05

Влияние магнитного поля удлиненного соленоида на деформирование металлических кумулятивных струй

© С.В. Федоров

Московский государственный технический университет им. Н.Э. Баумана, 105005 Москва, Россия e-mail: sergfed-64@mail.ru

Поступило в Редакцию 5 декабря 2019 г. В окончательной редакции 20 февраля 2020 г. Принято к публикации 20 февраля 2020 г.

> Рассмотрено инерционное удлинение металлической кумулятивной струи в магнитном поле удлиненного соленоида. Целью воздействия магнитного поля на кумулятивную струю является замедление развития пластической неустойчивости струи с увеличением ее предельного удлинения и пробивной способности. С использованием ряда упрощающих допущений получено аналитическое описание электромагнитных процессов в участке струи при его движении в полости соленоида и после выхода из нее. Рассчитаны индукционный нагрев участка струи и напряженное состояние в нем при действии электромагнитных сил применительно к условиям проводившихся ранее экспериментов с воздействием магнитного поля соленоидов на кумулятивные струи. Полученные результаты используются для обоснования гипотезы о возможной причине большого расхождения в экспериментальных данных разных авторов по приросту пробивного действия кумулятивных зарядов.

> Ключевые слова: кумулятивный заряд, кумулятивная струя, пробивное действие, пластическая неустойчивость, магнитное поле, соленоид, индукционный нагрев.

DOI: 10.21883/JTF.2020.10.49800.388-19

Введение

Кумулятивные струи (КС), формируемые тонкими металлическими оболочками осесимметричной формы при их обжатии продуктами детонации заряда взрывчатого вещества, обладают высокой скоростью и способны пробивать преграды значительной толщины [1–4]. При формировании КС из медных конических облицовок скорость их головной части может составлять до 10 km/s, а глубина пробития ими стальной преграды достигает 10 диаметров кумулятивного заряда (КЗ) в случае прецизионной технологии его изготовления [5,6].

Скорость различных участков КС возрастает от "хвоста" струи к ее "голове". Вследствие наличия указанного градиента скорости сформировавшаяся КС в процессе своего движения сначала деформируется с сохранением сплошности и увеличением длины. Однако впоследствии происходит распад КС в осевом направлении на множество отдельных элементов, которые уже не деформируются и движутся в дальнейшем как абсолютно твердые тела до момента взаимодействия с преградой [7]. В соответствии с гидродинамической теорией проникания пробивное действие КС определяется ее длиной и плотностью материала [5]. Поэтому предельная толщина преграды, которую может пробить КС, зависит от суммарной длины тех безградиентных элементов, на которые она разделилась [8,9].

1. Распад кумулятивных струй

Характер разделения КС на отдельные элементы и степень ее удлинения до момента разделения зависят от физико-механических свойств материала кумулятивной облицовки. При использовании облицовок из металлов с относительно невысокими пластическими свойствами, например стальных, осевой распад формируемых ими КС происходит квазихрупким образом со свойственной ему ломаной формой поверхностей разделения элементов, ориентированных часто наклонно по отношению к оси струи (рис. 1, a) [10]. Сами элементы распавшейся КС при квазихрупком разрушении также часто имеют неправильную компактную либо слабо вытянутую вдоль оси струи форму. Квазихрупкое разрушение реализуется

Рис. 1. Рентгенограммы распада КС по квазихрупкому (*a*) и пластическому (*b*) механизмам.

на достаточно ранних стадиях растяжения КС, так что ее удлинение на момент разрушения относительно невелико, как невелико вследствие этого и пробивное действие струи.

Существенно более высокое предельное удлинение имеют КС, сформированные с использованием облицовок из высокопластичных металлов. К числу последних относится медь, наиболее часто применяемая для изготовления кумулятивных облицовок, так как наряду с высокими пластическими свойствами обладает также еще и достаточно высокой плотностью. Распад на отдельные элементы КС из высокопластичных металлов может быть охарактеризован, как пластический [11,12]. Ему свойственны следующие основные особенности. На некоторой стадии инерционного удлинения КС начинается развитие пластической неустойчивости струи, реализующееся в форме появления на струе многочисленных "шеек". В местах шейкообразования происходит локализация деформаций в струе с ускоренным уменьшением радиуса "шеек" вплоть до нулевого значения, в результате чего и происходит разделение КС на отдельные элементы. Элементы распавшейся пластическим образом КС имеют правильную вытянутую вдоль оси струи веретенообразную форму с заостренными передним и задним краями (рис. 1, b) [10]. Коэффициент предельного удлинения участков медных КС, характеризующий отношение длины участка струи в момент его разделения на отдельные элементы к начальной длине в момент формирования участка при схлопывании облицовки, может иметь значения на уровне нескольких десятков [13], что значительно выше, чем у стальных КС, разрушающихся по квазихрупкому механизму. Этим и обеспечивается высокое пробивное действие КЗ с мелными облицовками.

2. Использование электромагнитных воздействий

Специалистами в области кумулятивного взрыва проводится поиск путей повышения пробивного действия КЗ. В качестве одного из таких путей нетрадиционного характера рассматривается использование электромагнитных воздействий в процессе кумулятивного взрыва. С помощью электромагнитных воздействий, осуществляемых на различных стадиях функционирования КЗ, можно обеспечить как снижение [14-19], так и повышение [20-22] его пробивного действия. В качестве воздействия, ориентированного на увеличение пробития КЗ, рассматривается воздействие на растягивающуюся КС в свободном полете продольного магнитного поля [21,23,24]. Целью такого электромагнитного воздействия на разрушающуюся пластическим образом КС является замедление развития пластической неустойчивости струи с увеличением ее предельного удлинения. Стабилизирующее влияние магнитного поля на процесс растяжения КС связывается с двумя факторами. Вопервых, при деформировании КС в продольном магнитном поле на нее действуют дополнительные радиальные электромагнитные силы, распределенные по длине КС таким образом, что они препятствуют развитию "шеек" [20]. Во-вторых, за счет циркуляции в КС вихревых азимутальных токов, индуцирующихся магнитным полем, происходит джоулев разогрев материала струи, ведущий к снижению его прочностных свойств (эффект термического разупрочнения) [25]. Следствием термического разупрочнения материала КС должно также являться замедление развития "шеек".

Следует отметить, что индукционный нагрев материала КС может быть реализован при воздействии магнитного поля не только на растягивающуюся струю в свободном полете, но и на схлопывающуюся кумулятивную облицовку, если в ней создать аксиальное магнитное поле перед подрывом КЗ [25,26]. При этом для получения заметного нагрева КС требуется создание в облицовке гораздо более слабого начального магнитного поля по сравнению с полем, воздействующим на КС в свободном полете, так как облицовка в процессе схлопывания сама генерирует сильное магнитное поле в области струеобразования (эффект магнитокумулятивного генератора) [27]. Однако необходимо иметь в виду, что на КС с усилившимся магнитным полем, выходящую из области струеобразования, действуют мощные растягивающие электромагнитные силы, способные привести к ее разрушению с радиальным диспергированием материала [28,29]. Подобное явление наблюдалось в экспериментах [19,30] с КЗ диаметром $d_0 = 50 \text{ mm}$ при создании в его конической облицовке из меди перед подрывом начального магнитного поля с индукцией в несколько десятых долей тесла, что приводило к резкому снижению глубины пробития КЗ стальной преграды. В [26] было высказано предположение, что при создании в облицовке КЗ более слабого начального магнитного поля можно избежать диспергирования нагретой индукционными токами КС вследствие действия электромагнитных сил и получить прирост пробивного действия КЗ благодаря увеличению предельного удлинения термически разупрочненной струи. Прямое экспериментальное подтверждение выдвинутой гипотезы пока что отсутствует, хотя некоторые косвенные данные экспериментов [24] свидетельствуют в ее пользу, о чем будет сказано несколько слов ниже.

3. Результаты экспериментов с воздействием магнитного поля

Экспериментальные и теоретические исследования влияния продольного магнитного поля на растягивающуюся КС в свободном полете проводились в МГТУ им. Н.Э. Баумана с начала 90-х годов прошлого века [21]. Реализация подобного воздействия на КС осуществляется с помощью удлиненного соленоида, распола-

Рис. 2. Воздействие магнитного поля удлиненного соленоида на деформирующуюся КС: *a* — схема реализации (*I* — кумулятивный заряд, *2* — соленоид, *3* — кумулятивная струя), *b* — вход участка КС в соленоид, *c* — движение в полости соленоида, *d* — выход из соленоида.

