# Фундаментальные спектры оптических функций бромида индия в области 2–30 эВ при 4.2 К

© В.В. Соболев<sup>¶</sup>, В.Вал. Соболев<sup>\*</sup>, Д.В. Анисимов

Удмуртский государственный университет,

426034 Ижевск, Россия

\* Ижевский государственный технический университет,

426063 Ижевск, Россия

(Получена 6 августа 2012 г. Принята к печати 13 августа 2012 г.)

Спектры комплексов оптических фундаментальных функций кристалла бромида индия определены в области 0-30 эВ при 4.2 К для поляризаций Е || а и Е || с. Расчеты выполнены с помощью экспериментальных спектров отражения R(E) и нескольких пакетов компьютерных программ. Установлены их основные особенности.

#### 1. Введение

Бинарное полупроводниковое соединение бромид индия InBr относится к группе сильно анизотропных слоистых материалов  $A^{III}B^{VII}$  [1], кристаллизуется в орторомбической решетке с симметрией  $D_{2h}^{17}$  с оптическими осями **с** и **а** в плоскости скола, гигроскопично. Монобромид индия считается перспективным для прикладных применений в оптоэлектронике.

Длинноволновые края собственного поглощения расположены для 10 К при ~ 2.20 (**E** || **c**) и 2.30 эВ (**E** || **a**), а поглощение в максимумах длинноволновых экситонных полос  $\alpha_{\text{max}} > 10^4 \text{ см}^{-1}$  (**E** || **c**) и ~ 3 · 10<sup>3</sup> см<sup>-1</sup> (**E** || **a**), т. е. сильно поляризовано.

В работах [2,3] монокристаллы выращены методом Бриджмена. На сколах при 4.2 К для поляризаций **E** || **a** и **E** || **c** в области 2–30 эВ измерены спектры отражения с использованием синхротронного излучения. Данные обеих работ весьма сходны по структуре, но существенно различаются по интенсивности: кривые R(E) [3] гораздо выше, чем в [2] для областей E < 2 эВ и E > 8 эВ; сплошное отражение в области E > 18 эВ равно ~ 0.05 и уменьшается с ростом энергии [2], ~ 0.17 в области 18-27 эВ и даже слегка далее растет [3].

Следует отметить, что максимумы R(E) в работе [2] выражены существенно лучше, чем в [3]. Это свидетельствует о лучшем качестве образцов работы [2]. Отмеченные особенностями расчетных кривых оптических функций работы [3] заметно противоречат данным, известным для многих других кристаллов [1,4]. В основном они обусловлены большими завышениями кривых R(E)InBr для обоих поляризаций в областях прозрачности и больших энергий E > 8 эВ в работе [3].

Цель данной работы состоит в получении наиболее корректных спектров комплексов оптических функций InBr и установлении их основных особенностей, т.е. в получении новой информации об оптических свойствах и электронной структуре кристалла бромида индия в широкой области энергии собственного поглощения.

## 2. Методика расчетов

Общепринято, что наиболее полные и детальные сведения об электронном строении кристалла представляют спектры 15 фундаментальных оптических функций [4]: спектры коэффициентов отражения (R) и поглощения ( $\alpha$ ); показателей преломления (n) и поглощения (k); мнимой ( $\varepsilon_2$ ) и реальной ( $\varepsilon_1$ ) частей диэлектрической проницаемости  $\varepsilon$ ; реальных ( $\operatorname{Re} \varepsilon^{-1}$ ,  $\operatorname{Re}(1+\varepsilon)^{-1}$ ) и мнимых  $(-Im\varepsilon^{-1}, -Im(1+\varepsilon)^{-1})$  частей обратных диэлектрический функций  $\varepsilon^{-1}$  и  $(1+\varepsilon)^{-1}$ ; интегральной функции связанной плотности состояний I<sub>sh</sub>, которая с точностью до универсального множителя равна  $E^2 \varepsilon_2$ при постоянстве вероятностей переходов; эффективного количества валентных электронов  $n_{\text{eff}}(E)$ , участвующих в переходах до данной энергии Е, которые определяются четырьмя способами — по спектрам  $\varepsilon_2$ , k,  $-Im\varepsilon^{-1}$ ,  $-Im(1+\varepsilon)^{-1}$ ; эффективной диэлектричекой проницаемости  $\varepsilon_{\rm eff}$  и других.

