Энергетические состояния иона Cr²⁺ в кристаллах ZnSe

© Ю.А. Ницук¶

Одесский национальный университет им. И.И. Мечникова, 65082 Одесса, Украина

(Получена 16 июля 2012 г. Принята к печати 28 августа 2012 г.)

Исследованы монокристаллы ZnSe: Cr, полученные методом диффузионного легирования. Исследованы спектры оптической плотности в области энергий 0.4-3 эВ. По величине смещения края поглощения определена концентрация хрома в исследуемых кристаллах. Рассчитаны энергетические состояния иона Cr²⁺ в кристаллах ZnSe. Идентифицирована природа оптических переходов, определяющих оптические свойства монокристаллов ZnSe: Cr в видимой и ИК областях спектра. Эффективное возбуждение ИК люминесценции кристаллов ZnSe: Cr осуществляется светом из области собственного поглощения ионов Cr²⁺.

1. Введение

Кристаллы ZnSe, легированные хромом, получили широкое применение в качестве активных сред лазеров, излучающих в области 1.9-3 мкм [1]. Излучение в этой области обусловлено внутрицентровыми излучательными переходами между нижним возбужденным ${}^{5}E(D)$ и основным состоянием ${}^{5}T_{2}(D)$ иона Cr^{2+} . В связи с этим большинство имеющихся исследований, посвященных влиянию примеси хрома на оптические свойства кристаллов селенида цинка, представлены исследованиями инфракрасного (ИК) диапазона. Имеющиеся исследования оптического поглощения кристаллов ZnSe:Cr не дают полной информации о природе оптических переходов, ответственных за поглощение в видимой и ближней ИК областях спектра [2,3]. В то же время имеющиеся расчеты [4] свидетельствуют о широком спектре энергетических состояний иона Cr²⁺ в кристаллах селенида цинка.

В данной работе исследована и идентифицирована структура спектров оптического поглощения кристаллов ZnSe: Сr в видимой и ИК областях спектра. По величине смещения края поглощения определена максимальная концентрация примеси хрома. Рассчитаны энергетические состояния иона Cr^{2+} в кристаллах селенида цинка. Показана возможность возбуждения ИК люминесценции светом из области собственного поглощения иона Cr^{2+} .

Цель данной работы заключается в идентификации энергетических состояний иона Cr²⁺ в кристаллах селенида цинка.

2. Методика эксперимента

Исследуемые образцы были получены методом диффузионного легирования хромом исходно чистых монокристаллов ZnSe. Нелегированные кристаллы получены методом свободного роста на подложке монокристаллического ZnSe, ориентированной в плоскости (111). Преимуществом диффузионного легирования является возможность получать заданные концентрации примеси и профиля легирования. Подробное описание методики легирования и результаты исследований диффузионного профиля примеси Cr приведены в работе [3].

Спектры оптической плотности и люминесценции измерялись при помощи дифракционного монохроматора МДР-6 с дифракционными решетками 1200, 600 и 325 штр/мм. Первая из решеток использовалась для анализа спектров в интервале энергий фотонов 3-1.55 эВ, вторая — в интервале 1.55-0.6 эВ, а третья — в интервале 0.6-0.4 эВ. В качестве регистратора светового потока в видимой области спектра использовался фотоумножитель ФЭУ-100, в ИК области использовался фоторезистор ФР-1П, работающий в режиме регистрации по переменному току. Возбуждение люминесценции осуществлялось светодиодами Edison Opto Corporation с энергией квантов в максимуме излучения 3.1, 2.69 и 2.25 эВ, работающими в импульсном режиме. Спектры оптической плотности измерялись при температурах T = 77 и 300 К. Спектры фотолюминесценции измерялись при температуре $T = 300 \, \text{K}.$

Анализ спектров оптической плотности в видимой и ближней ИК области спектра

Спектры оптической плотности нелегированных кристаллов ZnSe при 300 К характеризуются краем поглощения с энергией 2.68 эВ (рис. 1, кривая *I*). В области 2.6–2.66 эВ наблюдается полоса поглощения, обусловленная экситонами, испытывающими неупругое экситон–экситонное взаимодействие [5]. В области 0.40–2.6 эВ никаких особенностей спектров поглощения нелегированных кристаллов не обнаружено.