гаемого перед КЗ и создающего магнитное поле на пути движения струи (рис. 2, *a*). В экспериментах [21], проводившихся с КЗ диаметром $d_0 = 50$ mm, имевшими медную коническую облицовку, при индукции воздействующего на КС поля до 10.5 Т было зафиксировано небольшое увеличение глубины пробития КЗ стальной преграды, не превышавшее 10%. По результатам позднее проведенных теоретических исследований [31,32] был сделан вывод о том, что на более существенное увеличение пробивного действия КЗ можно рассчитывать, если индукция воздействующего на КС поля составляет несколько десятков тесла.

В последнее время интерес к проблеме увеличения пробивного действия КЗ за счет воздействия на КС магнитного поля удлиненного соленоида проявили китайские специалисты [23,24,33-36]. В их экспериментах с КЗ диаметром $d_0 = 56 \,\mathrm{mm}$ с медной конической облицовкой воздействие продольного магнитного поля с максимальным значением индукции до 1.7 Т осуществлялось как на деформирующуюся КС при размещении соленоида в ближней от КЗ зоне [24], так и на уже разорвавшуюся КС при размещении соленоида на значительном удалении от КЗ [23]. В обоих случаях был зафиксирован значительный прирост пробивного действия КЗ на уровне 70%. Если в случае воздействия на разорванную КС этот прирост связывается авторами [23] с уменьшением при движении в магнитном поле скорости бокового дрейфа элементов распавшейся струи, всегда существующего вследствие наличия асимметрий в КЗ [37,38], то увеличение пробития КЗ при воздействии магнитного поля на растягивающуюся КС в ближней от заряда зоне объясняется в [24] именно увеличением предельного удлинения струи, подтверждением чего являются полученные авторами [24] рентгенограммы КС в отсутствие и при реализации электромагнитного воздействия.

Вопросы вызывает большая разница в приросте пробивного действия КЗ при воздействии магнитного поля на деформирующуюся КС, зафиксированном в экспериментах [24] с индукцией поля соленоида всего лишь до 1.7 Т и в ранее проведенных аналогичных экспериментах [21] с индукцией поля соленоида до 10.5 Т. Возможно, эта разница связана с тем, что в экспериментах [24] применялись соленоиды существенно большего диаметра, чем в [21]. Он был примерно равен диаметру КЗ, в то время как в [21] составлял менее одной трети диаметра КЗ. За счет увеличенного диаметра соленоидов, размещавшихся на небольшом расстоянии от основания КЗ с кумулятивной выемкой (также примерно равном диаметру КЗ), область создаваемого такими соленоидами магнитного поля распространялась в экспериментах [24] и на часть КЗ с кумулятивной облицовкой. В результате по оценкам [39] при создании магнитного поля с индукцией 1.7 Т на пути движения КС индукция попутно создававшегося поля у основания облицовки составляла в экспериментах [24] около 0.1 Т, что примерно втрое больше индукции поля, генерировавшегося у основания облицовки в экспериментах [21] при индукции поля в центре соленоида 10.5 Т. Отсюда следует, что полученный в экспериментах [24] значительный прирост пробивного действия КЗ может быть связан не с воздействием магнитного поля на растягивающуюся КС, а с присутствием поля в облицовке КЗ в момент подрыва [39], так как индукция этого поля хорошо согласовалась в этих экспериментах со значениями, при которых, согласно данным [26], как указывалось выше, отрицательное влияние поля в облицовке на пробитие КЗ может смениться положительным.

4. Задачи исследования

С целью подтверждения полученных ранее оценок параметров магнитных полей, при которых воздействие поля может существенно повлиять на процесс деформирования КС в свободном полете [31,32], и дополнительного обоснования выдвинутой в [39] гипотезы об истинной причине зафиксированного в экспериментах [24] эффекта повышения пробивного действия КЗ был проведен теоретический анализ поведения растягивающейся КС в магнитном поле удлиненного соленоида. Поводом для проведения такого анализа послужила также необходимость устранения неточностей в представлениях об эволюции магнитного поля соленоида в материале деформирующейся КС, допущенных в ряде последних публикаций по рассматриваемой тематике. В частности, в работе [34] при определении индукционных токов, возникающих в материале участка КС при его входе в полость соленоида, некорректно предполагалось, что индукция поля внутри струи совпадает с индукцией внешнего поля соленоида. То же предположение о равенстве магнитных индукций поля внутри деформирующейся КС и внешнего поля использовалось в работе [35] при анализе влияния магнитного поля на радиальное движение материала струи. Достоинством представляемого теоретического анализа является его базирование на аналитическом описании эволюции магнитного поля соленоида в растягивающейся КС, которое было получено при ряде упрощающих допущений. Это дает возможность простой проверки и использования полученных результатов заинтересованными специалистами.

5. Физико-математическая модель

В экспериментах [21,24] ближняя граница области воздействия магнитного поля на КС находилась на расстоянии $h_m = (1.0-1.5)d_0$ от КЗ (рис. 2, *a*), где КС деформируется еще устойчиво с сохранением близкой к цилиндрической формы (без появления "шеек"). Процесс деформирования КС на этой стадии хорошо описывается в рамках модели равномерно удлиняющегося цилиндрического стержня из несжимаемого жесткопластического материала [10]. В каждом поперечном сечении такого стержня радиальная скорость v_r движения его материала к оси распределена линейно по радиальной координате *r*

$$v_r = -\frac{\dot{\varepsilon}_z}{2}r,\tag{1}$$

где $\dot{\varepsilon}_z$ — текущее значение осевой скорости деформирования. Величина $\dot{\varepsilon}_z$ и текущий радиус стержня *R* изменяются с течением времени *t* по законам

$$\dot{\varepsilon}_z = \frac{\dot{\varepsilon}_{z0}}{1 + \dot{\varepsilon}_{z0}t}, \quad R = \frac{R_0}{\sqrt{1 + \dot{\varepsilon}_{z0}t}},$$
 (2)

где $\dot{\varepsilon}_{z0}$, R_0 — соответственно начальная осевая скорость деформирования участка КС и его начальный радиус в момент формирования при схлопывании облицовки.

Рис. 3. Расчетная схема для определения эволюции магнитного поля в участке КС.

При входе участка КС в магнитное поле соленоида (рис. 2, b) оно начинает диффундировать в материал участка, приводя к появлению в нем магнитного поля осевой ориентации с индукцией B. При этом в материале участка возникает азимутальное электрическое поле с напряженностью E и индуцируются азимутальные вихревые токи с плотностью j (рис. 3). Эволюция электрического и магнитного полей в стержне, моделирующем участок КС, описывается в процессе его удлинения в рамках одномерной осесимметричной задачи магнитной гидродинамики системой соотношений [40], выражающих в дифференциальной форме закон электромагнитной индукции

$$\frac{dB}{dt} = \dot{\varepsilon}_z B - \frac{1}{r} \frac{\partial(Er)}{\partial r},\tag{3}$$

закон полного тока

$$j = -\frac{1}{\mu_0} \frac{\partial B}{\partial r} \tag{4}$$

и закон Ома

$$=\eta j, \tag{5}$$

где $\mu_0 = 4\pi \cdot 10^{-7}$ H/m — магнитная постоянная, η — удельное сопротивление материала стержня. Отметим, что первое слагаемое в правой части закона электромагнитной индукции (3) "ответственно" за генерацию магнитного поля в растягивающемся стержне, обусловленную непрерывным уменьшением площади его сечения, а второе — за диффузию поля. Граничные условия для определения на основании соотношений (3)–(5) эволюции магнитного поля в стержне, формулируемые на его оси (r = 0) и поверхности (r = R), являются следующими:

Ε

$$\left. \frac{\partial B}{\partial r} \right|_{r=0} = 0, \quad B(R,t) = B_s(t), \tag{6}$$

где $B_s(t)$ — закон изменения продольной компоненты магнитного поля соленоида на поверхности участка КС

(рис. 3), связанный с движением струи. Начальное условие для индукции магнитного поля в стержне является нулевым

$$B(r, 0) = 0. (7)$$

Как было замечено в [31], результаты проведенного в [21] численного решения задачи (2)–(7) об эволюции магнитного поля соленоида в растягивающейся КС хорошо согласуются с результатами решения той же задачи в предположении линейности в любой момент времени распределения плотности азимутальных индукционных токов в стержне по радиальной координате *r*

$$j(r,t) = \varphi(t)r, \tag{8}$$

где $\varphi(t)$ — коэффициент, зависящий только от времени. Отметим, что данное допущение с учетом (4) обеспечивает автоматическое выполнение граничного условия (6) для индукции магнитного поля на оси стержня (r = 0).

