Компенсация нелинейности сток-затворной вольт-амперной характеристики в полевых транзисторах с длиной затвора ~ 100 нм

© Е.А. Тарасова, С.В. Оболенский, С.В. Хазанова, Н.Н. Григорьева, О.Л. Голиков, А.Б. Иванов, А.С. Пузанов

Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

E-mail: tarasova@rf.unn.ru

Поступила в Редакцию 15 апреля 2020 г. В окончательной редакции 21 апреля 2020 г. Принята к публикации 21 апреля 2020 г.

> Выполнен анализ нелинейности сток-затворных вольт-амперных характеристик в классических транзисторах Шоттки и транзисторах с двумерным электронным газом на основе соединений AlGaAs/InGaAs/GaAs и InGaAs/GaAs. Проведен анализ влияния эффекта всплеска скорости носителей заряда в канале транзистора для различных профилей легирования исследуемых структур.

> Ключевые слова: транзисторы Шоттки и НЕМТ, сток-затворная ВАХ, эффект всплеска скорости носителей заряда.

DOI: 10.21883/FTP.2020.09.49841.35

1. Введение

В современной наноэлектронике широко используются полевые транзисторы с каналом из слоя узкозонного полупроводника, формирующего квантовую яму, в которой образуется двумерный электронный газ (НЕМТ). Используются как структуры на основе соединений AlGaAs/InGaAs/GaAs, InP/InGaAs/InP, GaAs/AlGaAs, InGaAs/GaAs, так и структуры на основе соединения GaN/AlGaN, в которых квантовая яма формируется за счет возникновения пьезоэлектрической поляризации на границах слоев [1,2]. Нелинейные искажения сигнала в усилителях на основе полевых транзисторов традиционно связывают с нелинейной сток-затворной вольт-амперной характеристикой (ВАХ) [3]. В данной работе проводится анализ нелинейности ВАХ полевых транзисторов с затвором Шоттки (ПТШ) на основе GaAs и *p*-НЕМТ на основе соединений AlGaAs/InGaAs/GaAs и InGaAs/GaAs. В настоящее время подобные соединения наиболее широко используются в производстве СВЧ НЕМТ. Особенностью транзисторов такого типа является то, что канал может состоять из нескольких слоев различной проводимости. Ранее авторами [4] детально изучались особенности физикотопологического моделирования данных структур, был предложен комплекс аналитических и численных моделей для расчета электрофизических параметров исследуемых приборов с малой погрешностью.

В работе [5] было изучено влияние различных профилей распределения легирующей примеси в канале классических транзисторов с затвором Шоттки (без квантовой ямы) на нелинейность сток-затворных вольтамперных характеристик. Рассматривалось равномерное распределение примесей в канале ПТШ и ступенчатое легирование, когда нижний слой легировался больше, чем верхний. Показано, что при равномерном распределении примесей, т.е. в первом случае, нелинейность сток-затворной ВАХ выше, чем в случае ступенчатого легирования (второй случай).

В современных НЕМТ, особенно с длинами канала ~ 100 нм, которые предназначены для работы на частотах 50—150 ГГц и выше, формирование транспорта электронов имеет целый ряд особенностей — квазибаллистический характер движения электронов вдоль канала, модуляция не только толщины, но и длины канала транзистора электрическим полем затвора, сильное влияние особенностей конструкции и технологии изготовления полупроводниковой гетероструктуры на нелинейные искажения усиливаемого сигнала. Данная работа посвящена моделированию указанных процессов и анализу их влияния на линейность сток-затворной характеристики.