Легирование кристаллов хромом приводит к смещению края поглощения в сторону меньших энергий (рис. 1, кривые 2-4). Это смещение увеличивается с ростом температуры отжига. Изменение ширины запрещенной зоны (в мэВ) в зависимости от концентрации

[¶] E-mail: nitsuk@onu.edu.ua

вводимых примесей определяется в работе [6] соотношением

$$\Delta E_g = 2 \cdot 10^5 \left(\frac{3}{\pi}\right)^{1/3} \frac{eN^{1/3}}{4\pi\varepsilon_0\varepsilon_s},\tag{1}$$

где e — заряд электрона, N — концентрация примесей в см⁻³, $\varepsilon_s = 8.66$ — статическая диэлектрическая

Рис. 1. Спектры оптической плотности кристаллов ZnSe (1) и ZnSe: Cr образцов 3 (2), 6 (3) и 7 (4).

Рис. 2. Спектры оптической плотности в видимой и ближней ИК областях спектра кристаллов ZnSe : Cr. Образец 2 (1), 3 (2) и 4 (3). $T_{\text{изм}} = 77 \text{ K.}$

Физика и техника полупроводников, 2013, том 47, вып. 6

Рис. 3. Спектры оптической плотности образца 2 при $T_{\text{изм}} = 77 \ (1)$ и 300 К (2).

проницаемость селенида цинка. По величине смещения ширины запрещенной зоны рассчитывались концентрации хрома в исследуемых кристаллах (см. табл. 1). Максимальная концентрация хрома составила 1020 см⁻³ в кристаллах, отожженных при 1270 К.

В видимой и ближней ИК области спектры оптической плотности кристаллов ZnSe: Сг при T = 77 К характеризуются серией слабо разрешимых линий (рис. 2). Поглощение света в этой области увеличивается с ростом концентрации хрома. В спектре поглощения слабо легированных кристаллов ZnSe: Сг, полученных при 1020 К, выделяются четырнадцать линий поглощения: 1.58, 1.67, 1.74, 1.85, 1.92, 1.97, 2.04, 2.14, 2.22, 2.31, 2.40, 2.49, 2.55 и 2.60 эВ (рис. 2, кривая 1). При увеличении степени легирования положение этих линий не изменялось (рис. 2, кривые 2, 3). Исследования оптической плотности в температурном диапазоне 77–300 К показа-

Таблица 1. Оптические характеристики кристаллов ZnSe:Cr в области края поглощения

№ образца	Тип кристалла	<i>Eg</i> , эВ	ΔE_g , мэВ	<i>N</i> , см ⁻³
1	ZnSe исхолный	2.68	_	_
2	ZnSe:Cr, отжиг 1020 К	2.67	10	$3\cdot 10^{16}$
3	ZnSe: Cr, отжиг 1070 К	2.64	40	$2\cdot 10^{18}$
4	ZnSe: Cr, отжиг 1120 К	2.62	60	$6\cdot 10^{18}$
5	ZnSe: Cr, отжиг 1170 К	2.60	80	10 ¹⁹
6	ZnSe: Cr, отжиг 1220 К	2.59	90	$2\cdot 10^{19}$
7	ZnSe: Cr, отжиг 1270 К	2.50	180	10 ²⁰