Принимая в расчетной модели для определения эволюции магнитного поля в стержне допущение (8) о линейности радиального распределения индукционных токов, получим радиальное распределение магнитной индукции в стержне, имеющее в любой момент времени параболический вид

$$B(r,t) = \mu_0 \int_{r}^{K} j(r,t) dt + B_s(t) = \frac{\mu_0 \varphi(t)}{2} (R^2 - r^2) + B_s(t).$$

Индукция магнитного поля на оси стержня определится, как

$$B_{c}(t) = B(0, t) = \frac{\mu_{0}\varphi(t)R^{2}}{2} + B_{s}(t), \qquad (9)$$

с учетом чего выражение для индукции поля в стержне может быть переписано в виде

$$B(r,t) = B_c(t) + \left(B_s(t) - B_c(t)\right) \frac{r^2}{R^2}.$$
 (10)

Для определения эволюции магнитной индукции B_c на оси стержня (которая в рамках принятого допущения определяет распределение поля по всему сечению стержня) воспользуемся уравнением (3), записывая его для частиц на оси стержня (r = 0). Представляя напряженность электрического поля E в (3), согласно (5) и (8), как $E = \eta \varphi(t)r$, и учитывая, что в соответствии с (9)

$$\varphi(t) = \frac{2}{\mu_0 R^2} \left(B_c(t) - B_s(t) \right), \tag{11}$$

при дополнительном предположении о постоянстве удельного сопротивления η материала стержня получим

$$\frac{dB_c}{dt} - B_c\left(\dot{\varepsilon}_z - \frac{4\eta}{\mu_0 R^2}\right) = \frac{4\eta}{\mu_0 R^2} B_s(t), \qquad (12)$$

где параметры стержня $\dot{\varepsilon}_z$ и *R* изменяются в зависимости от времени согласно соотношениям (2).

Журнал технической физики, 2020, том 90, вып. 10

Решение для недеформирующегося стержня

Применим сначала записанное дифференциальное уравнение (12) для определения эволюции магнитного поля в недеформирующемся стержне ($\dot{\varepsilon}_z = 0$) неизменного радиуса $R = R_0$:

$$\frac{dB_c}{dt} + \frac{4\eta}{\mu_0 R_0^2} B_c = \frac{4\eta}{\mu_0 R_0^2} B_s(t).$$
(13)

В случаях, когда недеформирующийся стержень с изначально отсутствующим в нем полем ($B_c(0) = 0$) помещается во внешнее постоянное магнитное поле с индукцией $B_s(t) = B_0$ и когда, напротив, в таком стержне в начальный момент времени присутствует магнитное поле с индукцией $B_c(0) = B_0$, а поля снаружи стержня нет ($B_s(t) = 0$), решения уравнения (13) представляются соответственно выражениями

$$B_{c}(t) = B_{0} (1 - \exp(-t/\tau_{0})), \ B_{c}(t) = B_{0} \exp(-t/\tau_{0}),$$
(14)

где τ_0 — постоянная времени диффузии поля, определяемая как

$$\tau_0 = \frac{\mu_0 R_0^2}{4\eta}.\tag{15}$$

Указанные две задачи диффузии магнитного поля в проводящем стержне имеют точные аналитические решения, получаемые методами математической физики [41] и представляемые соответственно соотношениями

$$B(r,t) = B_0 \left\{ 1 - 2 \sum_{k=1}^{\infty} \frac{J_0(\nu_k r/R_0)}{\nu_k J_1(\nu_k)} \exp\left(-\frac{\nu_k^2 \eta}{\mu_0 R_0^2} t\right) \right\},\$$
$$B(r,t) = 2B_0 \sum_{k=1}^{\infty} \frac{J_0(\nu_k r/R_0)}{\nu_k J_1(\nu_k)} \exp\left(-\frac{\nu_k^2 \eta}{\mu_0 R_0^2} t\right),$$
(16)

где J_0, J_1 — функции Бесселя первого рода соответственно нулевого и первого порядков [42], v_k — положительные корни уравнения $J_0(v) = 0$.

Из рис. 4, где проиллюстрировано изменение магнитной индукции на оси стержня неизменного радиуса в рассмотренных задачах диффузии магнитного поля, видно, что между результатами приближенных аналитических решений (14), основанных на предположении о линейности радиального распределения индукционных токов, и точных решений, следующих из (16) при r = 0, наблюдается хорошее соответствие. Это дает основания полагать предложенную упрощенную модель пригодной для описания эволюции магнитного поля в КС при ее движении через полость соленоида.

Растяжение струи в полости соленоида

Рассмотрим сначала электромагнитные процессы в участке КС при его входе в полость соленоида

Рис. 4. Изменение магнитной индукции на оси недеформирующегося проводящего стержня в соответствии с точным (сплошные линии) и приближенным (штрихпунктирные линии) аналитическими решениями: *1* — в задаче о проникновении внешнего магнитного поля в стержень, *2* — в задаче об ослаблении изначально существовавшего в стержне магнитного поля в отсутствие поля снаружи.

(рис. 2, b). Введя коэффициент удлинения участка струи $n = 1 + \dot{\varepsilon}_{z0}t$, характеризующий отношение его текущей длины к начальной, уравнение (12) с учетом соотношений (2) для $\dot{\varepsilon}_z$ и R перепишем в виде

$$\frac{dB_c}{dn} - B_c \left(\frac{1}{n} - \frac{n}{\operatorname{Re}_{m,0}}\right) = \frac{n}{\operatorname{Re}_{m,0}} B_s(n), \qquad (17)$$

где $\operatorname{Re}_{m,0}$ — магнитное число Рейнольдса, представляемое с использованием начальных значений скорости деформирования $\dot{\varepsilon}_{z0}$ и радиуса R_0 участка КС, как

$$\operatorname{Re}_{m,0} = \frac{\mu_0 \dot{\varepsilon}_{z0} R_0^2}{4\eta}.$$
 (18)

Значение $\text{Re}_{m,0}$ характеризует соотношение темпов генерации магнитного поля, определяемого скоростью деформирования $\dot{\varepsilon}_{z0}$, и его диффузии, определяемого временем диффузии τ_0 (15), в участке КС на момент его формирования $\text{Re}_{m,0} = \dot{\varepsilon}_{z0}\tau_0$. С учетом (2) в процессе растяжения участка КС магнитное число Рейнольдса для него уменьшается обратно пропорционально квадрату текущего коэффициента удлинения $\text{Re}_m = \text{Re}_{m,0}/n^2$.

Для удлиненных соленоидов с длиной l_m , существенно превышающей их диаметр d_m (рис. 2, *a*), длины участков нарастания индукции магнитного поля на входе в полость соленоида и последующего ее спада на выходе из соленоида, определяемые диаметром d_m , относительно невелики в сравнении с длиной соленоида l_m . Это позволяет идеализировать распределение магнитной индукции на оси КЗ вдоль пути движения струи, полагая ее равномерно распределенной с неизменным значением B_0 на участке длиной l_m внутри соленоида и равной нулю за пределами этого участка.

При такой идеализации эволюция магнитного поля в элементе КС при его входе в полость соленоида будет

описываться решением уравнения (17) с индукцией поля соленоида в правой части $B_s(n) = B_0$ при начальном условии $B_c(n_b) = 0$, где $n_b = 1 + \dot{\varepsilon}_{z0}t_b$ — коэффициент удлинения элемента КС на момент времени t_b , соответствующий входу в соленоид и определяемый с использованием значений скорости элемента v_j , координаты относительно основания КЗ точки его формирования на оси заряда при схлопывании облицовки z_f и расстояния от КЗ до соленоида h_m (рис. 2, *a*), как

$$t_b = \frac{h_m - z_f}{v_j}.$$

Указанное решение, предполагающее длину соленоида неограниченной, представляется в виде

$$B_{c} = B_{0} \sqrt{\frac{2}{\operatorname{Re}_{m,0}}} n \left[F\left(\frac{n}{\sqrt{2\operatorname{Re}_{m,0}}}\right) - F\left(\frac{n_{b}}{\sqrt{2\operatorname{Re}_{m,0}}}\right) \right]$$
$$\times \exp\left(-\frac{n^{2} - n_{b}^{2}}{2\operatorname{Re}_{m,0}}\right), \qquad (19)$$

где $F(x) = \exp(-x^2) \int_{0}^{x} \exp(y^2) dy$ — интеграл Доусона [42], $n \ge n_b$. Для анализа представленное решение удобно переписать, введя в него относительный коэффициент удлинения участка КС n_{rb} , отсчитываемый от момента его входа в соленоид $n_{rb} = n/n_b \ge 1$

$$B_{c} = B_{0} \sqrt{\frac{2}{\operatorname{Re}_{m,b}}} n_{rb} \left[F\left(\frac{n_{rb}}{\sqrt{2\operatorname{Re}_{m,b}}}\right) - F\left(\frac{1}{\sqrt{2\operatorname{Re}_{m,b}}}\right) \right]$$
$$\times \exp\left(-\frac{n_{rb}^{2} - 1}{2\operatorname{Re}_{m,b}}\right), \qquad (20)$$

где $\operatorname{Re}_{m,b} = \operatorname{Re}_{m,0}/n_b^2$ — магнитное число Рейнольдса на момент входа в соленоид. Для медных высокоградиентных КС при диаметрах КЗ d_0 от 30 до 150 mm возможные значения $\operatorname{Re}_{m,b}$ укладываются примерно в диапазон 0.1 < $\operatorname{Re}_{m,b}$ < 100.

