12,13

Межфазное натяжение кристаллической наночастицы в жидкой материнской фазе в однокомпонентной металлической системе

© М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов

Кабардино-Балкарский государственный университет им. Х.М. Бербекова, Нальчик, Россия E-mail: sh-madina@mail.ru

(Поступила в Редакцию 12 апреля 2011 г. В окончательной редакции 4 июля 2011 г.)

В рамках термодинамического подхода с использованием двух разделяющих поверхностей получены выражения для межфазного натяжения на плоской и искривленной границах твердое тело-жидкость, а также расстояния между эквимолекулярной разделяющей поверхностью и разделяющей поверхностью, соответствующей нулевой избыточной свободной энергии системы. Проведены численные расчеты для плоских границ, а также твердых наночастиц сферической формы в собственном расплаве в зависимости от их размера при температуре плавления для 50 металлов.

1. Введение

Поверхностное натяжение, как известно [1], играет важную роль во многих процессах, в частности, определяет в значительной степени работу образования кристаллического зародыша в расплаве, скорость гомогенной нуклеации и среднее время ожидания жизнеспособного зародыша в большом объеме материнской фазы, находящейся в метастабильном состоянии. Для малых частиц поверхностное натяжение вносит существенный вклад в условия их равновесия с объемной фазой.

В настоящей работе предпринята попытка получения выражения для межфазного натяжения на плоской и искривленной границах твердое тело-жидкость в однокомпонентных металлических системах. Полученные соотношения позволяют рассчитать межфазное натяжение на плоской границе раздела макроскопических фаз, а также кристаллической наночастицы сферической формы, находящейся внутри жидкой материнской фазы в равновесных условиях. Основной подход, используемый в работе для получения искомых соотношений, основан на введении двух характерных разделяющих поверхностей в пределах переходного слоя, использованный в [2,3] при установлении связи между плотностью когезионной энергии и поверхностной энергией. Настоящая работа является продолжением работ, посвященных размерным эффектам в одно- и многокомпонентных металлических системах [4–12].

Основные соотношения, связывающие межфазное натяжение σ_{SL} на плоской и искривленной границах твердое тело-жидкость с расстоянием между разделяющими поверхностями Δz

Рассмотрим границу твердого металла сферической формы, находящуюся в равновесии со своим расплавом

при температуре тройной точки. Определим межфазное натяжение в такой системе как избыточную свободную энергию $\bar{F}_{N=0}$ на единицу площади Ω

$$\sigma = \bar{F}/\Omega,\tag{1}$$

где $\bar{F} = F - F^{(\alpha)} - F^{(\beta)}$, $\bar{N} = N - N^{(\alpha)} - N^{(\beta)}$, F и N — соответственно свободная энергия и полное число частиц в системе, $F^{(\xi)}$ и $N^{(\xi)}$ — аналогичные величины для фазы ξ ($\xi = \alpha, \beta$), расположенные по обе стороны от разделяющей поверхности. В качестве последней выберем эквимолекулярную разделяющую поверхность, положение которой определяется условием $\bar{N} = 0$. В таком случае в (1) фигурирует избыток свободной энергии на единицу эквимолекулярной разделяющей поверхности $\bar{F}_{\bar{N}=0} = F - F^{(\alpha)}_{\bar{N}=0} - F^{(\beta)}_{\bar{N}=0}$. Введем в рассмотрение еще одну разделяющую поверхность, положение которой определяется условием $\bar{F} = F - f^{(\alpha)}_V V^{(\alpha)}_{\bar{F}=0} - f^{(\beta)}_V V^{(\beta)}_{\bar{F}=0} = 0$, где $f^{(\alpha)}_V$ и $f^{(\beta)}_V -$ объемные плотности свободной энергии в фазах α и β , $V^{(\alpha)}_{\bar{F}=0}$ и $V^{(\beta)}_{\bar{F}=0} -$ объемы фаз α и β , на которые делится общий объем системы V этой разделяющей поверхностью. Выражение (1) можно представить в виде

$$\sigma \Omega = \left(f_V^{(\beta)} - f_V^{(\alpha)} \right) \left(V_{\bar{N}=0}^{(\alpha)} - V_{\bar{F}=0}^{(\alpha)} \right).$$
(2)