2. Общие положения

Известно, что ток, протекающий в канале транзистора, зависит не только от концентрации электронов, но и от их скорости [6]. При реализации усиления в режиме "большого" сигнала, за счет изменения размеров области пространственного заряда затвора Шоттки (при $L_{g} < 100 \, {\rm HM}$) наблюдается модуляция длины канала L транзисторов в пределах от 150 до 300 нм (рис. 1). Причем с уменьшением длины затвора исследуемого транзистора становится более значительным соотношение максимального (L_3) и минимального (L_1) размеров области пространственного заряда в канале транзистора. Указанное отношение L₃/L₁ в короткоканальных приборах может составлять до 2-3 раз, другими словами, модуляция длины канала значительно влияет на эффекты, происходящие в канале как полевых транзисторов с затвором Шоттки, так и в НЕМТ. За счет квазибаллистических эффектов переноса электронов вдоль

	GaAs ПТШ	GaAs/InGaAs HEMT	AlGaAs/InGaAs/GaAs HEMT
Затвор Длина затвора Подзатворный слой	Au 100 нм GaAs	Аи 100 нм GaAs	Аи 100 нм Широкозонный AlGaAs
Канал	N_1 (GaAs)	δ -слой $_1$	δ -слой $_1$
	N ₂ (GaAs)	Квантовая яма InGaAs	Квантовая яма InGaAs
		δ -слой $_2$	δ -слой $_2$
Изолирующий слой канал-подложка Подложка	GaAs GaAs	GaAs GaAs	Технологическая сверхрешетка GaAs

Таблица 1. Параметры сопоставляемых транзисторов

Рис. 1. Модель исследуемого транзистора. В случае классического ПТШ предполагалось, что слои толщиной d и a состоят из GaAs с концентрацией примесей N_1 и N_2 соответственно, а в случае НЕМТ второй слой представлял собой квантовую яму, в первом слое был размещен δ -слой легирующей примеси. L_g — длина затвора, L_k — длина канала при соответствующих напряжениях на затворе U_g .

канала транзисторов средняя скорость носителей может в несколько раз меняться на каждом периоде колебаний усиливаемого сигнала. Все перечисленные факторы будут сильно сказываться на линейности сток-затворной ВАХ и искажениях сигнала. Кроме того, открытым оставался вопрос о влиянии различных полупроводниковых слоев, особенностей их легирования на нелинейность ВАХ исследуемых НЕМТ. Разработка методики, позволяющей проводить комплексную оценку влияния всех указанных эффектов на ВАХ НЕМТ, остается крайне актуальной.

3. Объекты исследования

В качестве основных объектов исследований были выбраны: полевой транзистор с затвором Шоттки, HEMT на основе соединений AlGaAs/InGaAs/GaAs, и GaAs/InGaAs. Параметры исследуемых структур приведены в табл. 1. Для обеих НЕМТ структур рассматривалось два варианта конструкции — с одним δ -слоем и с двумя, расположенными по обе стороны от квантовой ямы. При рабочих напряжениях в обоих типах транзисторов проводимость в δ -слое отсутствовала.

В работе проводилось исследование влияния всплеска скорости в канале транзисторов с затвором Шоттки с однородным легированием (в данном случае предполагалось что $N_1 = N_2$) и со ступенчатым легированием $(N_1 \neq N_2)$ на крутизну ВАХ. Полученная в работе методика в дальнейшем применялась для анализа стокзатворных ВАХ современных НЕМТ с прямоугольной ямой.

Математическая модель и методика расчетов

Впервые самосогласованное численное моделирование уравнений Шредингера и Пуассона для расчетов пространственного распределения носителей заряда в канале транзисторов с высокой подвижностью электронов было проведено в работе [7]. Добавление уравнений непрерывности электрического тока и потоков энергии образуют диффузионно-дрейфовую и квазигидродинамическую модели переноса носителей заряда в квантоворазмерных структурах.

В настоящее время указанные системы уравнений реализованы в промышленных системах автоматизированного проектирования (САПР) изделий микро- и наноэлектроники, например, COMSOL Semiconductors [8], TCAD Silvaco [9] и TCAD Sentaurus [10]. При очевидных достоинствах указанных пакетов программ существует и ряд недостатков, связанных с особенностями численного решения систем дифференциальных уравнений в частных производных [11], всегда являющегося компромиссом между точностью и скоростью решения [12], а также существующей связью между погрешностью задаваемых параметров модели и получаемым конечным результатом моделирования. Анализ показывает [13–15], что в нелинейном режиме, необходимом при расчете интермодуляционных искажений, для получения точности выходных параметров в пределах 15% необходимо определять наиболее критичные входные параметры с погрешностью не более 1%, остальные входные параметры можно определять с погрешностью не более 10%. Таким образом, для поисковых исследований оптимальным представляется следующий подход: расчет зонной диаграммы и распределение носителей заряда в канале транзистора с высокой подвижностью электронов осуществляется численно путем самосогласованного решения уравнений Шредингера и Пуассона; расчет всплеска скорости электронов в коротких структурах и дальнейший расчет стокзатворных вольт-амперных характеристик выполняются аналитически.