На рис. 5 проиллюстрировано изменение магнитной индукции на оси участка КС после его входа в соленоид в зависимости от отсчитываемого от этого момента коэффициента удлинения n_{rb} при различных значениях $\operatorname{Re}_{m,b}$ в предположении неограниченной длины соленоида. Видно, что для всех $\operatorname{Re}_{m,b}$ индукция B_c , возрастая от нулевого значения, достигает точки максимума, в которой превышает индукцию поля соленоида B_0 , а затем уменьшается, асимптотически стремясь к значению B_0 . С увеличением $\operatorname{Re}_{m,b}$ достижение максимума индукции поля в участке КС отодвигается на более поздние моменты времени с одновременным возрастанием значения $B_{c,max}$ в максимуме.

Реперными для кривых изменения индукции магнитного поля на оси участка КС (рис. 5) являются точки, в которых она сравнивается с индукцией внешнего поля соленоида B_0 и достигает максимального значения. Относительный коэффициент удлинения участка КС

Рис. 5. Изменение магнитной индукции на оси участка КС при его движении в полости соленоида.

 $n_{rb,eq}$, соответствующий первой из этих точек ($B_c = B_0$), определяется из уравнения

$$egin{aligned} &\sqrt{rac{2}{ ext{Re}_{m,b}}}n_{rb, ext{eq}}iggl[Figgl(rac{n_{rb, ext{eq}}}{\sqrt{2 ext{Re}_{m,b}}}iggr)-Figgl(rac{1}{\sqrt{2 ext{Re}_{m,b}}}iggr) \ & imes \expiggl(-rac{n_{rb, ext{eq}}^2-1}{2 ext{Re}_{m,b}}iggr)iggr]-1=0. \end{aligned}$$

Уравнение для определения относительного коэффициента удлинения участка КС $n_{rb,max}$, соответствующего максимуму индукции поля в нем, получается из условия равенства нулю производной решения (20) по переменной n_{rb}

$$\frac{n_{rb,\max}}{\sqrt{2\operatorname{Re}_{m,b}}} + \left(1 - \frac{n_{rb,\max}^2}{\operatorname{Re}_{m,b}}\right) \left[F\left(\frac{n_{rb,\max}}{\sqrt{2\operatorname{Re}_{m,b}}}\right) - F\left(\frac{1}{\sqrt{2\operatorname{Re}_{m,b}}}\right) \exp\left(-\frac{n_{rb,\max}^2 - 1}{2\operatorname{Re}_{m,b}}\right)\right] = 0,$$

вычисляемой с использованием для интеграла Доусона тождества [42]

$$\frac{dF}{dx} = 1 - 2xF(x).$$

На основании численного решения приведенных уравнений рассчитывались значения $n_{rb,eq}$ и $n_{rb,max}$, с использованием которых были определены отнесенные к постоянной времени диффузии поля $\tau_b = \tau_0/n_b$ на момент входа участка КС в соленоид и отсчитываемые от этого момента промежутки времени

$$\frac{t_{rb,eq}}{\tau_b} = \frac{n_{rb,eq}-1}{\operatorname{Re}_{m,b}}, \quad \frac{t_{rb,\max}}{\tau_b} = \frac{n_{rb,\max}-1}{\operatorname{Re}_{m,b}},$$

спустя которые индукция магнитного поля B_c на оси участка КС соответственно сравнивалась с индукцией поля соленоида и достигала максимального значения $B_{c,max}$. Полученные для отношений $t_{rb,eq}/\tau_b$, $t_{rb,max}/\tau_b$, а также для отношения $B_{c,max}/B_0$, определявшегося из (20) при $n_{rb} = n_{rb,max}$, результаты показаны на рис. 6

сплошными линиями в зависимости от магнитного числа Рейнольдса $\operatorname{Re}_{m,b}$ на момент входа участка КС в соленоид. Пунктирными линиями на этом рисунке приводятся построенные для зависимостей $t_{rb,eq}/\tau_b$ и $t_{rb,max}/\tau_b$ от $\operatorname{Re}_{m,b}$ аппроксимации в диапазоне $0.1 < \operatorname{Re}_{m,b} < 100$

$$\frac{t_{rb,eq}}{\tau_b} = \operatorname{Re}_{m,b}^{-0.43}, \quad \frac{t_{rb,\max}}{\tau_b} = 1.7 \operatorname{Re}_{m,b}^{-0.44}, \quad (21)$$

из которых следует, что время достижения максимума индукции магнитного поля в элементе КС trb.max после его входа в полость соленоида примерно на 70% превышает время выравнивания индукций внутреннего и внешнего полей trb,eq. Если говорить о максимальном усилении магнитного поля на оси участка КС, то оно изменяется от $B_{c, \max}/B_0 \approx 1.050$ при $\text{Re}_{m, b} = 0.1$ до $B_{c,\max}/B_0 \approx 1.264$ при $\operatorname{Re}_{m,b} = 100$ (рис. 6). Столь незначительный рост достигаемого максимума индукции поля в струе при значительном увеличении магнитного числа Рейнольдса (в 1000 раз) обусловлен конкуренцией двух факторов. С одной стороны, замедление диффузии поля, происходящее с увеличением значения Re_{*m*,*b*}, способствует ускорению его генерации в струе, но, с другой стороны, эта генерация становится возможной только после проникновения в струю внешнего поля, чему препятствует рост $\operatorname{Re}_{m,b}$.

Еще раз отметим, что решение (19) уравнения (17) для эволюции магнитного поля в участке КС и все полученные выше на его основании результаты относятся к случаю соленоида неограниченной длины. Очевидно, для соленоидов конечной длины индукция магнитного поля в элементе КС при определенных условиях может не успеть сравняться с индукцией поля соленоида или достичь своего максимально возможного значения $B_{c,max}$ до выхода элемента струи из полости соленоида. Если ввести в рассмотрение координату участка КС относительно точки входа в соленоид $z_{rb} = z - h_m \ge 0$

Рис. 6. Зависимости относительных времен достижения магнитной индукцией на оси участка КС, движущегося в полости соленоида, индукции внешнего поля и максимального значения, а также относительного значения индукции поля на оси в максимуме от магнитного числа Рейнольдса на момент входа участка струи в соленоид.

и представить относительный коэффициент удлинения участка *n_{rb}* в решении (20), как

$$n_{rb} = 1 + \frac{\dot{\varepsilon}_{z0}}{n_b} \frac{z_{rb}}{v_i}$$

можно получить описание эволюции магнитного поля в движущемся в полости соленоида участке струи (рис. 2, c) в зависимости от его текущего положения относительно соленоида. Для определения координат элемента КС относительно точки входа в соленоид, соответствующих равенству магнитной индукции на его оси индукции поля соленоида $z_{rb,eq}$ и максимуму индукции $z_{rb,max}$, из аппроксимаций (21) вытекают соотношения

$$\frac{z_{rb,eq}}{v_j \tau_b} = \operatorname{Re}_{m,b}^{-0.43}, \quad \frac{z_{rb,\max}}{v_j \tau_b} = 1.7 \operatorname{Re}_{m,b}^{-0.44}.$$

Из сравнения значений $z_{rb,eq}$ и $z_{rb,max}$ с длиной соленоида l_m можно установить, на какой стадии эволюции магнитного поля в участке КС он покидает соленоид.