Для разности объемов, фигурирующей в (2), находим, исходя из условий $\bar{N} = 0$ и $\bar{F} = 0$,

$$\Delta V^{(\alpha)} = \int_{(V)} \left[\frac{\rho(\mathbf{r} - \rho^{(\beta)})}{\rho^{(\alpha) - \rho^{(\beta)}}} - \frac{f_V(\mathbf{r}) - f_V^{(\beta)}}{f_V^{(\alpha)} - f_V^{(\beta)}} \right] d\mathbf{r}, \quad (3)$$

где $\rho(\mathbf{r})$ и $f_V(\mathbf{r})$ — локальная плотность вещества и локальная плотность свободной энергии в межфазном слое соответственно, $\rho^{(\alpha)}$ и $\rho^{(\beta)}$ — числа молей (частиц) в единице объема в фазах α и β .

Для рассматриваемой сферической частицы (фаза α) в матрице (фаза β)

$$\frac{\Delta V^{(\alpha)}}{\Omega} = \Delta r \left[1 - \frac{\Delta r}{r_e} + \frac{1}{3} \left(\frac{\Delta r}{r_e} \right)^2 \right], \quad (4)$$

где $\Delta r = r_e - r_{\bar{F}=0}$, r_e и $r_{\bar{F}=0}$ — радиусы разделяющих поверхностей, отвечающие условиям $\bar{N} = 0$ и $\bar{F} = 0$ соответственно. Переходя от плотностей свободной энергии к химическим потенциалам в (2) с учетом (4), получим

$$\sigma = \mu_b (\rho^{(\beta)} - \rho^{(\alpha)}) \Delta r \left[1 - \frac{\Delta r}{r_e} + \frac{1}{3} \left(\frac{\Delta r}{r_e} \right)^2 \right], \quad (5)$$

где μ_b — химический потенциал в объемной фазе. Эта формула позволяет рассчитать межфазное натяжение частицы радиуса r_e на границе со своим расплавом по известным значениям объемных характеристик μ_b , $\rho^{(\alpha)}$ и $\rho^{(\beta)}$, а также величины Δr , зависящей от структуры межфазного слоя.

В случае плоской поверхности $(r_e \to \infty)$ для межфазной границы твердое тело-жидкость из (5) следует

$$\sigma_{\infty} = \mu_b (\rho^{(\beta)} - \rho^{(\alpha)}) \Delta z_{\infty}, \qquad (6)$$

где $\Delta z_{\infty} = z_e - z_{\bar{F}}$, \bar{z}_e и $z_{\bar{F}}$ — нормальная к плоской межфазной границе декартова координата указанных выше разделяющих поверхностей. Если допустить, что величина Δr не зависит от r_e и $\Delta r = \Delta z$, то из (5) получим

$$\sigma(r_e) = \sigma_{\infty} \left[1 - \frac{\Delta z_{\infty}}{r_e} + \frac{1}{3} \left(\frac{\Delta z_{\infty}}{r_e} \right)^2 \right].$$
(7)

3. Расчет $\Delta z_{SL\infty}$ и $\sigma_{SL}(r)$ на границе твердое тело—жидкость по известным значениям межфазного натяжения на плоской границе $\sigma_{SL\infty}$

Параметр $\Delta z = \Delta z_{SL\infty}$ (далее везде для упрощения опущен индекс "∞"), характеризующий структуру межфазного слоя на плоской границе твердое тело-жидкость, может быть рассчитан из соотношения (6) по известным значениям входящих в него величин. При этом целесообразно воспользоваться выражением для поверхностного натяжения жидкости на границе с паром, следующего из указанного соотношения, и перейти к соотношению

$$\Delta z_{\rm SL} = \frac{\sigma_{\rm SL\infty}}{\sigma_{\rm LV\infty}} \left(1 - \frac{\Delta D}{D}\right) \left(\frac{\Delta D}{D}\right)^{-1} \Delta z_{\rm LV}, \qquad (8)$$