4.1. Численная модель расчета параметров НЕМТ-структур

В работе проводился расчет зонных диаграмм исследуемых структур и профилей распределения электронов путем решения одномерного уравнения Пуассона и совместного решения уравнения Пуассона и Шредингера в TCAD Silvaco. Кроме того, осуществлены расчеты зонных диаграмм и энергетических состояний в окрестности квантовой ямы с помощью оригинального численного метода. В основе данных численных расчетов лежит решение согласованных уравнений Шредингера и Пуассона, реализованное с помощью конечно-разностной схемы с учетом напряжения, приложенного в направлении роста структуры [16,17]. Хорошая корреляция результатов независимо проведенных расчетов (рис. 2) свидетельствует о корректности полученных данных. Одним из преимуществ оригинального численного расчета является возможность расчета зонных диаграмм

Рис. 2. Расчет зонной диаграммы и профиля распределения электронов структуры InGaAs/GaAs: пунктирная кривая — расчет с использованием уравнения Пуассона и Шредингера TCAD Silvaco; сплошная кривая — оригинальная модель.

и квантовой концентрации электронов в структурах с достаточно сложными профилями потенциала, в том числе с высоким уровнем неоднородного легирования, что проблематично сделать в САПР, предназначенных для расчета параметров типовых транзисторов. Одновременно с этим, данная модель численного расчета позволяет проследить тенденцию в изменении профиля концентрации при небольшом шаге по напряжению, приложенному к затвору. Кроме того, методика позволяет более плавное варьирование всех параметров, заложенных в исходной модели.

Предполагается, что расхождение максимумов концентрации носителей заряда в квантовой яме, полученных в разных расчетных моделях, также может быть связано с менее точной оценкой значения фонового легирования исследуемых структур, заложенной в модели расчета TCAD Silvaco.

На основе результатов рассчитанных зонных диаграмм и энергетического спектра в работе получены профили концентрации носителей в канале AlGaAs/InGaAs/GaAs и InGaAs/GaAs HEMT при различных напряжениях на затворе в открытом состоянии и вблизи отсечки. По полученным данным проведен аналитический расчет сток-затворных вольт-амперных характеристик, проанализирована крутизна полученных BAX.

4.2. Аналитическая модель и методика расчетов

Аналитически были рассчитаны вольт-амперные характеристики в классических GaAs-транзисторах с затвором Шоттки согласно модели, описанной в [3-5]. Рассматривались случаи однородного (для случая $N_1 = N_2$) и ступенчатого (для различных значений N_1 и N_2) профиля распределения примесей. Расчет проводился как с учетом, так и без учета зависимости скорости носителей заряда в канале транзистора. Модель включала в себя выражения для расчета скорости носителей заряда в канале транзистора и выражения для расчета плотности тока в канале транзистора.

Как указывалось выше, в коротких структурах средняя дрейфовая скорость носителей заряда может оказаться в несколько раз больше, чем их стационарная скорость, т.е. может быть реализован эффект всплеска скорости [6]. Зависимость максимально возможной дрейфовой скорости электронов в GaAs канале транзистора от длины канала считалась известной [6], в работе использована ее оригинальная аппроксимация (формула (1)).