Растяжение струи после выхода из соленоида

Учтем конечность длины соленоида и рассмотрим электромагнитные процессы в участке КС при его выходе из полости соленоида (рис. 2, *d*). В рамках рассматриваемой идеализации поля соленоида с мгновенным уменьшением его индукции от постоянного значения B_0 до нуля в момент выхода участка КС за пределы полости соленоида изменение магнитной индукции на оси участка, вышедшего из соленоида, будет описываться решением уравнения (17) с нулевой правой частью при начальном условии $B_c(n_e) = B_{ce}$, где $n_e = 1 + \dot{\varepsilon}_2 0 t_e$ — коэффициент удлинения участка струи на момент времени t_e , соответствующий выходу из соленоида и определяемый, как

$$t_e = \frac{h_m + l_m - z_f}{v_i}$$

а B_{ce} — магнитная индукция на оси участка в этот момент. Указанное решение при $n \ge n_e$ представляется в виде

$$B_c = B_{ce} \frac{n}{n_e} \exp\left(-\frac{n^2 - n_e^2}{2\text{Re}_{m,0}}\right),$$
 (22)

входящее в него значение B_{ce} рассчитывается на основании соотношения (20) при подстановке в него $n_{rb} = n_e/n_b$. Так же, как и при анализе эволюции магнитного поля в участке КС при его входе в соленоид, представленное решение удобно переписать, введя в него относительный коэффициент удлинения участка n_{re} , отсчитываемый от момента его выхода из соленоида $n_{re} = n/n_e \geq 1$:

$$B_c = B_{ce} n_{re} \exp\left(-\frac{n_{re}^2 - 1}{2\operatorname{Re}_{m,e}}\right),\tag{23}$$

где $\operatorname{Re}_{m,e} = \operatorname{Re}_{m,0}/n_e^2$ — магнитное число Рейнольдса на момент выхода из соленоида.

Рис. 7. Изменение магнитной индукции на оси участка КС после его выхода из соленоида.

Дифференцируя записанное решение (23) по n_{re}

$$\frac{dB_c}{dn_{re}} = B_{ce} \left(1 - \frac{n_{re}^2}{\operatorname{Re}_{m,e}} \right) \exp\left(-\frac{n_{re}^2 - 1}{2\operatorname{Re}_{m,e}}\right)$$

можно установить, что характер поведения поля в растягивающемся участке КС после его выхода из соленоида зависит от значения параметра $\operatorname{Re}_{m,e}$. При $\operatorname{Re}_{m,e} \leq 1$ скорость диффузионных процессов в момент выхода высока (выше темпа генерации поля), и индукция поля в участке КС монотонно убывает. При $\operatorname{Re}_{m,e} > 1$, напротив, сразу после выхода из соленоида темп генерации поля в участке КС превышает темп его диффузионного "рассасывания" и поэтому убыванию интенсивности поля предшествует стадия ее дополнительного нарастания (рис. 7). Максимум индукции поля на оси участка КС, вышедшего из соленоида при $\operatorname{Re}_{m,e} > 1$, достигается при относительном коэффициенте удлинения $n_{re,max} = \sqrt{\operatorname{Re}_{m,e}}$ и составляет

$$B_{ce,\max} = B_{ce}\sqrt{\operatorname{Re}_{m,e}}\exp\left(-\frac{\operatorname{Re}_{m,e}-1}{2\operatorname{Re}_{m,e}}\right)$$

На рис. 8 проиллюстрировано изменение отнесенного к постоянной времени диффузии поля $\tau_e = \tau_0/n_e$ на момент выхода участка КС из соленоида и отсчитываемого от этого момента промежутка времени

$$\frac{t_{re,\max}}{\tau_e} = \frac{n_{re,\max}-1}{\operatorname{Re}_{m,e}} = \frac{\sqrt{\operatorname{Re}_{m,e}}-1}{\operatorname{Re}_{m,e}}$$

спустя который индукция магнитного поля B_c на оси участка КС достигает максимального значения, и самого этого значения, отнесенного к индукции поля на оси участка в момент выхода из соленоида $B_{ce,max}/B_{ce}$, в зависимости от магнитного числа Рейнольдса $\operatorname{Re}_{m,e}$ на тот же момент (при $\operatorname{Re}_{m,e} > 1$).

9. Индукционный нагрев струи

Оценим на основании представленной модели эволюции магнитного поля удлиненного соленоида в деформирующейся КС возможность стабилизации ее растяжения

Рис. 8. Зависимости относительного времени достижения магнитной индукцией на оси участка КС, вышедшего из соленоида, максимального значения, а также относительного значения индукции поля на оси в максимуме от магнитного числа Рейнольдса на момент выхода при Re_{m,e} > 1.

с увеличением предельного удлинения. Как отмечалось выше, стабилизирующее влияние магнитного поля на процесс растяжения КС может быть связано с термическим разупрочнением материала струи и с дополнительным силовым воздействием на струю. Поэтому определим температуру нагрева КС и действующие в ней механические напряжения при деформировании в магнитном поле соленоида.

Нагрев материала КС при воздействии магнитного поля обусловлен выделением в нем джоулева тепла за счет циркуляции в струе вихревых индукционных токов. Повышение температуры КС *T_J* вследствие джоулева нагрева описывается уравнением

$$\rho c \, \frac{dT_J}{dt} = j^2 \eta, \tag{24}$$

где ρ и c — соответственно плотность и удельная теплоемкость материала КС. В соответствии с (8) наиболее интенсивно будет нагреваться поверхностный слой струи, где плотность индукционных токов максимальна.

Для температуры джоулева нагрева поверхности КС *T*_{*J*,*R*}, где, согласно (8) и (11):

$$j(R,t) = \frac{2}{\mu_0 R} \left(B_c(t) - B_s(t) \right),$$
 (25)

на стадии движения участка КС в полости соленоида $n_b \leq n \leq n_e$, для которой $B_s = B_0$, а B_c представляется соотношением (19), решение уравнения (24) после перехода от времени *t* к коэффициенту удлинения *n* дается интегралом

$$T_{J,R} = \frac{4T_{J,\mathrm{ch}}}{\mathrm{Re}_{m,0}^2} \int_{n_b}^n \nu^3 \left[F\left(\frac{\nu}{\sqrt{2\mathrm{Re}_{m,0}}}\right) - F\left(\frac{n_b}{\sqrt{2\mathrm{Re}_{m,0}}}\right) \right]$$
$$\times \exp\left(-\frac{\nu^2 - n_b^2}{\sqrt{2\mathrm{Re}_{m,0}}}\right) - \frac{\sqrt{\mathrm{Re}_{m,0}}}{\sqrt{2\nu}} \right]^2 d\nu,$$

Журнал технической физики, 2020, том 90, вып. 10

где характеристическая температура

$$T_{J,\rm ch} = \frac{B_0^2}{2\mu_0\rho c} \tag{26}$$

имеет смысл температуры нагрева материала при выделении в единице его объема теплоты, равной объемной плотности энергии магнитного поля с индукцией B_0 . Интегрирование в соотношении для $T_{J,R}$ при $n_b \le n \le n_e$ удается провести в аналитическом виде с получением в результате зависимости

$$T_{J,R} = 2T_{J,ch} \left[F\left(\frac{n}{\sqrt{2\operatorname{Re}_{m,0}}}\right) - F\left(\frac{n_b}{\sqrt{2\operatorname{Re}_{m,0}}}\right) \right] \\ \times \exp\left(-\frac{n^2 - n_b^2}{\sqrt{2\operatorname{Re}_{m,0}}}\right) \left[\left\{ \sqrt{\frac{2}{\sqrt{\operatorname{Re}_{m,0}}}} n - \left(1 + \frac{n^2}{\operatorname{Re}_{m,0}}\right) \right. \\ \left. \times \left[F\left(\frac{n}{\sqrt{2\operatorname{Re}_{m,0}}}\right) - F\left(\frac{n_b}{\sqrt{2\operatorname{Re}_{m,0}}}\right) \right] \\ \left. \times \left. \exp\left(-\frac{n^2 - n_b^2}{\sqrt{2\operatorname{Re}_{m,0}}}\right) \right] \right\}.$$
(27)

Для стадии движения после выхода из соленоида $n > n_e$ интегрирование уравнения (24) с использованием в (25) $B_s = 0$ и значения B_c , представляемого соотношением (22), в котором B_{ce} определено из (19) при $n = n_e$, приводит к закону изменения температуры джоулева нагрева поверхности КС в виде

$$T_{J,R} = T_{J1,R} + 2T_{J,ch} \left[F\left(\frac{n_e}{\sqrt{2Re_{m,0}}}\right) - F\left(\frac{n_b}{\sqrt{2Re_{m,0}}}\right) \right] \times \exp\left(-\frac{n_e^2 - n_b^2}{2Re_{m,0}}\right) \right]^2 \left[\frac{n_e^2}{Re_{m,0}} + 1 - \left(\frac{n^2}{Re_{m,0}} + 1\right) \right] \times \exp\left(-\frac{n^2 - n_e^2}{Re_{m,0}}\right) \right],$$
(28)

где $T_{J1,R}$ — температура поверхности участка струи в момент выхода из соленоида, рассчитываемая по зависимости (27) при $n = n_e$.