N⁰	Поглощение	Перехол	$E_{\text{calc}},$	E_{calc} [4],
перехода	$E_{\text{expt}}, \Im \mathbf{B}$	перелод	эВ	эВ
1	_	${}^{5}T_{2}(D) \rightarrow {}^{1}E(G)$	3.0	2.85
2	_	${}^{5}T_{2}(D) \rightarrow {}^{1}T_{2}(D)$	2.93	_
3	_	${}^{5}T_{2}(D) \rightarrow {}^{3}E(D)$	2.92	2.62
4	_	${}^5T_2(D) \rightarrow {}^1T_2(G)$	2.80	2.56
5	_	${}^5T_2(D) \rightarrow {}^3T_1(G)$	2.62	2.8
6	2.6	${}^{5}T_{2}(D) \rightarrow {}^{1}A_{2}(I)$	2.60	_
7	2.55	${}^{5}T_{2}(D) \rightarrow {}^{1}T_{1}(G)$	2.52	_
8	2.49	${}^5T_2(D) \rightarrow {}^3T_2(D)$	2.50	_
9	_	${}^{5}T_{2}(D) \rightarrow {}^{3}A_{1}(G)$	2.48	2.75
10	2.41	${}^5T_2(D) \rightarrow {}^1T_2(I)$	2.44	2.18
11	_	${}^{5}T_{2}(D) \rightarrow {}^{1}A_{1}(G)$	2.33	_
12	2.31	${}^{5}T_{2}(D) \rightarrow {}^{1}E(I)$	2.29	_
13	2.22	${}^5T_2(D) \rightarrow {}^3T_1(F)$	2.22	2.52
14	2.14	${}^{5}T_{2}(D) \rightarrow {}^{1}T_{2}(I)$	_	2.16
15	2.04	${}^{5}T_{2}(D) \rightarrow {}^{3}E(G)$	2.04	_
16	1.97	${}^{5}T_{2}(D) \rightarrow {}^{3}A_{2}(F)$	2.02	2.44
17	1.92	${}^{5}T_{2}(D) \rightarrow {}^{1}T_{2}(I)$	1.98	2.16
18	1.85	${}^5T_2(D) \rightarrow {}^3T_2(G)$	1.85	_
19	_	${}^5T_2(D) \rightarrow {}^3T_1(P)$	1.8	2.22
20	1.74	${}^{5}T_{2}(D) \rightarrow {}^{3}E(H)$	1.77	2.01
21	1.67	${}^5T_2(D) \rightarrow {}^3T_2(F)$	1.66	2.41
22	_	${}^{5}T_{2}(D) \rightarrow {}^{1}T_{1}(I)$	1.65	2.1
23	1.58	${}^5T_2(D) \rightarrow {}^3T_1(H)$	1.56	1.81
24	1.19	${}^5T_2(D) \rightarrow {}^3T_2(H)$	1.22	1.62
25	—	${}^{5}T_{2}(D) \rightarrow {}^{1}A_{1}(I)$	1.16	1.21
26	1.06	${}^5T_2(D) \rightarrow {}^3T_1(H)$	1.0	1.24
27	0.72	${}^{5}T_{r}(D) \rightarrow {}^{5}F(D)$	0.72	0.68

Таблица 2. Оптические переходы в пределах иона Cr²⁺

ли, что положение этих линий оставалось неизменным (рис. 3). Таким образом, указанные линии поглощения обусловлены внутрицентровыми переходами. В табл. 2 приведены энергии оптических переходов в пределах иона Cr²⁺ и их идентификация. Эта таблица построена на основе наших экспериментальных результатов и расчетов энергетических состояний иона Cr²⁺ в ZnSe, выполненных по диаграммам Танабе-Сугано [7]. Для расчетов были использованы параметры кристаллического поля $\Delta = 5550 \,\mathrm{cm}^{-1}$ и $B = 550 \,\mathrm{cm}^{-1}$, полученные в работе [8]. Как видно, имеет место хорошее совпадение экспериментальных и рассчитанных результатов. Полученные энергии оптических переходов хорошо согласуются с результатами расчетов энергетических состояний хрома [4], которые приведены в последней колонке таблицы.

Исследование поглощения и люминесценции в средней ИК области

В средней ИК области спектры оптической плотности кристаллов ZnSe: Сг характеризуются полосами

поглощения на 0.72, 1.06 и 1.19 эВ (рис. 4). Оптическая плотность кристаллов возрастала с ростом концентрации хрома, а положение спектральных полос не менялось с изменением температуры от 77 до 300 К. Согласно расчетам (см. табл. 2), первая линия поглощения обусловлена внутрицентровыми переходами ${}^{5}T_{2}(D) \rightarrow {}^{5}E(D)$, линия поглощения на 1.06 эВ — переходами ${}^{5}T_{2}(D) \rightarrow {}^{3}T_{1}(H)$, а линия поглощения на 1.19 эВ связывается [4] с переходами ${}^{5}T_{2}(D) \rightarrow {}^{3}T_{2}(H)$, происходящими в пределах иона Cr^{2+} .

Следует отметить, что по мере увеличения степени легирования кристаллов наблюдалось размытие полос поглощения. Аналогичное размытие структуры линий имеет место в спектрах поглощения в видимой области спектра. Очевидно, это связано с проявлением межпримесного взаимодействия ионов Cr^{2+} .

