Роль междолинного рассеяния в излучательной рекомбинации твердого раствора $Pb_{1-x}Eu_x$ Te ($0 \le x \le 1$)

© Д.А. Пашкеев[¶], И. И. Засавицкий

Физический институт им. П.Н. Лебедева Российской академии наук, 119991 Москва, Россия

(Получена 16 июля 2012 г. Принята к печати 13 августа 2012 г.)

Из измерений фотолюминесценции эпитаксиальных слоев твердого раствора $Pb_{1-x}Eu_xTe$ ($0 \le x \le 0.32$) было установлено, что с увеличением содержания Eu интенсивность излучения уменьшается и уже для состава $x \approx 0.1$ падает более чем на порядок величины. Для составов $0.2 < x \le 0.32$ люминесценция не наблюдалась. Это объясняется сменой экстремума в зоне проводимости ($L \rightarrow X$) при $x \approx 0.1$, что приводит к рассеянию неравновесных электронов в X-долину и квантовый выход излучения падает. Как следует из литературных данных, при x > 0.85 оптические переходы также происходят с участием X-долины, при этом излучение определяется образованием магнитного полярона. Измерены зависимости ширины запрещенной зоны от температуры для составов $0 \le x \le 0.11$. Они имеют широкую линейную область с положительным коэффициентом dE_g/dT , который с увеличением содержания Eu уменьшается и для EuTe становится отрицательным.

1. Введение

Эпитаксиальные слои и гетероструктуры на основе твердых растворов $Pb_{1-x}Eu_xTe$ $(0 \le x \le 1)$ успешно применяются при разработке оптоэлектронных устройств для инфракрасной области спектра, в частности гетеролазеров [1] и лазеров с вертикальным выводом излучения [2]. В настоящее время существуют несколько работ, посвященных излучательной рекомбинации $Pb_{1-x}Eu_x$ Те для составов x < 0.1 в работе [3] и для $x \ge 0.8$ в [4,5]. В работах [6,7] на основе электрических и оптических измерений была рассмотрена возможная схема изменения зонной структуры твердого раствора. В ней предполагается, что уже в области малых составов ($x \approx 0.1$) сказывается сильное влияние локализованных состояний Еи. Такой подход не позволяет полностью описать поведение излучательной рекомбинации, поэтому необходимо более детальное рассмотрение зонной структуры Pb_{1-x}Eu_xTe во всем диапазоне составов 0 < x < 1, где крайними соединениями являются PbTe и EuTe.

РbTе является прямозонным диамагнитным полупроводником с узкой шириной запрещенной зоны $E_g \approx 0.2$ эВ [8]. Зона проводимости и валентная зона расположены в одной и той же точке *k*-пространства, в точке *L* зоны Бриллюэна. Они вырождены только по спину и почти зеркально отображают друг друга [9,10]. Излучательные переходы происходят между зоной проводимости L_6^- и валентной зоной L_6^+ [11]. Водородоподобные (примесные или экситонные) состояния в материалах типа $A^{IV}B^{VI}$ не наблюдаются из-за высокой диэлектрической проницаемости и малой эффективной массы.

Электронные свойства антиферромагнитного соединения EuTe ($T_{\rm N} = 9.6 \,{\rm K}$) определяются наполовину заполненным атомным уровнем Eu²⁺ 4 f^7 (${}^8S_{7/2}$). Он располагается на вершине валентной зоны, непосредственно над 5*p*-орбиталью халькогена Te²⁻ [12]. 4*f*-состояния сильно локализованы и поэтому в пространстве импульсов не должны иметь сильной дисперсии. Но вследствие существенного перекрытия плотностей состояний *f*- и *p*-электронов, характерного для всех халькогенидов Eu [13], они образуют максимум валентной зоны в точке Г зоны Бриллюэна. Зону проводимости EuTe составляют 5*d*-орбитали атомов Eu, расщепленные кристаллическим полем на 5*d*(t_{2g})- и 5*d*(e_g)-состояния. Резонансно с 5*d*(t_{2g})-состоянием располагается 6*s*-орбиталь. Как показано в теоретических расчетах зонной структуры халькогенидов Eu [13], и это согласуется с магнитооптическими измерениями [14], минимум зоны проводимости этих материалов находится в точке *X* зоны Бриллюэна.