Результирующая температура джоулева нагрева поверхности участка КС, прошедшего соленоид, определяется из (28) при $n \to \infty$ и может быть представлена, как

$$T_{J\Sigma,R} = T_{J1,R} + T_{J2,R},$$
 (29)

где $T_{J2,R}$ — предельный прирост температуры поверхности участка отдельно на стадии его движения после выхода из соленоида, являющийся предельным значением второго слагаемого в (28) при $n \to \infty$

$$T_{J2,R} = 2T_{J,ch} \left[F\left(\frac{n_e}{\sqrt{2\text{Re}_{m,0}}}\right) - F\left(\frac{n_b}{\sqrt{2\text{Re}_{m,0}}}\right) \times \exp\left(-\frac{n_e^2 - n_b^2}{2\text{Re}_{m,0}}\right) \right]^2 \left(\frac{n_e^2}{\text{Re}_{m,0}} + 1\right).$$
(30)

Рис. 9. Влияние на конечную температуру джоулева нагрева поверхности участка КС продолжительности его деформирования в полости соленоида: *a* — нагрев на стадии движения в полости соленоида, *b* — дополнительный нагрев после выхода из соленоида, *c* — результирующий нагрев.

Распределение температуры джоулева нагрева по радиусу КС в соответствии с принятым линейным радиальным распределением плотности индукционных токов (8) и с учетом (24), очевидно, будет иметь во все моменты времени параболический вид

$$T_J(r) = T_{J,R} \, \frac{r^2}{R^2}$$

с уменьшением интенсивности нагрева по мере приближения к оси (r = 0), где нагрев отсутствует. Легко установить, что при таком распределении осредненная по сечению струи температура джоулева нагрева составляет половину от ее значения $T_{J,R}$ на поверхности.

Исследуем зависимость результирующего джоулева нагрева поверхности участка КС (29) и его составляющих $T_{J1,R}$, $T_{J2,R}$, от соотношения коэффициентов удлинения участка n_e/n_b на моменты выхода и входа в соленоид, что фактически означает определение влияния на джоулев нагрев КС длины соленоида l_m (рис. 2, *a*), так как

$$\frac{n_e}{n_b} = 1 + \frac{\dot{\varepsilon}_{z0}}{n_b} \frac{l_m}{v_j}.$$

С ростом n_e/n_b (длины соленоида l_m) отношение $T_{J1,R}/T_{J,ch}$, характеризующее джоулев нагрев КС на

первой стадии (стадии движения в полости соленоида), монотонно возрастает, стремясь к единице (рис. 9, *a*). К единичному значению для соленоидов большой длины $(n_e/n_b \rightarrow \infty)$ стремится и отношение $T_{J2,R}/T_{J,ch}$, характеризующее нагрев КС на второй стадии (стадии движения после выхода из соленоида). Однако в отличие от $T_{J1,R}/T_{J,ch}$, эволюция отношения $T_{J2,R}/T_{J,ch}$ к единице происходит с ростом n_e/n_b не монотонно, а через точку максимума (рис. 9, b). Положение этого максимума зависит от магнитного числа Рейнольдса Re_{*m,b*} на момент входа участка КС в соленоид и лежит между значениями $n_{rb,eq}$ и $n_{rb,max}$, соответствующими моментам достижения индукцией поля на оси участка струи индукции внешнего поля Во и максимального значения $B_{c,\text{max}}$ (рис. 5). Значение $T_{J2,R}/T_{J,\text{ch}}$ в максимуме возрастает примерно от 1.157 при $\text{Re}_{m,b} = 0.1$ до 1.962 при $\operatorname{Re}_{m,b} = 100.$

Отслеживая изменения $T_{J1,R}/T_{J,ch}$ и $T_{J2,R}/T_{J,ch}$, отношение $T_{J\Sigma,R}/T_{J,ch}$ для результирующего джоулева нагрева КС изменяется в зависимости от n_e/n_b , также проходя через точку максимума и принимая при большой длине соленоида $(n_e/n_b \rightarrow \infty)$ значение $T_{J\Sigma,R}/T_{J,ch} = 2$ (рис. 9, *c*). Значение $T_{J\Sigma,R}/T_{J,ch}$ в максимуме возрастает с увеличением магнитного числа Рейнольдса $\text{Re}_{m,b}$, составляя примерно 2.101 при $\text{Re}_{m,b} = 0.1$ и 2.527 при $\text{Re}_{m,b} = 100$. Таким образом, из проведенного анализа джоулева нагрева КС вытекает, что существует оптимальная длина соленоида, при которой обеспечивается максимум температуры нагрева струи.

Действие на струю электромагнитных сил

Для оценки возможности стабилизации растяжения КС вследствие дополнительного силового воздействия на нее со стороны магнитного поля определим обусловленную его влиянием добавку к действующему в струе среднему осевому напряжению, "ответственному" за развитие пластической неустойчивости струи [31]. Согласно используемой модели несжимаемого жесткопластического цилиндрического стержня, удлиняющегося со скоростью осевой деформации $\dot{\varepsilon}_{z}$ [10], радиальная, окружная и осевая компоненты девиатора напряжений в струе имеют значения $s_r = s_{\theta} = -\sigma_Y/3$, $s_z = 2\sigma_Y/3$, где σ_Y — предел текучести материала струи. Движение частиц КС в радиальном направлении в каждом ее поперечном сечении с учетом действия электромагнитных сил с объемной плотностью јВ происходит в соответствии с уравнением

$$\rho \, \frac{dv_r}{dt} = -\frac{\partial p}{\partial r} + jB,$$

где p — давление в материале струи. Предполагая наружную поверхность КС свободной от действия радиальных напряжений $\sigma_r(R) = s_r - p(R) = 0$, для давления на границе сечения будем иметь значение $p(R) = -\sigma_Y/3$. Интегрируя записанное уравнение радиального движения материала КС по радиусу поперечного сечения от некоторого его текущего значения r до значения R с учетом зависимости для радиальной скорости (1), для определения давления в струе получаем соотношение

$$p(r) = \frac{3}{8}\rho \dot{\varepsilon}_{z}^{2}(R^{2} - r^{2}) - \frac{\sigma_{Y}}{3} - \int_{r}^{R} jBdr.$$

Определяя затем осевые напряжения как $\sigma_z = s_z - p$ и усредняя их по площади поперечного сечения КС

$$\sigma_{z,\mathrm{av}} = \frac{2}{R^2} \int_{0}^{R} \sigma_z r dr$$

для расчета действующего в струе при ее деформировании в магнитном поле среднего осевого напряжения окончательно приходим к зависимости

$$\sigma_{z,\mathrm{av}} = \sigma_Y - \frac{3}{16}\rho\dot{\varepsilon}_z^2 R^2 + \frac{2}{R^2}\int_0^R \left[\int_r^R jBdr\right]rdr.$$

Последнее слагаемое в правой части данной зависимости, отсутствующее при деформировании КС в естественных условиях и обусловленное действием электромагнитных сил, является магнитной составляющей среднего осевого напряжения

$$\sigma_{zm,\mathrm{av}} = \frac{2}{R^2} \int_0^R \left[\int_r^R jBdr \right] r dr$$

которую с использованием закона полного тока в дифференциальной форме (4) можно переписать в виде

$$\sigma_{zm,av} = \frac{2}{R^2} \int_{0}^{R} \frac{B^2}{2\mu_0} r dr - \frac{B_s^2}{2\mu_0}$$

Вычисляя интеграл в представленном выражении с учетом радиального распределения магнитной индукции в КС (10), получаем магнитную добавку к среднему осевому напряжению в струе

$$\sigma_{zm,av} = \frac{1}{3} \left(\frac{B_c^2}{B_0^2} + \frac{B_c}{B_0} - 2 \right) p_{m,ch}$$
(31)