Обычно известен только экспериментальный спектр отражения в широкой области энергии. На его основе рассчитывают спектры остальных функций с помощью пакетов компьютерных программ, использующих интегральные соотношения Крамерса—Кронига и аналитические формулы связи между оптическими функциями. Примененные нами методы расчетов изложены в [4,5] и обсуждены в работах [5–8].

### 3. Результаты расчетов и их обсуждение

Нами предварительно был проведен детальный анализ экспериментальных данных R(E) работ [2,3]. Он показал, что спектры [2] наиболее корректны, а данные работы [3] сильно завышены в области больших энергий. Об этом свидетельствуют сильные завышения расчетных спектров работы [3] в области энергии E > 8 эВ. Поэтому естественно было использовать в наших расчетах спектры R(E) работы [2].

Экспериментальные кривые R(E) InBr содержат 23 и 19 максимумов и ступенек для  $E \parallel c$  и  $E \parallel a$  соответ-

<sup>¶</sup> E-mail: sobolev@uni.udm.ru

| N₂       | R      |        | $\mathcal{E}_1$ |             | $\varepsilon_2$ |       | п      |             | k      |        |
|----------|--------|--------|-----------------|-------------|-----------------|-------|--------|-------------|--------|--------|
| пика     | E    a | E    c | E    a          | Е∥с         | E    a          | Е∥с   | E    a | E    c      | E    a | E    c |
| 1        | 1.6    | _      | 1.6             | -           | 1.6             | -     | 1.58   | -           | 1.9    | -      |
| 2        | 2.08   | —      | 2.05            | —           | 2.15            | —     | 2.05   | —           | 2.17   | —      |
| 3        | —      | 2.38   | _               | 2.37        | _               | 2.38  | _      | 2.37        | _      | 2.39   |
| 4        | 2.6    | 2.6    | 2.5             | 2.6         | 2.5             | 2.6   | 2.6    | 2.6         | 2.5    | 2.6    |
| 5        | 3.26   | 3.21   | 3.22            | 3.17        | 3.25            | 3.21  | 3.24   | 3.19        | 3.26   | 3.22   |
| 6        | -      | 3.4    | -               | 3.3         | -               | 3.4   | -      | 3.3         | -      | 3.4    |
| /        | 3.53   | 3.57   | 3.46            | 3.49        | 3.53            | 3.57  | 3.51   | 3.52        | 3.55   | 3.58   |
| 8        | - 2.04 | 3.7    | 3./3            | 3.0<br>2.04 | - 2.01          | 3.75  | 2 91   | 3.0<br>2.06 | - 4.01 | 3.76   |
| 9<br>10  | 5.94   | 4.22   | 4.00            | 5.94        | 5.91            | 4.12  | 5.81   | 5.90        | 4.01   | 4.24   |
| 10       | _      | 4.22   | _               | _           | _               | 4.15  | _      | _           | _      | 4.24   |
| 11       | 49     | 49     | 485             | 48          | 49              | 495   | 4.85   | 4.8         | 49     | 495    |
| 12       | _      | 4 98   | -               | 497         | _               | 4 99  | -      | 4 98        | -      | 4 99   |
| 13       | 5.59   | 5.33   | 5.24            | 5.29        | 5 4 9           | 5.33  | 5.38   | 5.29        | 5.56   | 5.34   |
| 15       | 5.7    | 5.62   | 5.69            | 5.46        | _               | 5.57  | _      | 5.51        | _      | 5.69   |
| 16       | _      | _      | 6.01            | 5.98        | 6.01            | _     | 6.01   | 6.07        | 6.01   | _      |
| 17       | 6.22   | 6.39   | _               | _           | _               | 6.28  | _      | _           | _      | 6.39   |
| 18       | _      | _      | _               | 6.92        | _               | _     | _      | 6.7         | _      | 6.8    |
| 19       | _      | _      | _               | -           | _               | _     | _      | -           | _      | _      |
| 20       | —      | —      | —               | 7.71        | —               | —     | —      | 7.5         | —      | —      |