При измерениях фотолюминесценции (ФЛ) объемных кристаллов [15] и эпитаксиальных слоев [5] ЕuТе в магнитном поле и при различных температурах наблюдались две области излучения при энергиях перехода 1.5 и 1.9 эВ при T = 1.7 К. Эти линии расположены гораздо ниже по энергии, чем край поглощения (2.25 эВ), полученный из измерений спектров пропускания. Первая линия, связывается с наличием дефектов в материале, а вторая с межзонными излучательными переходами, с образованием магнитного полярона. Аналогичное поведение излучательной рекомбинации наблюдалось для эпитаксиальных слоев твердого раствора $Pb_{1-x}Eu_x$ Te с $x \ge 0.8$ [4].

В данной работе с целью изучения зонной структуры твердого раствора $Pb_{1-x}Eu_xTe$ ($0 \le x \le 1$) изучались его оптические свойства. На основе измерений спектров пропускания и люминесценции эпитаксиальных слоев, а также литературных данных установлено, что при изменении состава происходит смена экстремумов в зоне проводимости ($L \to X$) и в валентной зоне ($L \to \Gamma$), и это является причиной подавления излучательной рекомбинации в области составов 0.2 < x < 0.8.

[¶] E-mail: pashkeev@sci.lebedev.ru

x	d, мкм	$E_g,$ $ m sB$ T=77~ m K	$k_{ m edge}, \Im { m B}$ $T = 80 { m K}$
0	2.6	0.213	0.23
0.032	2.65	0.34	0.35
0.044	2.45	0.38	0.41
0.063	2.24	0.44	0.46
0.11	2.61	0.54	0.56
0.18	2.55	0.68	0.69
0.23	4.33	—	0.78

Характеристики эпитаксиальных слоев твердого раствора Р
b_{1-x} Eu_x Te $(0 \le x \le 0.23)$

2. Методика и техника эксперимента

Эпитаксиальные слои $Pb_{1-x}Eu_xTe$ (0 < x < 0.32) были выращены методом молекулярно-лучевой эпитаксии на подложках (111)ВаF₂ при оптимизированных условиях [16]. Характеристики образцов приведены в таблице, в которой указаны состав твердого раствора x, толщина слоя d, значение ширины запрещенной зоны твердого раствора, полученное при 77 К из спектров ФЛ, и край поглощения k_{edge} при 80 K, полученный в работе [17] из спектров пропускания. Измерения спектров ФЛ проводились в диапазоне температур от 7.5 до 250 К. Образцы с размером около 3 × 3 мм крепились на медный хладопровод криостата Janis, охлаждаемый рефрижератором с замкнутым циклом. Возбуждение осуществлялось с помощью YLF-лазера с длиной волны излучения 1.053 мкм (~ 1.18 эВ), длительностью импульса 10 нс и частотой повторения 170 Гц. Так как Eg материала с ростом содержания Еи увеличивается, такая энергия лазера достаточна для возбуждения образцов с $x \approx 0.45$. Диаметр пятна, в которое фокусировалось лазерное излучение на поверхности образца, был ~ 200 мкм. Спектры анализировались с помощью решеточного (150 штр/мм) монохроматора ИКМ-731 и приемника ИК излучения на основе Ge: Au.

Толщина и состав эпитаксиальных слоев измерялись с помощью растрового электронного микроскопа Supra 50 VP с системой рентгеновского микроанализатора с энергетической дисперсией INCA Energy. Точность измерения толщины слоев составляла 0.05 мкм, а среднее отклонение от значения состава составляло 0.005.

3. Результаты измерений и их обсуждение

Из измерений ФЛ эпитаксиальных слоев твердого раствора $Pb_{1-x}Eu_xTe$ ($0 \le x \le 0.32$) было установлено, что интенсивность излучения падает с увеличением содержания Eu. На рис. 1 показана зависимость среднего значения интегральной интенсивности ФЛ от состава при 77.4 К. Интенсивность приведена в относительных

единицах, при этом величина интенсивности излучения, наблюдаемая для PbTe (x = 0), принята за единицу. Ошибка измерения рассчитывалась как среднее отклонение значений, полученных для разных образцов одного состава и с различных точек возбуждения одного образца. Как видно из рисунка, для составов x > 0.03 интенсивность начинает резко уменьшаться и для x = 0.11 падает более чем на порядок. В области составов $0.23 \le x \le 0.32$ излучательная рекомбинация не наблюдалась.