Исследования люминесценции в средней ИК области выявили широкую полосу излучения ${}^{5}E(D) \rightarrow {}^{5}T_{2}(D)$ с максимумом на 0.67 эВ (рис. 5) при T = 300 К. Интенсивность данной полосы излучения возрастала с увеличением концентрации хрома от $2 \cdot 10^{18}$ до $6 \cdot 10^{18}$ см⁻³ (рис. 5, кривые I, 2). При дальнейшем увеличении концентрации от 10^{19} до 10^{20} см⁻³ наблюдается спад интенсивности излучения (рис. 5, кривые 3-5), что может быть объяснено концентрационным тушением люминесценции. В [9] основной причиной концентрационного тушения называют присутствие атомов хрома в виде оптически не активной металлической фазы. Следует отметить, что положение полосы излучения на 0.67 эВ оставалось неизменным при изменении концентрации хрома. По мере увеличения концентрации

Рис. 4. Спектры оптической плотности кристаллов ZnSe: Сr в средней ИК области. Образец 3 (1), 4 (2) и 5 (3). $T_{exp} = 77$ K.

Рис. 5. Спектры ИК фотолюминесценции кристаллов ZnSe: Cr. Образец 3 (1), 4 (2), 5 (3), 6 (4) и 7 (5). $E_g = 2.25$ эВ.

хрома в спектре излучения также выделялась дополнительная полоса в области 0.5-0.6 эВ, которая может быть обусловлена ян-теллеровским расщеплением уровня ${}^{5}T_{2}(D)$.

Максимальная интенсивность излучения достигалась при возбуждении светодиодом с энергией квантов 2.25 эВ. Это свидетельствует о том, что зона-зонное возбуждение ИК люминесценции кристаллов ZnSe: Сг является малоэффективным. Вместе с тем при изменении энергии квантов возбуждающего света положение максимума полосы излучения не менялось.

5. Заключение

Проведенные исследования позволяют сделать следующие выводы.

1. По сдвигу края поглощения определены концентрации хрома в исследуемых кристаллах. Максимальная концентрация примеси хрома в кристаллах ZnSe:Cr составила 10²⁰ см⁻³.

2. Рассчитаны энергетические состояния иона Cr^{2+} в кристаллах ZnSe. Идентифицирована природа линий поглощения кристаллов ZnSe : Cr в видимой и ИК областях спектра.

3. Эффективное возбуждение ИК люминесценции ZnSe: Cr осуществляется светом из области собственного поглощения ионов Cr²⁺.

Список литературы

- V.V. Fedorov, S.B. Mirov, A. Gallian, D.V. Badikov, M.P. Frolov, Yu.V. Korostelin, V.I. Kozlovsky, A.I. Landman, Yu.P. Podmar'kov, V.A. Akimov, A.A. Voronov. IEEE J. Quant. Electron., 42 (9), 907 (2006).
- [2] L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.F. Krupke. IEEE J.Quant. Electron., 32, 885 (1996).
- [3] Ю.Ф. Ваксман, В.В. Павлов, Ю.А. Ницук, Ю.Н. Пуртов, А.С. Насибов, П.В. Шапкин. ФТП, 39 (4), 401 (2005).
- [4] A. Zunger. Sol. St. Phys., **39**, 276 (1986).
- [5] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977) с. 220.
- [6] Ю.Ф. Ваксман, Ю.А. Ницук, Ю.Н. Пуртов, П.В. Шапкин. ФТП, 35 (8), 920 (2001).
- [7] Дж. Хьюи. *Неорганическая химия* (М., Химия, 1987)
 с. 625. [Пер. с англ.: James E. Huheey. *Inorganic chemistry* (N.Y., Harper and Row, 1983)].
- [8] E.M. Wray, J.W. Allen. J. Phys. C: Sol. St. Phys., 4, 512 (1971).
- [9] N. Vivet, J.L. Doualan, M. Morales, M. Levalois. J. Luminesc., 130, 1449 (2010).

Редактор Т.А. Полянская

Energy states of Cr^{2+} ion in the ZnSe crystals

Yu.A. Nitsuk

Mechnikov National University, 65082 Odessa, Ukraine

Abstract ZnSe: Cr single crystals obtained by diffusion doping are investigated. The spectra of optical density in the energy range 0.4-3 eV are investigated. On absorption edge shift of investigated crystals the iron concentration is calculated. The energy states of Cr^{2+} ion in the ZnSe crystals are calculated. Nature of optical transitions determining optical properties of ZnSe: Cr single crystals in the visible and IR-region of spectrum is identified.

The effective excitation of ZnSe: Cr crystals IR-luminescence is carried out by the light from the own absorption range of $\rm Cr^{2+}$ ions.