где $\sigma_{SL\infty}$, $\sigma_{LV\infty}$ и Δz_{SL} , Δz_{LV} — поверхностные натяжения и расстояния между разделяющими поверхностями на соответствующих границах, $\Delta D/D$ — скачок плотности при фазовом переходе, $\Delta D/D > 0$ для нормально плавящихся металлов, $D = D^{(\alpha)}$ — плотность фазы α , g/cm³. Из (8) следует, что параметр Δz_{SL} больше $\Delta z_{\rm LV}$, так как величина $(1 - \Delta D/D)(\Delta D/D)^{-1}$ на несколько порядков больше отношения $\sigma_{SL\infty}/\sigma_{LV\infty}$, которое по абсолютной величине меньше единицы. Для металлов, плавящихся с возрастанием плотности $\Delta D/D < 0$, как видно из (8), $\Delta z_{\rm SL} < 0$. Значения $\Delta z_{\rm LV}$ находились с помощью формулы (6) и наиболее надежных опытных данных $\sigma_{SL\infty}$ и $D^{(\beta)}$ [13]. Для химического потенциала одноатомного идеального газа металлов использовалась формула $\mu_V = RT \ln \lambda$, где $\lambda = CV_Q$, $C = P/kT, V_Q = (2\pi\hbar^2/Aa_0kT)^{3/2}$ — квантовый объем, Р — давление насыщенного пара в тройной точке, A — атомная масса, $a_0 = 1.66042 \cdot 10^{-24}$ g, $\hbar = h/2\pi$, h — постоянная Планка, k — постоянная Больцмана. В табл. 1 приведены использованные нами наиболее известные значения межфазного натяжения $\sigma_{Sl\infty}$ для металлов, взятые из разных источников с указанием методов измерения. По значениям Δz_{SL} , найденным с использованием экспериментальных данных $\sigma_{\mathrm{SL}\infty}$ на плоской границе, может быть рассчитана зависимость межфазного натяжения от радиуса эквимолекулярной разделяющей поверхности $\sigma_{\rm SL}(r_e)$ по формуле (7). Из этих данных следует, что для всех металлов, плавящихся с увеличением объема, межфазное натяжение на границе кристалл-собственный расплав в интервале размеров $\Delta z_{\rm SL} < r_e < \infty$ является непрерывной функцией радиуса r_e и имеет место неравенство $(d\sigma_{\rm SL}/dr_e)_T > 0$. Для металлов, плавящихся с уменьшением объема в указанном интервале размеров, $\sigma_{\rm SL}(r_e)$ тоже является непрерывной функцией, но имеет место неравенство $(d\sigma_{\rm SL}/dr_e) < 0$. При размерах $r_e < \Delta z$ нет оснований полагать, что параметр Δz_{SL} не зависит от размера, и по этой причине расчеты в этом интервале не проводились.

4. Теоретические оценки Δz_{SL} , $\sigma_{SL\infty}$ и $\sigma_{SL}(r)$ на межфазной границе твердое тело—жидкость для металлов

Получим выражения для параметра $\Delta z_{SI} = \Delta z_{SL\infty}$ на межфазной границе твердое тело—жидкость и затем рассчитаем значения межфазного натяжения на плоской границе $\sigma_{SI\infty}$ и наночастицы $\sigma_{SI}(r)$, находящейся в большой материнской фазе (собственный расплав). Введем в рассмотрение химический потенциал $\tilde{\mu}$, в межфазном слое, приведенный к изотропному давлению в объемных фазах. Тогда будем иметь из (3) для случая плоской границы

$$\Delta z_{\rm SL} = \int_{\infty}^{\infty} \left[\frac{\rho(z) - \rho^{(\beta)}}{\rho^{(\alpha)} - \rho^{(\beta)}} - \frac{f_V(z) - f_V^{(\beta)}}{f_V^{(\alpha)} - f_V^{(\beta)}} \right] dz$$
$$= \int_{-\infty}^{\infty} \frac{\mu - \tilde{\mu}(z)}{\mu} \frac{\rho(z)}{\rho^{(\alpha)} - \rho^{(\beta)}} dz.$$
(9)

Из последнего соотношения видно, что для нахождения параметра Δz_{SI} , а следовательно и σ_{SI} , на плоской и