| 21       | —      | 7.86   | 8.03            | -           | —               | 7.83  | —      | 7.81        | —      | 7.86   |
| 22       | 8.2    | 8.18   | _               | 8.12        | 8.2             | 8.18  | 8.1    | 8.12        | 8.19   | 8.188  |
| 23       | —      | _      | 8.62            | 8.58        | _               | 8.81  | 8.78   | 8.69        | —      | —      |
| 24       | —      | 9.04   | —               | —           | 9               | —     | —      | —           | —      | 9      |
| 25       | 9.38   | 9.2    | —               | 9.45        | —               | 9.5   | _      | 9.45        | 9.26   | —      |
| 26       | 9.86   | 9.9    | 10.05           | 9.95        | 10.04           | 9.9   | 9.95   | -           | 9.78   |        |
| 27       | —      | —      | —               | -           | —               | —     | —      | _           | _      | —      |
| 28       | -      | -      | -               | -           | -               | -     | -      | -           | -      | —      |
| 29       | 10.8   | 10.63  | 10.64           | 10.6        | 10.77           | 10.64 | 10.77  | 10.7        | 10.6   |        |
| 30<br>31 | 11.8   | —      |                 | - 11.60     | 11.85           | —     | 11.8   | 11.48       | 11.8   | _      |
| 31       | 11.0   | 1236   | 11.04           | 11.09       | 11.85           | 12.28 | 11.0   | 11.40       | 11.0   | 1236   |
| 32       | _      | 12.50  | 12.55           | _           | 12.86           | 12.20 | 1265   |             | _      | 12.50  |
| 34       | 13.04  | _      | _               | _           | -               | _     | -      | _           | 13.04  | _      |
| 35       |        | _      | _               | _           | _               | _     | _      | _           |        | 13.86  |
| 36       | _      | _      | _               | _           | _               | _     | _      | _           | _      | _      |
| 37       | 14.7   | 14.7   | 14.65           | 14.74       | 14.77           | _     | 14.44  | 14.74       | 14.77  | 14.74  |
| 38       | _      | _      | _               | _           | _               | _     | _      | _           | _      | _      |
| 39       | _      | -      | —               | —           | —               | —     | —      | —           | —      | —      |
| 40       | 19.1   | 19     | 19.02           | 18.92       | 19.04           | 19    | 19.03  | 18.92       | 19.1   | 19     |
| 41       | —      | -      | 19.52           | 19.44       | -               | 19.56 | -      | 19.44       | -      | 19.56  |
| 42       | 19.8   | 19.6   | 19.8            | 19.83       | 19.66           | -     | 19.61  | 19.6        | 19.72  | —      |
| 43       | 20.73  | 20.67  | 20.65           | 20.67       | 20.73           | 20.77 | 20.64  | 20.6        | 20.72  | 20.77  |
| 44       | —      | —      | —               | 21.67       | —               | —     | 21.47  | —           | 21.5   | 21.72  |

Энергии (эВ) максимумов и ступенек (в скобках) спектров оптических функций кристалла InBr

ственно (см. таблицу). Их аналогии наблюдаются в спектрах остальных расчетных функций со смещениями на  $\Delta E \approx \pm (0.04 - 0.2)$  эВ (рис. 1–3). Для поляризации Е || с кривая  $\varepsilon_2(E)$  начинается с очень интенсивного узкого пика № 3 экситонного разрешенного типа с квантовым числом n = 1, за которым следуют две группы узких интенсивных пиков в области 3–7 эВ, существенно более слабые максимумы в областях 7–10, 10–13 эВ и узкий дублет № 32, 33 с расщеплением  $\Delta E \approx 0.56$  эВ.

Для второй поляризации **E** || **a** длинноволновое краевое поглощение  $\varepsilon_2(E)$  начинается со слабых и широких полос № 1, 2, за которыми следует несколько групп полос, сильно поляризованных по положению или интенсивности, а также узкий дублет № 32, 34 с расщеплением  $\Delta E \approx 0.62$  эВ.