На рис. 2 в зависимости от состава показаны спектры ФЛ твердого раствора $Pb_{1-x}Eu_x$ Те $(0 \le x \le 0.11)$ при 77.4 К. Измерения для всех составов проводились при одинаковых условиях (интенсивность возбуждения в импульсе $I \approx 5 \cdot 10^5$ Вт/см² и энергетическое разрешение монохроматора 1 мэВ). Как видно из рисунка,

Рис. 1. Зависимость среднего значения интегральной интенсивности $\Phi \Pi$ эпитаксиальных слоев $Pb_{1-x}Eu_xTe$ ($0 \le x \le 0.23$) от состава *x* при 77.4 К.

Рис. 2. Зависимость спектров ФЛ эпитаксиальных слоев $Pb_{1-x}Eu_x$ Te ($0 \le x \le 0.11$) от состава x при 77.4 K и одина-ковом уровне возбуждения.

Физика и техника полупроводников, 2013, том 47, вып. 6

Рис. 3. Спектры ФЛ эпитаксиальных слоев твердого раствора $Pb_{1-x}Eu_xTe$ (x = 0, 0.032, 0.063) при T = 7.7, 77.4, 120 K и различном уровне возбуждения.

с увеличением содержания Еи в твердом растворе интенсивность линии излучения уменьшается, а ее форма изменяется. Для PbTe (x = 0) спектры излучения попадают в полосу поглощения воды. На рисунке приведен обработанный спектр, с убранными линиями поглощения. Видно, что его форма асимметрична с резким краем со стороны малых энергий. Такая асимметрия наблюдается при x < 0.06, и она уменьшается с ростом x. При x > 0.06 форма линии становится симметричной. Ширина линий излучения для всех составов приблизительно одинакова и составляет около 5 мэВ, что говорит о том, что излучение носит вынужденный характер $(k_0T = 6.8$ мэВ при 77.4 K).

Спектры излучения при межзонной излучательной рекомбинации состоят из линии спонтанного излучения и возникающей на ее фоне линии вынужденного излучения [11]. Форма линии спонтанного излучения для прямых зона-зонных переходов характеризуется резким длинноволновым краем и экспоненциально спадающим высокоэнергетическим хвостом. Линия вынужденного излучения располагается с длинноволновой стороны спектров спонтанного излучения и имеет более узкую симметричную форму. На рис. 3 представлены спектры ФЛ с различной интенсивностью возбуждения для трех составов твердого раство-

Физика и техника полупроводников, 2013, том 47, вып. 6

ра $Pb_{1-x}Eu_x$ Те (x = 0.032; 0.063) при температурах T = 7.7, 77.4, 120 К. Интенсивность возбуждения изменялась от $I \approx 10^5$ до $I \approx 10^6$ Вт/см².

При наименьшем уровне возбуждения с увеличением температуры ширина спектра на полувысоте увеличивается для всех составов. Так, для x = 0.032и 0.063 при температуре 7.7 К ширина спектра $\Delta E \approx 3$ мэВ ($k_0 T = 0.7$ мэВ), а при 120 К $\Delta E \approx 10$ мэВ $(k_0 T = 10 \text{ мэB})$. С увеличением интенсивности спектры уширяются и появляются линии вынужденного излучения. Для составов x = 0 и 0.032 вынужденное излучение возникает с низкоэнергетической стороны спектра спонтанного излучения. При этом с увеличением содержания Еи характерная асимметрия формы спектров излучения начинает меняться и спектры постепенно симметризуются. Как видно из рисунка, уже для x = 0.063 положение максимума линии излучения с увеличением уровня возбуждения не изменяется и форма спектра остается симметричной.

Наблюдаемое изменение интенсивности и формы спектров ФЛ твердого раствора $Pb_{1-x}Eu_x$ Те можно связать с изменением зонной структуры твердого раствора с увеличением содержания Еu, что приводит к уменьшению интенсивности излучательной рекомбинации. Для более детального представления изменений,

Рис. 4. Зависимость ширины запрещенной зоны при 77 К и края поглощения при 80 К твердого раствора Pb_{1-x}Eu_xTe от состава. Треугольниками, для сравнения, показаны положения линий излучения, полученные в работах [4,5] из измерений ФЛ при $T \leq 2$ К.