	$\sigma_{ m LV},{ m mJ}/{ m }$	m ² [13]		$\sigma_{\rm SL}, {\rm mJ/m^2}$				A -	
Me	Численные Методы значения измерения		Численные Методы значения измерения		Литературная ссылка	$\Delta z_{\rm LV}$, nm	$\Delta z_{SL}, nm$	$\frac{\Delta z \text{ SL}}{\Delta z \text{ LV}}$	
Li	470	МДГП	30	ПТП	[14]	0.038	0.152	4.0	
Na	200	НК	20	ПТП	[14]	0.041	0.161	3.9	
Cu	1350	НК	200	ГНК	[15]	0.027	0.076	2.8	
			270		[16]		0.103	3.8	
Ag	920	НК	143	ГНК	[15]	0.031	0.086	2.8	
Au	1139	НК	190	КМК	[16]	0.029	0.092	3.2	
			200	МПО	[17]		0.097	3.3	
			132		[18]		0.064	2.2	
Zn	821	МДГП	132	ФКТ	[19]	0.052	0.18	3.5	
			87-123	ДГУ	[20]		0.119-0.168	2.3-3.2	
Cd	627	НК	87	ДГУ	[20]	0.064	0.191	3.0	
Al	930	ВК	158 ± 30	ДГУ	[20]	0.0305	0.070 ± 0.013	2.3 ± 0.4	
			131-153	ПТП	[14]		0.058 - 0.068	1.9 - 2.2	
Ga	714	НК	40	ГНК	[15]	0.030	-0.054	1.8	
			56	МПО	[18]		-0.076	2.5	
In	565	НК	43.5	КМК	[17]	0.036	0.120	3.3	
			31	ГНК	[15]		0.086	2.4	
T1	458	НК	67	ДГУ	[20]	0.039	0.200	5.1	
Fe	1856	НК	330	КМК	[17]	0.030	0.156	5.2	
			204	МПО	[18]		0.096	3.2	
Co	1830	НК	342	КМК	[17]	0.028	0.114	4.1	
			234	МПО	[18]		0.078	2.8	
Ni	1770	НК	378	КМК	[17]	0.028	0.078	2.8	
			255	МПО	[18]		0.053	1.9	
Pt	1746	НК	323	ДГУ	[20]	0.028	0.084	3.0	
Sn	544	НК	60	ГНК	[15]	0.029	0.115	4.0	
			73	КМК	[17]		0.140	4.8	
			59	МПО	[18]		0.117	4.0	
Pb	455	НК	40	ГНК	[15]	0.038	0.098	2.6	
			55	КМК	[17]		0.135	3.6	
			33.3	МПО	[18]		0.082	2.2	
			76	ДГУ	[21]		0.186	4.9	
Bi	375	МДК	69	ГНК	[15]	0.037	-0.206	-5.6	
			85	КМК	[17]		-0.254	-6.7	
			54.4	МПО	[18]		-0.261	-7.1	
			82	ПГП	22		-0.245	-6.6	
			61.3	ДГУ	[23]		-0.232	-6.3	
Hg	497	МДК	23	ГНК	[15]	0.100	0.129	1.29	

Таблица 1. Параметны $\Delta z_{SL\infty}$ и $\Delta z_{LV\infty}$ для металлов, найденные по опытным данным $\sigma_{SL\infty}$ и $\sigma_{LV\infty}$

Примечание. ПТП — понижение температуры плавления малых кристаллов; ГНК — гомогенная нуклеация при кристаллизации; КМК — кристаллизация малых капель; ФКТ — форма канавок травления межзеренных границ; МПО — максимальное переохлаждение; ДГУ — двухгранные углы; МДГП — максимальное давление в газовом пузырьке; НК — неподвижная капля; ВК — висячая капля; МДК — максимальное давление в капле.

искривленной границах, необходимо знать два профиля локальных свойств $\tilde{\mu}(z)$ и $\rho(z)$ в пределах переходного слоя между сосуществующими объемными фазами. Их нахождение представляет собой самостоятельную (и довольно сложную) задачу. При этом необходимо иметь в виду, что плотности энергии и вещества в межфазном объеме не обязательно связаны друг с другом точно также, как в объемной фазе. Учитывая эти трудности, вначале воспользуемся рядом допущений.