Коэффициент поглощения  $\alpha(E)$  при **E** || **c** растет с  $\sim 4 \cdot 10^5$  (No 3) до  $15 \cdot 10^5$  (No 15),  $12 \cdot 10^5$  (No 19) и  $20 \cdot 10^5$  см<sup>-1</sup> (No 32, 33) и немного меньше для вто-

| (П | родолжение |
|----|------------|

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                          | N₂       | α       |        | $\varepsilon_2 E^2$ |           | $-\mathrm{Im}\varepsilon^{-1}$ |        | $-\mathrm{Im}(1+\varepsilon)^{-1}$ |         | σ      |           |
|---------------------------------------------------------------------------------|----------|---------|--------|---------------------|-----------|--------------------------------|--------|------------------------------------|---------|--------|-----------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | пика     | E    a  | Е∥с    | E    a              | E    c    | E    a                         | Е∥с    | E    a                             | Е∥с     | E    a | E    c    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 1        | _       | -      | _                   | —         | _                              | _      | -                                  | _       | _      | —         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 2        | —       | —      | —                   | —         | -                              | —      | —                                  | —       | 2.19   | —         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 3        | 2.29    | 2.39   | 2.25                | 2.38      | 2.29                           | 2.39   | 2.26                               | 2.39    | -      | 2.38      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 4        | (2.5)   | (2.5)  | (2.6)               | (2.5)     | (2.7)                          | (2.7)  | (2.5)                              | (2.5)   | (2.6)  | (2.6)     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 5        | 3.27    | 3.22   | 3.26                | 3.21      | -                              | 3.23   | 3.29                               | 3.24    | 3.26   | 3.21      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 6        | -       | (3.4)  | -                   | (3.4)     | 3.31                           | 3.47   | —                                  | 3.40    | -      | (3.4)     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | /        | 3.58    | 3.60   | 3.55                | 3.58      | - 2 77                         | (2.7)  | -                                  | (27)    | 3.53   | 3.57      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | 8        | - 4.02  | 3./8   | -                   | 3.78      | 3.//                           | (3.7)  | 3./3                               | (3.7)   | - 2.01 | 3.74      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 9        | 4.02    | 4.27   | 3.90                | 4.22      | -                              | 5.91   | -                                  | 5.91    | 5.91   | —<br>4 15 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 10       | 4.10    | 4.27   | (4.2)               | 4.22      | -                              | 4.52   | 4.50                               |         | _      | 4.15      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 11       | - 4.94  |        | (4.9)               | 4.95      | 4.41                           | (4.8)  | _                                  | (4.40   | (40)   | - 4.94    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 12       |         | 4.95   | (4.2)               | 5.02      | 5.05                           | 5.01   | 5.03                               | 5.00    | ()     | 4.94      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 13       | 5 56    | 5 34   | 549                 | 5 3 3     | -                              | 5.01   | -                                  | 5 4 4 1 | 549    | 5 3 3     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 15       | 5.64    | 5.72   | -                   | 5.66      | _                              | -      | _                                  | _       | _      | 5.62      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 16       | 6.13    | _      | 6.05                | -         | 6.05                           | 5.93   | (6.1)                              | 5.94    | 6.01   | _         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 17       | _       | 6.39   | _                   | 6.35      | _                              | _      | (00-)                              | _       | _      | 6.28      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 18       | _       | (6.8)  | _                   | (6.8)     | _                              | (6.8)  | _                                  | 6.78    | _      | 6.82      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 19       | _       | _      | _                   | _         | _                              | 7.03   | 6.94                               | 7.01    | _      | _         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 20       | _       | _      | _                   | _         | 7.35                           | (7.5)  | _                                  | (7.5)   | _      | 7.27      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 21       | _       | 7.86   | _                   | 7.83      | _                              | 7.99   | _                                  | 7.96    | _      | 7.83      