при движении ее участка в полости соленоида $(n_b \le n \le n_e, B_s = B_0)$ и

$$\sigma_{zm,av} = \frac{1}{3} \frac{B_c^2}{B_0^2} p_{m,ch}$$
(32)

после выхода из соленоида $(n > n_e, B_s = 0)$, где для индукции поля на оси КС B_c используются зависимости (19) в случае $n_b \le n \le n_e$ и (22) в случае $n > n_e$, а величина $p_{m,ch}$ представляет собой характеристическое магнитное давление для поля с индукцией B_0 :

$$p_{m,\rm ch} = \frac{B_0^2}{2\mu_0}.$$
 (33)

Журнал технической физики, 2020, том 90, вып. 10

11. Оценки для условий экспериментов

Вернемся к экспериментам [21,24] с пропусканием растягивающихся КС через магнитное поле удлиненного соленоида и оценим на основании представленной выше модели применительно к условиям их проведения факторы возможного замедления развития пластической неустойчивости КС, обусловленные индукционным нагревом их материала и действием на них электромагнитных сил. Оценки проведем на примере медной КС, формировавшейся в экспериментах [21] с КЗ диаметром $d_0 = 50 \,\mathrm{mm}$, для ее среднего участка со скоростью $v_i = 4 \text{ km/s}$. Начальные радиус и скорость осевой деформации этого участка, рассчитанные на основании методики, изложенной в [5], составляют $R_0 = 3.5 \,\mathrm{mm}$, $\dot{\varepsilon}_{z0} = 2.5 \cdot 10^5 \, \mathrm{s}^{-1}$. При удельном сопротивлении материала участка $\eta = 5 \cdot 10^{-8} \Omega \cdot m$, соответствующем меди, нагретой до температуры примерно 500°C, магнитное число Рейнольдса для него на момент формирования (18) имело значение $\text{Re}_{m,0} = 19.2$. Расстояние от основания КЗ с кумулятивной выемкой до соленоида h_m и длина соленоида l_m (рис. 2, a) задавались близкими к реализованным в экспериментах [21,24]: $h_m = 1.2d_0$, $l_m = 3d_0$. При данных значениях h_m и l_m и координате формирования рассматриваемого участка КС относительно основания КЗ $z_f \approx -0.2 d_0$ коэффициенты его удлинения на моменты входа в соленоид и выхода из него

$$n_b = 1 + \frac{\dot{\varepsilon}_{z0}}{v_j}(h_m - z_f), \ n_e = 1 + \frac{\dot{\varepsilon}_{z0}}{v_j}(h_m + l_m - z_f)$$

составляли соответственно $n_b = 5.38$, $n_e = 14.75$.

Представляя в соотношениях (19), (22), (27), (28) текущий коэффициент удлинения участка КС как

$$n=1+\frac{\dot{\varepsilon}_{z0}}{v_j}(z-z_f),$$

будем иметь описание эволюции интересующих нас параметров для участка в зависимости от его текущей координаты *z*. На рис. 10 проиллюстрировано изменение индукции магнитного поля на оси рассматриваемого участка КС B_c (19), (22), температуры его джоулева нагрева на поверхности $T_{J,R}$ (27), (28) и магнитной составляющей среднего осевого напряжения $\sigma_{zm,av}$ (31), (32) в зависимости от координаты *z*-*h_m* участка в процессе его движения, отсчитываемой от точки входа в соленоид. Из рис. 10, а видно, что индукция поля на оси участка сравнивается с индукцией внешнего поля $(B_c/B_0 = 1)$, когда он находится вблизи середины соленоида, и перед выходом из него достигает своего максимума $(B_{c,\max}/B_0 \approx 1.13)$. В момент выхода из соленоида температура джоулева нагрева на поверхности участка КС составляет $T_{J,R} = 0.88T_{J,ch}$, достигая предельного значения $T_{J,R} = 2.23 T_{J,ch}$ после выхода участка из соленоида и удаления от него на расстояние около диаметра K3 d_0 .

Рис. 10. Изменение магнитной индукции на оси и температуры джоулева нагрева на поверхности (a), а также магнитной составляющей среднего осевого напряжения (b) для участка КС со скоростью 4 km/s применительно к условиям проведения экспериментов с воздействием магнитного поля соленоида на КС.

Что касается магнитной добавки к среднему осевому напряжению в участке КС (рис. 10, b), то после входа в соленоид до момента выравнивания индукций внешнего поля и поля на оси участка она является отрицательной (участок струи поджимается магнитным полем), имея на момент входа значение $\sigma_{zm,av} = -0.67p_{m,ch}$. После превышения значения B_c над B_0 ($B_c/B_0 > 1$) магнитная составляющая среднего осевого напряжения становится положительной (участок КС растягивается электромагнитными силами), доходя до значения $\sigma_{zm,av} = 0.13p_{m,ch}$ при движении участка в полости соленоида. В момент выхода участка КС из соленоида происходит резкий кратковременный "всплеск" значения $\sigma_{zm,av}$ до $0.41p_{m,ch}$, после чего оно эволюционирует к нулю.

В экспериментах [21] индукция создававшегося соленоидом на пути движения КС магнитного поля составляла до 10.5 Т. При таком значении В₀ характеристическая температура джоулева нагрева (26) материала с теплофизическими свойствами меди ($\rho = 8900 \, \text{kg/m}^3$: $c = 430 \text{ J/(kg \cdot K)})$ имеет значение $T_{J,ch} = 11.5 \text{ K}$, а характеристическое магнитное давление (33) составляет $p_{m,ch} = 43.9 \text{ MPa.}$ Это означает, что в экспериментах [21] усредненная по сечению рассматриваемого участка КС результирующая температура его джоулева нагрева была на уровне всего лишь десяти градусов. Незначительной в сравнении с пределом текучести материала КС σ_Y , которому становится примерно равным действующее в струе осевое напряжение на шеечной стадии ее растяжения (стадии развития пластической неустойчивости) в естественных условиях, была и магнитная добавка к нему $\sigma_{zm,av}$. По разным данным [5] предел текучести меди в условиях КС лежит в диапазоне 200-400 МРа.

С учетом этого магнитная составляющая среднего осевого напряжения в рассматриваемом участке КС, не превышавшая практически на всем протяжении по абсолютному значению $0.5p_{m,ch}$ (рис. 10, *b*), была при $B_0 = 10.5$ T не выше 10% от значения σ_Y . Как результат, прирост пробивного действия КЗ в экспериментах [21] с воздействием магнитного поля соленоидов на КС был крайне незначительным и не превышал 10%.

Как указывалось выше, в проводившихся по той же схеме и с КЗ близкого диаметра ($d_0 = 56 \text{ mm}$) экспериментах [24] был зафиксирован прирост пробития КЗ на уровне 70% при индукции магнитного поля соленоида всего лишь 1.7 Т, т.е. вшестеро меньшей, чем в части экспериментов [21] с индукцией поля 10.5 Т. Так как согласно соотношениям (26), (33), характеристические значения температуры джоулева нагрева и магнитного давления пропорциональны квадрату индукции магнитного поля соленоида, показатели термического и силового механического воздействия магнитного поля на КС были снижены в экспериментах [24] более чем на порядок в сравнении с их максимумами, достигавшимися в экспериментах [21]. Так как в экспериментах [21] даже при значительно большем джоулевом нагреве КС и силовом электромагнитном воздействии на нее их влияние на пробивное действие струи было крайне незначительным, это дает весомые основания предполагать, что истинная причина зафиксированного в экспериментах [24] эффекта существенного увеличения пробития КЗ связана не с растяжением КС в магнитном поле соленоида. С высокой степенью вероятности этой причиной в соответствии с выдвинутой в [39] гипотезой может являться присутствие в облицовке КЗ в момент его подрыва магнитного поля необходимой интенсивности, возникавшего вследствие увеличенного диаметра соленоидов, использовавшихся в экспериментах [24] для создания магнитного поля на пути движения КС.

Заключение

Предложенная модель эволюции магнитного поля удлиненного соленоида в деформирующейся КС, базирующаяся на допущении о линейности радиального распределения плотности индукционных токов, позволяет провести анализ электромагнитных процессов, происходящих в равномерно удлиняющемся участке струи при его движении в полости соленоида и после выхода из нее, в аналитическом виде. Полученные на основании данной модели результаты в отношении джоулева нагрева материала КС и изменения вследствие действия на струю электромагнитных сил его напряженного состояния, рассматриваемых в качестве факторов возможного замедления развития пластической неустойчивости КС и увеличения ее предельного удлинения при деформировании в магнитном поле, могут служить дополнительным обоснованием гипотезы, предложенной в [39] для объяснения большого расхождения в приросте пробивного действия КЗ по данным экспериментов [21,24].