происходящих в зонной структуре твердого раствора Pb_{1-x}Eu_xTe, на рис. 4 в зависимости от состава показаны: точками — положения линий излучения для 0 ≤ x ≤ 0.18 при 77 К и кружочками — края поглощения для $0 \le x \le 1$ при 80 K [17]. Для наглядности кружочки на кривой $k_{edge}(x)$ для x > 0.1 соединены пунктирной линией. Как видно из рисунка, в области малых составов данные по ФЛ совпадают по энергии с положением края поглощения. Обе кривые имеют изгиб в области $x \approx 0.06$. Треугольниками показано положение линий излучения, полученное в работах [4] для составов $0.8 \le x \le 1$ при 2К и [5] для x = 1 при 1.7 К. Для EuTe в спектре излучения присутствуют две линии, расположенные ниже края поглощения (рис. 4). Первая линия в области энергий 1.5 эВ связывается с наличием дефектов. Ее положение с уменьшением содержания Еи не изменяется и при *x* < 0.98 она не наблюдается. Вторая линия излучения в области энергий 1.9 эВ связывается с образованием нижележащего состояния Х-долины зоны проводимости. Такие переходы по правилам отбора запрещены, но благодаря образованию магнитного полярона вследствие обменного взаимодействия между электронами зоны проводимости и локализованными электронами орбитали 4f иона Eu^{2+} , становятся разрешенными. С уменьшением содержания Еи эта линия смещается в сторону меньших энергий и имеет слабый изгиб при $x \approx 0.85$. Надо учесть, что обе линии ФЛ с ростом температуры сдвигаются в сторону больших энергий на 0.1 эВ при 80 К.

Таким образом, на основе литературных данных и полученных результатов предлагается следующая схема (рис. 5) изменения зонной структуры твердого раствора $Pb_{1-x}Eu_x$ Те для всей области составов $0 \le x \le 1$. Так как Те является общим элементом для всех со-

ставов, то для удобства при построении за основу была выбрана его 5*p*-орбиталь, формирующая валентную зону PbTe и участвующая в формировании валентной зоны EuTe. Ее положение по энергии было принято за нуль для всех составов. Потолок валентной зоны EuTe определяется сильно локализованными 4*f*-состояниями Eu, расположенными по энергии выше *p*-орбитали Te на ~ 0.1 эВ [12]. Зона проводимости PbTe определяется 6*p*-орбиталями Pb. А зона проводимости EuTe формируется резонансно расположенными 5*d*- и 6*s*-орбиталями Eu.

В РbTe ($E_g \approx 0.2$ эВ) оптические переходы происходят между точками L_6^+ и L_6^- зоны Бриллюэна. С добавлением Еu ширина запрещенной зоны твердого раствора увеличивается и наклон прямой на рис. 5, отражающей положение дна зоны проводимости до $x \approx 0.1$, равен наклону кривой $E_g(x)$ (рис. 4) до точки изгиба. При этом поглощение и излучение происходят примерно с одной и той же энергией.

Для составов с содержанием Eu, близким к единице (правая часть рис. 5), наблюдается более сложная картина. Поглощение и излучение происходит с участием разных по энергии состояний зоны проводимости, показанных на рис. 5 соответственно прямой и пунктирной линиями. Исходя из расчетов зонной структуры и вероятностей переходов в EuTe было получено [18], что поглощение происходит на более высокое энергетическое состояние, минимум которого расположен в точке Γ при антиферромагнитном порядке или в точке X при парамагнитном порядке, а излучение происходит из более низкого по энергии состояния в точке X для обоих магнитных порядков.

Наблюдаемая точка изгиба в зависимостях положения края поглощения и линии излучения от состава на рис. 4 для $x \approx 0.1$ указывает на момент смены положения энергетических состояний, формирующих запрещенную зону. Уменьшение интегральной интенсив-

Рис. 5. Схема изменения зонной структуры твердого раствора $Pb_{1-x}Eu_x$ Те от состава.

ности ФЛ и дальнейшее ее затухание с увеличением содержания Ец, позволяет предположить, что в первую очередь изменяется дно зоны проводимости $Pb_{1-x}Eu_xTe$, и при x > 0.1 происходит смена абсолютного минимума $(L \rightarrow X)$. В этом случае рассеяние неравновесных носителей заряда происходит в Х-долину и уменьшается квантовый выход излучения. А наблюдаемая люминесценция для x > 0.8 появляется вследствие образования магнитного полярона. Она имеет максимум интенсивности при $x \approx 0.9$ и уменьшается с уменьшением содержания Eu [4]. Следует отметить, что в зависимости положения линии излучения от состава при $x \approx 0.85$ тоже присутствует небольшой изгиб. Это позволяет предположить, что для x > 0.85 потолок валентной зоны в основном определяется *f*-состояниями Eu и оптические переходы происходят из точки Г зоны Бриллюэна.