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 22       | 8.19    | 8.24   | (8.2)               | 8.24      | 8.19                           | _      | 8.19                               | _       | (8.2)  | 8.18      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 23       | _       | _      | —                   | _         | _                              | 8.45   | _                                  | 8.37    | —      | 8.81      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 24       | _       | 9.06   | 9.05                | 8.93      | -                              | _      | _                                  | _       | 9.05   | _         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 25       | 9.32    | —      | _                   | _         | -                              | 9.37   | —                                  | 9.29    | -      | 9.45      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 26       | (9.9)   | 9.86   | (9.9)               | 9.64      | (9.8)                          | 9.92   | 9.83                               | 9.90    | 9.89   | 9.95      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 27       | _       | (10.0) | _                   | 10.04     | 10.31                          | 10.31  | 10.07                              | 10.11   | -      | _         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 28       | _       | —      | _                   | _         | -                              | _      | _                                  | _       | -      | —         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 29       | 10.99   | 10.89  | 10.88               | 10.88     | -                              | —      | —                                  | 10.96   | 10.83  | 10.77     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 30       | —       | —      | —                   | —         | -                              | 11.17  | 11.27                              | —       | -      | —         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 31       | 11.80   | 11.87  | 11.85               | 11.69     | 11.66                          | (11.8) | 11.85                              | 11.87   | 11.85  | (11.7)    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 32       | _       | 12.36  | _                   | 12.36     | 12.12                          | 12.56  | _                                  | 12.55   | -      | 12.28     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 33       | -       | 12.87  | 12.94               | —         | -                              | -      | -                                  | 12.96   | 12.86  | —         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 34       | 13.04   | —      | —                   | —         | -                              | 13.14  | 13.36                              | -       | -      | —         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 35       | —       | (12.0) | —                   | - (14.00) | 13./1                          | 13.59  | —                                  | 13.87   | _      | -         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 30       | (147)   | (13.9) | -                   | (14.00)   | -                              | 14.08  | (147)                              | _       | 1477   | 13.98     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 3/<br>20 | (14.7)  | 14.95  | 14.87               | 14.95     | 15.2                           | 15.2   | (14.7)                             | -       | 14.//  | 14.95     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 20<br>20 | (15.4)  | —      | (15.5)              | 15.10     | 15.2                           | 13.2   | <br>15.40                          | 13.10   | _      | —         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | 39<br>40 | 10.10   | 10.00  | 10.0/               | 19.00     | 10.7                           | 10 1   | 10.40                              | 19.00   | 19.04  | 10.00     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 40<br>41 | - 17.10 | 17.00  | 17.04               | 17.00     | 17.21                          | - 17.1 |                                    | 17.00   | 17.04  | 17.00     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 42       | 1972    | 19.56  | 1965                | 19.56     | 20.01                          | 19.81  | 19.80                              | 19.80   | 1965   | 19.56     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | 43       | 20.64   | 20.67  | 20.64               | 20.67     | 20.01                          | 20.77  | 20.64                              | 20.72   | 20.72  | 20.67     |
|                                                                                 | 44       | -       |        | -                   |           |                                |        | - 20.04                            |         |        |           |
| 45   22.16   -   22.16   22.15   22.16   22.15   22.16   22.15   22.16   (22.1) | 45       | 22.16   | _      | 22.16               | 22.15     | 22.16                          | 22.15  | 22.16                              | 22.15   | 22.16  | (22.1)    |
| 46                                                                              | 46       | _       | _      | _                   | -         | _                              | _      | _                                  | _       | _      | _         |