Для аналитической оценки всплеска дрейфовой скорости в InGaAs канале исследуемых НЕМТ-структур использованы ранее полученные данные о зависимости времен релаксации энергии и импульса носителей заряда [18]. Таким образом, зависимость скорости носителей заряда в InGaAs от длины канала рассчитывалась по

Толщина	ТолщинаТолщина спейсерного слояспейсерного(в долях от толщиныслоя, нмслоя квантовой ямы)	$\Delta I_{c} = \frac{I_{c} - I_{c_{0}}}{I_{c_{0}}} \ 100\%$	
спейсерного слоя, нм		GaAs/InGaAs HEMT	AlGaAs/InGaAs/GaAs HEMT
2 4 6	0.13 0.25 0.4	-4% -15% -20%	$-10\% \\ -18\% \\ -25\%$

Таблица 2. Зависимость максимального тока стока в исследуемых НЕМТ от толщины спейсерного слоя

Примечание. I_{c0} — максимальное значение тока стока при толщине спейсерного слоя, равной 1 нм; I_c — максимальное значение тока стока при заданной толщине спейсерного слоя

формуле (2):

$$V_s = 8.5 \cdot e^{-5L} \cdot 10^7 \,\mathrm{cm/c},\tag{1}$$

$$V_s = 7.5 \cdot e^{-0.03L} \cdot 10^7 \,\mathrm{cm/c},\tag{2}$$

где V_s — скорость электрона в канале транзистора, L — длина канала с учетом ширины области пространственного заряда.

Описанные в работе методики расчета профилей потенциала и энергетических спектров позволили выявить влияние расстояния между δ -Si легированным слоем и квантовой ямой (толщина спейсерного слоя), а также степени и характера легирования на нелинейность вольт-амперных характеристик НЕМТ.

5. Результаты расчетов

На первом этапе работы проводился анализ нелинейности характеристик ПТШ и проводилось сравнение результатов расчетов по предложенному в данной работе подходу с известными ранее данными [3,5] для верификации оригинальной методики расчета. На рис. 3 приведен расчет крутизны ВАХ для полевых транзисторов с затвором Шоттки как для однородного легирования, так и для ступенчатого с учетом и без учета эффекта всплеска дрейфовой скорости. Показано, что спад крутизны ВАХ сильнее выражен для транзисторов с однородным легированием. Кроме того, для каналов с обоими типами распределения примесей учет всплеска скорости носителей заряда в канале приводит к более резкому спаду крутизны характеристики, следовательно, данный эффект дает существенный вклад в нелинейные искажения усилителей на основе транзисторов с длинами затвора < 100 нм и требует обязательного учета при проектировании современных приборов. Также был проведен расчет сток-затворной ВАХ полевого транзистора с затвором Шоттки с инвертированным легированием (в случае распределения примесей $N_2 > N_1$). Получено, что выходные характеристики подобного типа транзисторов будут иметь максимальную линейность, как с учетом, так и без учета эффекта всплеска скорости носителей заряда в канале.

Полученные в результате расчетов данные о возможности реализации линейной сток-затворной ВАХ ПТШ

Рис. 3. Относительное изменение крутизны ПТШ для линейного легирования и легирования со ступенчатым профилем с учетом (сплошная кривая) и без учета (пунктирная кривая) зависимости скорости носителей заряда от длины канала.

за счет нелинейного (ступенчатого) профиля легирования коррелируют с данными [3,5], где исследовалась такая же задача, но без учета модуляции длины канала транзистора полем затвора. Это позволяет применить предложенную методику для анализа процессов в HEMT.

На втором этапе работы с использованием оригинальной верифицированной методики расчетов был проведен анализ зависимости сток-затворной BAX транзисторов на основе соединений AlGaAs/InGaAs и GaAs/InGaAs от толщины спейсерного слоя (расстояние между квантовой ямой и δ -слоем) с использованием данных о распределении концентрации носителей заряда в квантовой яме исследуемых HEMT, полученных с помощью численных расчетов. Результаты расчетов представлены в табл. 2.

Получено, что максимальный ток стока I_c и крутизна ВАХ в обоих типах структур будет иметь наибольшее значение при самой малой толщине спейсерного слоя. При этом транзисторы на гетероструктуре AlGaAs/InGaAs/GaAs оказываются более чувствительны к положению δ -слоя относительно квантовой ямы. При достижении толщины спейсерного слоя порядка поло-

Рис. 4. Расчет профиля распределения электронов для InGaAs-структуры с одним δ-легирующим слоем. На вставке — расчет зонной диаграммы структуры для различных напряжений на затворе.

