

Таким образом, магнитные свойства стекла Fe15 полностью определяются системой образующихся в процессе плавки и термической обработки наночастиц с ферримагнитными (Fe<sub>3</sub>O<sub>4</sub>) и антиферромагнитными ( $\beta$ -Fe<sub>2</sub>O<sub>3</sub>) свойствами. Согласно данным атомно-силовой и магнитно-силовой микроскопии [17,18], эти наночастицы самоорганизуются в каркасе стекла в крупные кластеры. В заключение следует отметить, что полученная совокупность данных по структуре, магнитным свойствам и морфологии указанных оксидов железа в

стекле Fe15 дает основания полагать, что в процессе плавления и последующей тепловой обработки в этом двухфазном стекле формируются ансамбли суперпарамагнитных наночастиц типа ядро-оболочка, состоящие  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> и Fe<sub>3</sub>O<sub>4</sub>, в которых магнетит является оболочкой, а  $\beta$ -Fe<sub>2</sub>O<sub>3</sub> ядром наночастицы. В дальнейшем мы планируем более детальные исследования этих материалов с целью уточнения особенностей их магнитного отклика.

#### Благодарности

Авторы благодарят И.В. Голосовского (ПИЯФ НИЦ "Курчатовский институт") за помощь при проведении рентгенодифракционных измерений.

### Финансирование работы

С.А. Борисов благодарит Российский фонд фундаментальных исследований (грант 19-02-00760) за частичную финансовую поддержку. А.А. Набережнов благодарит DAAD (грант Research Stays for University Academics and Scientists 57442043) за финансовую поддержку работ, проведенных в Leibniz University of Hannover (ETP).

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

## Список литературы

- Антропова Т.В., Анфимова И.Н., Голосовский И.В., Кибалин Ю.А., Набережнов А.А., Поречная Н.И., Пшенко О.А., Филимонов А.В. // ФТТ. 2012. Т. 54. В. 10. С. 1977–1982. [Пер. версия: 10.1134/S1063783412100058].
- Machala L., Tuček J., Zbořil R. // Chem. Mater. 2011. V. 23.
  N 14. P. 3255–3272. DOI: 10.1021/cm200397g
- [3] Svendsen M.B. // Naturwissenschafte. 1958. V. 45. N 22.
  P. 542.
- Zboril R., Mashlan M., Petridis D. // Chem. Mater. 2002.
  V. 14. N 3 P. 969–982. DOI: 10.1021/cm0111074
- [5] Danno T., Asaoka H., Nakanishi M., Fujii T., Ikeda Y., Kusano Y., Takada J. // J. Phys.: Conf. Ser. 2010. V. 200.
   P. 082003. DOI: 10.1088/1742-6596/200/8/082003
- [6] Lee C.-W., Jung S.-S., Lee J.-S. // Mater. Lett. 2008. V. 62. N 4-5. P. 561–563. DOI: 10.1016/j.matlet.2007.08.073
- Zhang N., Guo Y., Wang X., Zhang S., Li Z., Zou Z. // Dalton Trans. 2017. V. 46. P. 10673–10677. DOI: 10.1039/C7DT00900C
- [8] Song T., Zhang P., Zeng J., Wang T., Ali A., Zeng H. // RSC Adv. 2017. V. 7. N 46. P. 29184–29192. DOI: 10.1039/c7ra03451b
- [9] Lee C.-W., Lee K.-W., Lee J.-S. // Mater. Lett. 2008. V. 62. N 17-18. P. 2664–2666. DOI: 10.1016/j.matlet.2008.01.008
- [10] Kumar A., Singhal A. // Mater. Chem. Phys. 2011. V. 131.
  N 1-2. P. 230–240. DOI: 10.1016/j.matchemphys.2011.09.016
- Andreeva N., Tomkovich M., Naberezhnov A., Nacke B., Filimonov A., Alekseeva O., Vanina P., Nizhankovskii V. // Sci. World J. 2017. V. 2017. P. 9078152.
   DOI: 10.1155/2017/9078152



- [12] Leslie-Pelecky D.L., Rieke R.D. // Chem. Mater. 1996. V. 8.
  N 8. P. 1770–1783.
- [13] Naberezhnov A.A., Alekseeva O.A., Vanina P.Yu., Golosovsky I.V., Sysoeva A.A., Nacke B., Nikanorov A. // Proc. of the 12th Int. Scientific and Practical Conf. "Environment. Technology. Resources". Rezekne, Latvia, 2019. V. III. P. 172–176. DOI: 10.17770/etr2019vol3.4048
- [14] Walz F. // J. Phys.: Condens. Matter. 2002. V. 14. N 12. P. R285–R340.
- [15] Yüksel Y. // Int. J. Mod. Phys. B. 2019. V. 33. N 23. P. 1950269 (1–16). DOI: 10.1142/S0217979219502692
- [16] Lohr J., De Almeida A.A., Moreno M.S., Troiani H.E., Goya G.F., Molina T.E.T., Fernandez-Pacheco R., Winkler E.L., Mansilla M.V., Cohen R., Nagamine L.C.C.M., Rodriguez L.M., Fregenal D.E., Zysler R.D., Lima E. // J. Phys. Chem. C. 2019. V. 123. N 2. P. 1444–1453. DOI: 0.1021/acs.jpcc.8b08988
- [17] Naberezhnov A., Porechnaya N., Nizhankovskii V., Filimonov A., Nacke B. // Sci. World J. 2014. V. 2014.
   P. 320451 (1–7). DOI: 10.1155/2014/320451
- [18] 18 Andreeva N.V., Naberezhnov A.A., Tomkovich M.V., Nacke B., Kichigin V., Rudskoy A.I., Filimonov A.V. // Met. Sci. Heat Treatment. 2016. V. 58. N 7-8. P. 479–482. DOI: 10.1007/s11041-016-0039-z