рой поляризации. Экспериментальные данные для  $\alpha(E)$  в работе [9] для области интенсивного поглощения сильно занижены из-за слишком больших оптических плотностей  $\alpha d$  и толстого образца: используется только образец очень малой площади и толщиной 22 мкм, вместо необходимого тонкого с  $d \approx 0.2$  мкм. Поэтому

они не могут быть применены для проверки наших расчетов. Кривая n при  $\mathbf{E} \parallel \mathbf{c}$  выше, чем n при  $\mathbf{E} \parallel \mathbf{a}$  в области прозрачности в согласии с результатами измерений работы [9]. Расчетные значения n(E) для обеих поляризаций в области больших энергий немного меньше единицы. С увеличением энергии E > 22 эВ

кривые понижаются до сравнительно малых величин в соответствии с теоретически ожидаемыми их общими особенностями.

Все структуры спектров обоих комплексов оптических функций, кроме объемных  $-Im\varepsilon^{-1}$  и поверхностных  $-Im(1+\varepsilon)^{-1}$  характеристических потерь энергии электронов, обусловлены межзонными и экситонными полосами переходов. Отсутствие теоретических расчетов зон и  $\varepsilon_2(E)$  для кристалла InBr не позволяет пока обсудить конкретную природу установленных поляризованных 36 полос переходов.

Дублетная полоса в области 19-20 эВ, наблюдаемая во всех оптических функциях, обусловлена переходами, связанными с *d*-зонами индия, спин-орбитально расщепленными на  $\Delta E \approx 0.56$  (**E** || **c**), 0.62 эВ (**E** || **a**).



**Рис. 1.** Спектры  $\varepsilon_1$  для **Е** || **a** (кривые *I*) и **Е** || **c** (*3*),  $\varepsilon_2$  для **Е** || **a** (*2*) и **Е** || **c** (*4*) кристалла InBr в областях 0–30 (*a*), 0–6 (*b*), 18–22 eV (*c*) при 4.2 K.

Физика и техника полупроводников, 2013, том 47, вып. 6



Рис. 2. Спектры  $\alpha$  для Е || **a** (1) и Е || **c** (3),  $E^2 \varepsilon_3$  для Е || **a** (2) и Е || **c** (4) кристалла InBr в областях 0–30 (*a*), 1–7 (*b*), 18–22 eV (*c*) при 4.2 K.

Спектры потерь энергий электронов содержат очень интенсивные и широкие полосы, связанные с возбуждением объемных и поверхностных плазмонов. Они не имеют аналогов в других оптических функциях и потому уверенно выделяются на кривых  $-\text{Im}\varepsilon^{-1}$  и  $-\text{Im}(1+\varepsilon)^{-1}$ . В случае сильно анизотропных слоистых соединений, как например графита и халькогенидов молибдена, наблюдаются две группы полос плазмонов при возбуждении коллективов верхней группы валентных электронов с  $E_{pv1} \approx 7.1$  эВ и всего коллектива валентных электронов с  $E_{pv2} \approx 26.3$  эВ для  $\mathbf{E} \perp \mathbf{c}$  [8].

У бромида индия также выделены полосы двух типов плазмонов в спектрах  $-Im\varepsilon^{-1}$  (№ 38, 39) для поляризаций **E** || **c** и **E** || **a** (см. таблицу). Энергии  $E_{pv1}$  почти одинаковы для  $-Im\varepsilon^{-1}$  и  $-Im(1+\varepsilon)^{-1}$  при поляризации **E** || **c** и различаются на  $\Delta E \approx 0.4$  эВ для **E** || **a**. Энергии возбуждения всего коллектива валентных электронов



Рис. 3. Спектры (*a*): *п* для  $\mathbf{E} \parallel \mathbf{a}$  (*I*) и  $\mathbf{E} \parallel \mathbf{c}$  (*3*), *k* для  $\mathbf{E} \parallel \mathbf{a}$  (*2*) и  $\mathbf{E} \parallel \mathbf{c}$  (*4*); (*a*)  $-\text{Im}\varepsilon^{-1}$  для  $\mathbf{E} \parallel \mathbf{a}$  (*I*) и  $\mathbf{E} \parallel \mathbf{c}$  (*3*); (*b*):  $-\text{Im}(1 + \varepsilon)^{-1}$  для  $\mathbf{E} \parallel \mathbf{a}$  (*2*) и  $\mathbf{E} \parallel \mathbf{c}$  (*4*) кристалла InBr в области 0–30 eV при 4.2 K.

ІпВг различаются на  $\Delta E \approx 0.3$  (**E** || **a**) и 1.1 эВ (**E** || **c**). Кривые  $n_{\rm eff}(E)$  InBr, рассчитанные по спектрам  $\varepsilon_2$ , k,  $-{\rm Im}\varepsilon^{-1}$  и  $-{\rm Im}(1+\varepsilon)^{-1}$ , с ростом энергии монотонно повышаются с неболышими скачками при  $\sim 6, 5, 7$ и 20 эВ, связанными с участием в переходах различных групп валентных электронов; при этом участие d-электронов сравнительно мало. На четыре формульные единицы элементарной ячейки InBr приходится 40 p-валентных электронов. Их участие в  $n_{\rm eff}(E)$  при 30 эВ почти полностью исчерпывается и достигает  $n_{\rm eff} \simeq 38$ (**E** || **c**) и 32 (**E** || **a**) в расчетах по  $\varepsilon_2$  и в  $\sim 2.5$  раза меньше в расчетах по  $-{\rm Im}\varepsilon^{-1}$ .