вины толщины квантовой ямы (5-7 нм) выходная мощность исследуемых полевых транзисторов уменьшится в 1.5-2 раза. Таким образом, толщину спейсерного слоя проектируемых приборов необходимо подбирать с учетом особенностей зависимости подвижности и дрейфовой скорости носителей заряда в канале, которые в свою очередь существенно зависят от взаимного положения δ -легированного слоя и квантовой ямы [19].

Далее была проведена сравнительная оценка влияния характера легирования на крутизну сток-затворной вольт-амперной характеристики. С этой целью были исследованы структуры с двумя б-легирующими слоями, расположенными по обе стороны от квантовой ямы. В работе рассматривались как структуры с одинаковой степенью легирования δ-слоев, так и случай инвертированного легирования, когда слой, находящийся ниже квантовой ямы (б-слой₂), легирован больше. Расчеты зонной диаграммы и профиля распределения электронов исследуемой структуры с одним б-слоем приведены на рис. 4, с двумя δ -слоями — на рис. 5. Данные численных расчетов показывают, что двустороннее б-легирование приводит к тому, что профиль концентрации носителей проводящего канала с ростом напряжения становится более симметричным по сравнению с односторонним легированием. Указанный эффект приводит к изменению интегральной концентрации носителей заряда в канале и к увеличению крутизны ВАХ транзистора на исследуемой структуре на 10%. Также рассматривался случай, когда δ-слой₂ легировался в несколько раз больше, чем слой, находящийся над квантовой ямой (δ-слой₁), после чего анализировалась зависимость стокзатворной характеристики от положения *δ*-слоя₁ относительно квантовой ямы. По результатам расчетов можно сделать вывод, что инвертированное легирование δ -слоев позволяет получить линейную сток-затворную ВАХ транзистора без учета эффекта всплеска скорости и уменьшить влияние указанного эффекта на нелинейные искажения.

Затем была аналитически рассчитана сток-затворная ВАХ НЕМТ структуры (рис. 6) со ступенчатым "инвертированным" легированием. Предполагалось, что слой в канале, прилегающий к буферу (N_2), легирован сильнее (в ~ 10 раз), чем слой канала, прилегающий к затвору транзистора. Подобное распределение примесей в подзатворной области транзистора может полностью компенсировать нелинейность ВАХ, возникающую из-за влияния всплеска скорости носителей заряда в канале

Рис. 5. Расчет профиля распределения электронов для InGaAs-структуры с двумя *б*-легирующими слоями. На встав-ке — расчет зонной диаграммы структуры для различных напряжений на затворе.

Рис. 6. Компенсация нелинейности ВАХ за счет изменения профиля легирования в НЕМТ: *1* — расчет ВАХ с учетом изменения всплеска скорости в канале транзистора, *2* — расчет ВАХ для инвертированного легирования без учета всплеска скорости в канале транзистора, *3* — расчет ВАХ для классического ступенчатого легирования.

Физика и техника полупроводников, 2020, том 54, вып. 9

транзистора. Сплошной линией на рис. 6 показана рассчитанная сток-затворная ВАХ и ее крутизна с учетом изменения скорости на 60% (величина изменения скорости носителей заряда в канале НЕМТ показана на вставке к рис. 6).

6. Заключение

В работе предложена теоретическая методика анализа влияния параметров гетероструктур на линейность стокзатворных характеристик полевых транзисторов с затвором Шоттки и НЕМТ, которая позволяет оценить степень влияния как профиля распределения примесей, так и эффекта всплеска скорости носителей заряда в канале НЕМТ на линейность сток-затворных ВАХ. С одной стороны, данный подход позволяет оценивать влияние каждого из приведенных эффектов на линейность ВАХ, а с другой — оптимизировать конструкцию НЕМТ с целью компенсации нелинейности ВАХ, вызванной всплеском скорости в канале.