4.1. Уравнения состояния $\sigma_{\rm SL\infty} = f(\sigma_{\rm SV}, \sigma_{\rm LV})$ в зависимости от конкретного вида функ-

ции $\Delta z_{SL} = f(\Delta z_{SV}, \Delta z_{LV})$. Выражение (6) может быть представлено в виде

$$\sigma_{\rm SL\infty} = \left(\frac{\sigma_{\rm SV\infty}}{\Delta z_{\rm SV}} - \frac{\sigma_{\rm LV\infty}}{\Delta z_{\rm LV}}\right) \Delta z_{\rm SL},\tag{10}$$

где величины, стоящие в скобке, относятся к границам твердое тело-пар (SV) и жидкость-пар (LV). Если допустить, что $\Delta z_{SV} \cong \Delta z_{LV} \cong \Delta z_{SL}$, то из (10) следует уравнение состояния $\sigma_{SL\infty} = f(\sigma_{SL\infty}, \sigma_{LV\infty})$, известное как правило Антонова

$$\sigma_{\rm SL} = \sigma_{\rm SV} = \sigma_{\rm LV}. \tag{11}$$

Здесь и далее в п. 4.1 для упрощения опущен индекс " ∞ ". При других соотношениях между параметрами Δz_{SL} , Δz_{SV} и Δz_{LV} получается уравнение Гирифалко и Гуда [3].

$$\sigma_{\rm SL} = \sigma_{\rm SV} + \sigma_{\rm LV} - 2\Phi\sqrt{\sigma_{\rm SL}\sigma_{\rm LV}}.$$
 (12)

где множитель Φ , названный ими параметром взаимодействия, имеет то или иное значение в зависимости от конкретного соотношения между указанными параметрами. При $\Phi = 1$ имеет место уравнение Рэлея $\sigma_{SL} = (\sigma_{SV} - \sigma_{LV})^2$. При соотношении $\Delta z_{SL}^{(1)} \cong \Delta z_{SV} \cong \Delta z_{LV}$ параметр Φ имеет вид

$$\Phi^{(1)} = \left(\frac{\sigma_{\rm LV}}{\sigma_{\rm SV}}\right)^{1/2} + \frac{1}{2} \left(\frac{\sigma_{\rm LV}}{\sigma_{\rm SV}} - \frac{\sigma_{\rm SV}}{\sigma_{\rm LV}}\right).$$
(13)

Такое же выражение для параметра $\Phi^{(1)}$ мы получили в работе [11] в локально-координационном приближении, допуская существование бимонослойного межфазного слоя (по монослою со стороны каждой объемной фазы от разделяющей поверхности). Используя выражение для поверхностного натяжения, полученное в [10] в рамках подхода с двумя разделяющими поверхностями, можно установить, что $\Phi^{(1)} = 1 - \Delta D/D - (4/9)(\Delta D/D)^2$. Лучшее согласие с наиболее надежными литературными данными при расчете $\sigma_{SL\infty}$ дает приближение $\Delta z_{SL}^{(2)} \cong 2(\Delta z_{SV} + \Delta z_{LV})$. При этом для параметра $\Phi^{(2)}$ имеет место выражение

$$\Phi^{(2)} = \frac{\sigma_{\rm LV}}{\sigma_{\rm SV}} - \frac{\sigma_{\rm SL}}{\sigma_{\rm LV}} + \frac{1}{2} \left[3 \left(\frac{\sigma_{\rm LV}}{\sigma_{\rm SV}} \right)^{1/2} - \left(\frac{\sigma_{\rm SL}}{\sigma_{\rm LV}} \right)^{1/2} \right], \quad (14)$$

 $\Phi^{(2)} = 1 - 2(\Delta D/D) - (5/18)(\Delta D/D)^2$. Для металлов, плавящихся с уменьшением объема ($v^{(\alpha)} - v^{(\beta)} < 0$), результаты расчетов по соотношениям (10), (11) и (12) необходимо брать по абсолютной величине.