В работе [3] на основе измеренных спектров R(E)также в области 2–30 эВ при 4.2 К были рассчитаны спектры  $\varepsilon_1$ ,  $\varepsilon_2$ , n, k,  $-\text{Im}\varepsilon^{-1}$ ,  $n_{\text{eff}}$ . Отметим основные их особенности, противоречащие ожидаемым общим теоретическим характеристикам:

1) кривые  $-Im\varepsilon^{-1}$  для **Е** || **с** и **Е** || **а** почти совпадают и состоят из одной широкой полосы в области 5–30 эВ с максимумом при ~ 24 эВ и при слишком слабом проявлении полос переходов;

2) в области больших энергий E > 15 эВ значения  $\varepsilon_2$ и k слишком велики, причем n > 1, а в области E > 25 эВ  $\varepsilon_2$ , k, n сильно возрастают;

3) кривые  $n_{\rm eff}$  в области E > 20 эВ сильно занижены.

Все эти противоречивые особенности расчетных спектров оптических функций InBr работы [3] обусловлены очень сильным завышением экспериментальных кривых R(E) в области прозрачности E < 2 эВ и больших энергий E > 15 эВ, а также, видимо, несовершенствами примененной методики расчетов.

#### 4. Заключение

Итак, в данном сообщении впервые определены наиболее корректные спектры полных комплексов оптических фундаментальных функций слоистого полупроводника бромида индия для поляризаций  $\mathbf{E} \parallel \mathbf{c}, \mathbf{E} \parallel \mathbf{a}$ при 4.2 К в области 0–30 эВ. Установлены их основные особенности, две группы полос объемных и поверхностных плазмонов.

Полученные результаты позволяют существенно глубже и детальнее анализировать оптические свойства и электронную структуру сильно анизотропного полупроводника InBr в широкой области энергии собственного поглощения.

#### Список литературы

- [1] В.В. Соболев. Зоны и экситоны галогенидов металлов (Кишенев, Штиинца, 1987).
- [2] K. Nakamura, Y. Saski, M. Watanabe, M. Fujita. Physica Scripta, 35, 557 (1987).
- [3] Н.И. Колинько, О.В. Бовчира, М. Пясецки. Физика низких температур, 27, 210 (2001).
- [4] В.В. Соболев, В.В. Немошкаленко. Методы вычислительной физики в теории твердого тела. Электронная структура полупроводников (Киев, Наук. думка, 1988).
- [5] A.I. Kalugin, V.V. Sobolev. Phys. Rev. B 71, 115 112 (2005).
- [6] V.Val. Sobolev, V.V. Sobolev. Semicond. Semimet., 79, 201 (2004).
- [7] В.В. Соболев, А.И. Калугин, В.Вал. Соболев, С.Г. Исхакова. ФТП, 42, 777 (2008).
- [8] А.Н. Тимошкин, В.Вал. Соболев, В.В. Соболев. ФТТ, **42**, 37 (2000).
- [9] M.I. Gelten, P. Hoenderdos. J. Phys. Chem. Sol., 35, 653 (1974).

Редактор Т.А. Полянская

# Fundamental spectra of the optical functions of indium bromide in the energy range 0 to 30 eV at 4.2 K

V.V. Sobolev, V.Val. Sobolev\*, D.V. Anisimov

Udmurt State University, 426034 Izhevsk, Russia \* Izhevsk State Technical University, 4266063 Izhevsk, Russia

**Abstract** Spectra of the sets of optical fundamental functions of indium bromide were determined in the range 0 to 30 eV at 4.2 K for polarizations  $\mathbf{E} \parallel \mathbf{c}$  and  $\mathbf{E} \parallel \mathbf{a}$ . The calculations were performed with the experimental reflection spectra R(E) and several packets of computer programs. Their main peculiarities were obtained.