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Birkhoff G., MacDougall D.P., Pugh E.M., Taylor G.J. // J. Appl. Phys. 1948. Vol. 19. N 6. P. 563–582.
- [2] Лаврентьев М.А. // Успехи математических наук. 1957.
 Т. 12. Вып. 4(76). С. 41–56.
- [3] Chou P.C., Flis W.J. // Propellants, Explosives, Pyrotechnics. 1986. Vol. 11. N 4. P. 99–114.
- [4] *Shekhar H. //* Central European Journal of Energetic Materials. 2012. Vol. 9. N 2. P. 155–185.
- [5] Физика взрыва / Под ред. Л.П. Орленко. В 2-х т. Т. 2. М.: Физматлит, 2004. 656 с.
- [6] Walters W.P., Zukas J.A. Fundamentals of Shaped Charges. NY.: Wiley, 1989. 398 p.
- [7] Petit J. // J. Appl. Phys. 2005. Vol. 98. N 12. P. 123521.
- [8] Hancock S.L. // Intern. J. Impact Eng. 1999. Vol. 23. N 1(1).
 P. 353–363.
- [9] Svirsky O.V., Vlasova M.A., Korotkov M.I., Krutyakov V.A., Toropova T.A. // Intern. J. Impact Eng. 2003. Vol. 29. N 1–10. P. 683–690.
- [10] Бабкин А.В., Ладов С.В., Маринин В.М., Федоров С.В. // ПМТФ. 1997. Т. 38. № 2. С. 3–9. [Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. // J. Appl. Mechan. Tech. Phys. 1997. Vol. 38. N 2. P. 171–176.]
- [11] Walsh J.M. // J. Appl. Phys. 1984. Vol. 56. N 7. P. 1997–2006.
- [12] Romero L.A. // J. Appl. Phys. 1989. Vol. 65. N 8. P. 3006– 3016.
- [13] Бабкин А.В., Ладов С.В., Маринин В.М., Федоров С.В. // ПМТФ. 1999. Т. 40. № 4. С. 25–35. [Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. // J. Appl. Mechan. Tech. Phys. 1999. Vol. 40. N 4. P. 571–580.]
- [14] Littlefield D.L., Powell J.D. // Phys. Fluids A: Fluid Dynamics. 1990. Vol. 2. N 12. P. 2240–2248.
- [15] Pollock C.E. In: Megagauss Magnetic Field Generation and Pulsed Power Applications. NY: Nova Sci. Publ., 1994. P. 309–316.
- [16] Павловский А.И., Пляшкевич Л.Н., Шувалов А.М., Бродский А.Я. // ЖТФ. 1994. Т. 64. Вып. 2. С. 76–82.
- [17] Матросов А.Д., Швецов Г.А. // ПМТФ. 1996. Т. 37. № 4.
 С. 9–14. [Matrosov A.D., Shvetsov G.A. // J. Appl. Mechan. Tech. Phys. 1996. Vol. 37. N 4. P. 464–469.]
- [18] Appelgren P., Skoglund M., Lundberg P., Westerling L., Larsson A., Hurtig T. // J. Appl. Mechan. 2010. Vol. 77. N 1. P. 1–7.
- [19] Федоров С.В., Бабкин А.В., Ладов С.В. // Физика горения и взрыва. 1999. Т. 35. № 5. С. 145–146. [Fedorov S.V., Babkin A.V., Ladov S.V. // Combustion, Explosion, and Shock Waves. 1999. Vol. 35. N 5. P. 598–599.]
- [20] Littlefield D.L. // Phys. Fluids A: Fluid Dynamics. 1991. Vol. 3.
 N 12. P. 2927–2935.
- [21] Бабкин А.В., Маринин В.М., Федоров С.В. // Оборонная техника. 1993. № 9. С. 40-46.

- [22] Швецов Г.А., Матросов А.Д., Станкевич С.В. // ПМТФ. 2015. Т. 56. № 1. С. 150–161. [Shvetsov G.A., Matrosov A.D., Stankevich S.V. // J. Appl. Mechan.Techn. Phys. 2015. Vol. 56. N 1. P. 125–135.]
- [23] Ma B., Huang Z.-X., Zu X.-D., Xiao Q.-Q. // Intern. J. Impact Eng. 2016. Vol. 98. P. 88–96.
- [24] Ma B., Huang Z., Guan Z., Zu X., Jia X., Xiao Q. // Intern. J. Impact Eng. 2018. Vol. 113. P. 54–60.
- [25] Федоров С.В., Болотина И.А., Струков Ю.А. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2018. № 2. С. 39–59. [Fedorov S.V., Bolotina I.A., Strukov Yu.A. // Herald of the Bauman Moscow State Tech. Univ., Nat. Sci. 2018. N 2. P. 39–59.]
- [26] Федоров С.В. // ПМТФ. 2016. Т. 57. № 3. С. 108–120.
 [Fedorov S.V. // J. Appl. Mechan. Tech. Phys. 2016. Vol. 57.
 N 3. P. 483–493.]
- [27] Федоров С.В., Бабкин А.В., Ладов С.В. // ЖТФ. 2003. Т. 73.
 Вып. 8. С. 111–117. [Fedorov S.V., Babkin A.V., Ladov S.V. // Tech. Phys. 2003. Vol. 48. N 8. P. 1047–1052.]
- [28] Федоров С.В. // Физика горения и взрыва. 2005. Т. 41. № 1. С. 120–128. [Fedorov S.V. // Combustion, Explosion, and Shock Waves. 2005. Vol. 41. N 1. P. 106–113.]
- [29] *Федоров С.В.* // Боеприпасы и высокоэнергетические конденсированные системы. 2008. № S2. С. 73–80.
- [30] Shvetsov G., Matrosov A., Fedorov S., Babkin A., Ladov S. // PPPS 2001 — Pulsed Power Plasma Science 2001. 2015. Vol. 1. 1002023. P. 182–186.
- [31] Федоров С.В., Бабкин А.В., Ладов С.В. // ИФЖ. 2001. Т. 74. № 2. С. 79–86. [Fedorov S.V., Babkin A.V., Ladov S.V. // J. Eng. Phys. Thermophys. 2001. Vol. 74. N 2. P. 364–374.]
- [32] Бабкин А.В., Ладов С.В., Маринин В.М., Федоров С.В. // Химическая физика. 1999. Т. 18. № 10. С. 26–36.
 [Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. // Russ. J. Phys. Chem. B. 2000. Vol. 18. N 10–11. P. 1805–1822.]
- [33] Ma B., Huang Z., Xiao Q., Zu X., Jia X., Ji L. // IEEE Transactions on Plasma Sci. 2017. Vol. 45. N 5. P. 875–881.
- [34] Ma B., Huang Z., Guan Z., Jia X., Xiao Q., Zu X. // Intern.
 J. Mechan. Sci. 2017. Vol. 133. P. 283–287.
- [35] Ma B., Huang Z., Zu X., Xiao Q., Jia X. // Modern Phys. Lett. B. 2017. Vol. 31. P. 1750018.
- [36] Xiang H., Meng X., Liang C., Yuan X., Lv Q., Lei B., Zhang Q. // IEEE Transactions on Plasma Sci. 2019. Vol. 47. N 1. P. 944–951.
- [37] Xiao Q.-Q., Huang Z.-X., Zu X.-D., Jia X. // Propellants, Explosives, Pyrotechnics. 2016. Vol. 41. N 1. P. 76–83.
- [38] Ayisit O. // Intern. J. Impact Eng. 2008. Vol. 35. N 12. P. 1399– 1404.
- [39] Федоров С.В., Бабкин А.В., Маринин В.М. // ЖТФ. 2020.
 Т. 90. Вып. 4. С. 637–646. [Fedorov S.V., Babkin A.V., Marinin V.M. // Technical Physics. 2020. Vol. 65. N 4. P. 612-621.]
- [40] Ландау Л.Д., Лифици Е.М. Электродинамика сплошных сред. М.: Наука, 1982. 621 с.
- [41] Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 736 с.
- [42] Лебедев Н.Н. Специальные функции и их приложения. М.: Физматгиз, 1963. 358 с.