Такая схема изменения зонной структуры твердого раствора $Pb_{1-x}Eu_x$ Те $(0 \le x \le 1)$ согласуется с результатами теоретической работы [19], в которой, исходя из первых принципов, исследовалось изменение зонной структуры для родственного материала $Pb_{1-x}Eu_x$ Se $(0 \le x \le 1)$. Желательно проведение подобного расчета и для твердого раствора $Pb_{1-x}Eu_x$ Te.

Представляет интерес также зависимость ширины запрещенной зоны твердого раствора $Pb_{1-x}Eu_x$ Те от температуры. Известно, что для бинарных полупроводников типа $A^{IV}B^{VI}$ из-за сильного спин-орбитального взаимодействия имеет место изначальная инверсия зон L_6^+ и L_6^- , что приводит к положительному коэффициенту dE_g/dT . Знак этого коэффициента можно изменить, принудительно осуществляя обратную инверсию зон. Это достигается путем перехода к тройным твердым растворам (например, изменяя состав PbSnTe, PbSnSe) или путем приложения высокого гидростатического давления [20].

В случае твердого раствора Pb_{1-x}Eu_xTe с увеличением содержания Еи коэффициент dE_g/dT , будучи положительным, сначала уменьшается по величине и для EuTe становится отрицательным [17]. Из рис. 6 видно, что для составов $0 \le x \le 0.11$ коэффициент dE_g/dT уменьшается от 0.47 мэВ/К для x = 0 до 0.27 мэВ/К для x = 0.11. Как и у обычных полупроводников, зависимости $E_{\sigma}(T)$ имеют достаточно широкую линейную область со стороны высоких температур и в них, в отличие от твердых растворов с высоким содержанием Еи $(0.8 \le x \le 1)$, особые точки, связанные с магнитным фазовым переходом [4,5], для приведенных температур измерения не наблюдались. Штрихпунктирная кривая на рисунке указывает начало линейности кривых и ограничивает область низких температур, при которых зависимость $E_g(T)$ нелинейна. Пунктирная кривая со стороны высоких температур соответствует одинаковой интегральной интенсивности ФЛ. Здесь также видно, что при увеличении содержания Еи излучательная рекомбинация быстрее затухает с температурой.

Таким образом, смена минимума в зоне проводимости при небольшом добавлении Еu приводит к заметному

Рис. 6. Зависимость ширины запрещенной зоны твердого раствора $Pb_{1-x}Eu_x$ Te ($0 \le x \le 0.11$) от температуры. Штрихпунктирная кривая ограничивает область линейности коэффициента dE_g/dT со стороны низких температур. Пунктирная кривая справа соответствует одинаковой интегральной интенсивности излучения.

уменьшению коэффициента dE_g/dT с последующей инверсией знака для EuTe. Коэффициент dE_g/dT для EuTe был определен из спектров поглощения при температурах 80 и 295 K, и он равен 0.19 мэВ/К [17]. Такая температурная зависимость обусловлена переходами между f-состояниями, частично гибридизованными с валентной зоной, в X-минимум зоны проводимости.

4. Заключение

Из измерений фотолюминесценции эпитаксиальных слоев твердого раствора $Pb_{1-x}Eu_x$ Te ($0 \le x \le 0.32$) было получено, что излучательная рекомбинация с увеличением содержания Eu падает, а форма спектров излучения симметризуется. Интенсивность излучения при x > 0.03 начинает резко уменьшаться и уже для состава $x \approx 0.1$ падает более чем на порядок. Для составов $0.2 < x \le 0.32$ люминесценция не обнаружена.

Наблюдаемые изменения и результаты, представленные в литературе, позволяют предположить, что в области составов $x \approx 0.1$ происходит смена абсолютного минимума $(L \to X)$ дна зоны проводимости $Pb_{1-x}Eu_x$ Те и рассеяние неравновесных носителей заряда происходит в X-долину. В области составов $x \approx 0.85$ изменяется максимум валентной зоны $(L \to \Gamma)$ и за счет образования магнитного полярона [5] снова наблюдается люминесценция [4].

Полученные зависимости ширины запрещенной зоны от температуры для составов $0 \le x \le 0.11$ имеют широкую линейную область со стороны высоких температур, с положительным коэффициентом dE_g/dT . С увеличением содержания Еu коэффициент уменьшается от 0.47 мэB/K для x = 0 до 0.27 мэB/K для x = 0.11. С увеличением содержания Еи интенсивность ФЛ с температурой падает быстрее. Для температур выше 7.5 К в зависимостях $E_g(T)$ особенностей, связанных с магнитными фазовыми переходами, не наблюдалось.