4.2. Локально-координационное приближение. Представления о разорванных связях в приближении ближайших соседей широко и успешно применяются при рассмотрении поверхностных свойств (поверхностной энергии, поверхностного натяжения) на границе конденсирования фаза-пар (вакуум) в однокомпонентных системах вдали от критической точки. Последовательное применение этих представлений к границе твердое тело-жидкость даже при температуре тройной точки сопряжено со значительными трудностями, связанными в первую очередь с характером изменения координационных чисел при переходе от одной объемной фазы к другой через межфазный слой. При вычислении интеграла $\int\limits_{-\infty}^{\infty}
ho(z) dz$ для границы жидкость-пар предполагалось, что поверхностный слой является мономолекулярным и среднее значение локальной плотности (изменяется от $\rho^{(\alpha)}$ до нуля) вещества в переходном слое равно плотности объемной фазы $(\rho(z) = \rho^{(\sigma)} = \rho^{(\alpha)})$. Тогда значение указанного выше

интеграла равно $\rho^{(\sigma)}\tau$, где τ — толщина монослоя (принимается равной среднему межчастичному расстоянию в объемной фазе). Для границы твердое тело-жидкость, гда значения локальной плотности изменяются от $\rho^{(a)}$ до $\rho^{(\beta)}$, по аналогии логично принять условие

$$\int_{-\infty}^{\infty} \rho(z) dz \cong \int_{0}^{d} (\rho^{(\alpha)} - \rho^{(\beta)}) dz, \qquad (15)$$

где *d* — некоторая длина, обеспечивающая равенство этих двух интегралов при замене $\rho(z)$ на $\rho^{(\alpha)} - \rho^{(\beta)}$. В приближении ближайших соседей величина *d* принимается равной среднему межчастичному расстоянию в объемной фазе [24]. На границе двух конденсированных фаз по аналогии примем d равной толщине межфазного слоя τ , которая выражается в виде $\tau = \tau^{(\alpha)} + \tau^{(\beta)} = d^{(\alpha)} + d^{(\beta)}$, где $\tau(\xi)$ — толщина части переходного слоя, расположенного со стороны объемной фазы ξ ($\xi = \alpha, \beta$) от эквимолекулярной разделяющей поверхности, $d^{(\xi)}$ — среднее межчастичное расстояние в объемной фазе ξ. Примем также во внимание, что для жидких металлов вблизи температуры плавления допускается сохранение структуры предплавания твердого металла (это допущение успешно использовалось во многих работах, см. например [25-28]). Тогда в однокомпонентной системе при температуре плавления для границ твердое тело-пар и жидкость-пар будет иметь место равенство $((\mu - \tilde{\mu})/\mu)_{SV} \cong ((\mu - \tilde{\mu})/\mu)$. Для проведения согласованных расчетов межфазного натяжения на границе твердое тело-жидкость в однокомпонентной системе вблизи температуры плавления с учетом принятых выше допущений можно полагать $((\mu - \tilde{\mu})/\mu)_{\mathrm{SL}} \cong ((\mu - \tilde{\mu})/\mu)_{\mathcal{EV}}.$

С учетом указанных выше допущений, получаем из (9)

$$\Delta z_{\rm SL} = \frac{\Delta \bar{n}}{n} \left(1 - \frac{\Delta \bar{n}}{n} \right) \frac{1}{N_0} (\bar{n}_s^{(\alpha)} v^{(\alpha)} + \bar{n}_s^{(\beta)} v^{(\beta)}) = B_\sigma \left[(v^{(\alpha)})^{1/3} + (v^{(\beta)})^{1/3} \right],$$
(16)