Таким образом, можно заключить, что при проектировании усилителей на основе современных НЕМТ с длинами каналов 100–200 нм необходимо учитывать не только поперечные изменения концентрации носителей заряда в канале, но и продольные, связанные с эффектом всплеска скорости в канале транзистора. Компенсацию всплеска скорости предлагается проводить с помощью увеличения легирования слоя канала, прилегающего к буферу в полевых транзисторах с затвором Шоттки, и с помощью добавления второго легирующего δ -слоя в перспективных НЕМТ на основе GaAs.

Финансирование работы

Работа поддержана грантом Министерства науки и высшего образования РФ, полученным в рамках ФЦП "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы". Уникальный идентификатор проекта RFMEFI62020X0003. Номер соглашения 075-15-2020-529.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.Г. Тихомиров, В.Е. Земляков, В.В. Волков, Я.М. Парнес, В.Н. Вьюгинов, В.В. Лундин, А.В. Сахаров, Е.Е. Заварин, А.Ф. Цацульников, Н.А. Черкашин, М.Н. Мизеров, В.М. Устинов. ФТП, 50 (2), 245 (2016).
- [2] Е.А. Тарасова, С.В. Оболенский, О.Е. Галкин, А.В. Хананова, А.Б. Макаров. ФТП, 51 (11), 1543 (2017).
- [3] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984).

- [4] Е. А. Тарасова, Д.С. Демидова, С.В. Оболенский и др. ФТП, 46 (12), 1587 (2012).
- [5] R.E. Williams, D.W. Shaw. IEEE Trans. Electron Dev., ED-25, 600 (1978).
- [6] Ю. Пожела. Физика быстродействующих транзисторов (Вильнюс, Мокслас, 1989).
- [7] K. Yokoyama, K. Hess. Phys. Rev. B, 33 (8), 5595 (1986).
- [8] Электронный pecypc https://www.comsol.com/
- [9] Электронный ресурс https://www.silvaco.com/
- [10] Электронный pecype https://www.synopsys.com/
- [11] D. Vasileska, S.M. Goodnick, G. Klimeck. Computational electronics. Semiclassical and quantum device modeling and simulation (N.Y., CPC Press Taylor & Francis Group).
- [12] Р. Хокни, Дж. Иствуд. Численное моделирование методом частиц (М., Мир, 1987).
- [13] Ю.В. Королев, И.А. Ющенко. В сб.: Диэлектрики и проводники (Киев, Высш. шк., 1978) вып. 14, с. 102.
- [14] Д. Калахан. Методы машинного расчета электронных схем (М., Мир, 1970).
- [15] Ю.Р. Носов, К.О. Петросянц, В.А. Шилин. Математические модели элементов интегральной электроники (М., Сов. радио, 1976).
- [16] С.В. Хазанова, В.Е. Дегтярев, С.В. Тихов, Н.В. Байдусь. ФТП, 49 (1), 53 (2015).
- [17] С.В. Хазанова, В.Е. Дегтярев, Н.Н. Григорьева, О.Л. Голиков. Физические и физико-химические основы ионной имплантации (РИУ ННГУ им. Н.И. Лобачевского, 2018) с. 33.
- [18] И.Ю. Забавичев, Е.С. Оболенская, А.А. Потехин, А.С. Пузанов, С.В. Оболенский, В.А. Козлов. ФТП, 51 (11), 1489 (2017).
- [19] М. Шур. Современные приборы на основе арсенида галлия (М., Мир, 1991).

Редактор А.Н. Смирнов

The compensation of nonlinearity drain-gate I-V characteristics in field effect transistors with a gate length ~ 100 nanometers

E.A. Tarasova, S.V. Obolensky, C.V. Khazanova, N.N. Grigoryeva, O.L. Golikov, A.B. Ivanov

Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia

Abstract The paper is devoted to the analysis of the nonlinearity of the drain-gate I-V characteristics in classical Schottky transistors and transistors with two-dimensional electron gas based on AlGaAs/InGaAs /GaAs and InGaAs/GaAs compounds. The effect of the increase of the velocity of charge carriers in the transistor channel for various doping profiles of the structures was analyzed.