Работа поддержана программой фундаментальных исследований президиума РАН № 24 "Фундаментальные основы технологий наноструктур и наноматериалов".

Список литературы

- [1] D.L. Partin. IEEE J. Quant. Electron., QE-24, 1716 (1988).
- [2] A. Khiar, M. Rahim, M. Fill, F. Felder, H. Zogg, D. Cao, S. Kobayashi, T. Yokoyama, A. Ishida. J. Appl. Phys., 110, 023 101 (2011).
- [3] И.И. Засавицкий, А.В. Мазурин, Ю.Г. Селиванов, Г. Цогг, А.В. Юрушкин. Письма в ЖЭТФ, 87, 584 (2008).
- [4] H. Heredia, P.H. de Oliveira Rappl, P. Motisuke, A.L. Gazoto, F. Likawa, M.J.S.P. Brasil. Appl. Phys. Lett., 93, 031903 (2008).
- [5] W. Heiss, R. Kirchschlager, G. Springholz, Z. Chen, M. Debnath, Y. Oka. Phys. Rev. B, 70, 035 209 (2004).
- [6] M. Iida, T. Shimizu, H. Enomoto, H. Ozaki. Jpn. J. Appl. Phys., 32, 4449 (1993).
- [7] H. Krenn, W. Herbst, H. Pascher, Y. Ueta, G. Springholz, G. Bauer. Phys. Rev. B, 60, 8117 (1999).
- [8] R. Dornhaus, G. Nimtz, B. Schlicht. Springer Tracts in Mod. Phys. Series, 98 (1983).
- [9] R. Dalven. Sol. St. Phys., 28, 179 (1973).
- [10] G. Martinez, M. Shluter, M.L. Cohen. Phys. Rev. B, 11, 651 (1975).
- [11] Д.М. Гуреев, О.И. Даварашвили, И.И. Засавицкий, Б.Н. Мацонашвили, А.П. Шотов. ФТП, 9, 1902 (1975).
- [12] P. Wachter. In: Handbook on the Physics and Chemistry of Rare Eath, eds. K.A. Gschneider, L.R. Eyring (Noth Holland, Amsterdam, 1979) v. 2, p. 507.
- [13] S.J. Cho. Phys. Rev. B, 1, 4589 (1970).
- [14] J.O. Dimmock. IBM J. Res. Dev., 14, 301 (1970).
- [15] R. Akimoto, M. Kobayashi, T. Suzuki. J. Phys. Soc. Jpn., 63, 4616 (1994).
- [16] Ю.Г. Селиванов, Е.Г. Чижевский, В.П. Мартовицкий, А.В. Кнотько, И.И. Засавицкий. Неорг. матер., 46, 1183 (2010).
- [17] Д.А. Пашкеев, Ю.Г. Селиванов, Е.Г. Чижевский, Д.Б. Ставровский, И.И. Засавицкий. ФТП, **45**, 1014 (2011).
- [18] S. Mathi Jaya, W. Nolting. J. Phys. Condens. Matter, 9, 10439 (1997).
- [19] A. Gruneis, K. Hummer, M. Marsman, G. Kresse. Phys. Rev. B, 78, 165 103 (2008).
- [20] M. Schluter, G. Martinez, Marvin L. Cohen, Phys. Rev. B, 12, 650 (1975).

Редактор Т.А. Полянская

Role of intervalley scattering in radiative recombination of $Pb_{1-x}Eu_xTe$ ($0 \le x \le 1$) solid solution

D.A. Pashkeev, I.I. Zasavitskiy

Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia

Abstract From photoluminescence of $Pb_{1-x}Eu_xTe$ $(0 \le x \le 0.32)$ solid solution epilayers it was found that the luminescence intensity decreases with the Eu content increase and for $x \approx 0.1$ it already drops more than one order of magnitude. Luminescence did not observe for the composition of $0.2 < x \le 0.32$. It is explained by change of absolute conduction band minimum $(L \rightarrow X)$ at $x \approx 0.1$ that results in scattering of nonequilibrium electrons in X-valley and decreases the emission quantum efficiency. According to literature data the optical transitions for x > 0.85 also occur involving the X valley and the radiative transitions are due to formation of magnetic polaron. The temperature dependences of band gap energy were determined for $0 \le x \le 0.11$ compositions. They have a wide linear region with positive coefficient dE_g/dT that decrease with the Eu content increase and this coefficient becomes negative for EuTe.