где $\bar{n}_s^{(\xi)}$ — среднее число частиц на единицу поверхности фазы ξ на границе с паром, B_{σ} — постоянная, зависящая от структуры предплавления, N_0 — число Авогадро, $v^{(\xi)}$ — молярный объем фазы ξ . Для основных структур предплавления металлов можно показать из статических соображений [26], что $(\Delta \bar{n}/n)\bar{n}_s = A_0(D/A)^{2/3}$, где A_0 постоянная, зависящая от структуры предплавления, которая равна $0.972 \cdot 10^{15}$; $1.0546 \cdot 10^{15}$ и $1.64 \cdot 10^{15}$ соответственно для кубической объемно центрированной, кубической гранецентрированной и гексагональной компактной структур. Для этих же структур соответственно постоянная B_{σ} равна $0.0128 \cdot 10^{-7}$; $0.014 \cdot 10^{-7}$ и $0.0204 \cdot 10^{-7}$. При этом для ртути, имеющей ромбоэдрическую структуру предплавления $B_{\sigma} \cong 0.0569 \cdot 10^{-7}$. учесть приближенно релаксацию поверхности на границе с вакуумом, что приводит вместо B_{σ} к постоянной $\bar{B}_{\sigma} = f_0 B_{\sigma}$, где множитель f_0 равен 1.12; 1.09; 1.00 и 1.04 для указанных выше структур предплавления. Параметр $\Delta z_{\rm SI}$ можно выразить через такое же расстояние на границе жидкость—пар $\Delta z_{\rm LV}$ при одинаковой температуре в виде

$$\Delta z_{\rm SL}^{(1)} = f_0 B_\sigma \left[(v^{(\alpha)})^{1/3} + (v^{(\beta)})^{1/3} \right]$$
$$= 2 \left[1 - \frac{1}{6} \frac{\Delta D}{D} - \frac{1}{18} \left(\frac{\Delta D}{D} \right)^2 \right] \Delta z_{\rm LV} \qquad (17)$$

или

$$\Delta z_{\rm SL}^{(1)} = 4 \left[1 - \frac{1}{6} \frac{\Delta D}{D} - \frac{1}{18} \left(\frac{\Delta D}{D} \right)^2 \right] \delta_{\rm LV},\tag{18}$$

где δ_{LV} — длина Толмена на указанной границе, значения которой для 50 жидких металлов при температуре плавления приведены в [10].

Для межфазного натяжения на плоской границе твердое тело-жидкость, используя (16), получаем из (6)

$$\sigma_{\rm Sl\infty}^{(1)} = B_{\rm SL} \frac{\Delta D}{D} \left[1 + \frac{5}{6} \frac{\Delta D}{D} + \frac{7}{9} \left(\frac{\Delta D}{D} \right)^2 \right] \left(\frac{D^{(\beta)}}{4} \right)^{2/3} |\mu|,$$
(19)

или

$$\sigma_{\rm SL\infty}^{(1)} = 2 \frac{\Delta D}{D} \left[1 + \frac{5}{6} \frac{\Delta D}{D} + \frac{7}{9} \left(\frac{\Delta D}{D} \right)^2 \right] \sigma_{\rm LV}, \qquad (20)$$

где $B_{\rm SL} = 2f_0 B_{\alpha}$. Лучшее согласие с наиболее надежными экспериментальными данными для $\sigma_{\rm SL\infty}$ получается, если для величины d, обеспечивающей равенство интегралов в (15), совместно с условием $(\Delta \mu/\mu)_{\rm SL} \cong (\Delta \mu/\mu)_{\xi \rm V}$ принять $d \cong 2(d^{(\alpha)} + d^{(\beta)})$. В этом случае получаем $\Delta z_{\rm SL}^{(2)} = 2\Delta z_{\rm SL}^{(1)}$ и $\sigma_{\rm SL\infty}^{(2)} = 2\sigma_{\rm Sl\infty}^{(1)}$.

Еще одна возможность получения выражений для $\Delta z_{\rm SL}$ и $\sigma_{\rm SL\infty}$ связана с использованием соотношения $d = (\omega \rho^{(\sigma)})^{-1}$, (ω — молярная поверхность), которое приводит к результату

$$\Delta z_{\rm SL} = \tilde{B}_{\sigma} \left(\frac{v^{(\alpha)} v^{(\beta)}}{v^{(\beta)} - v^{(\alpha)}} \right)^{1/3}, \qquad (21)$$

где $\tilde{B}_{\sigma} = (1/f_0 N_0^{1/3}) \Delta \bar{n} / n (1 - \Delta \bar{n} / n)$ и составляет соответственно 0.0173 · 10⁻⁷, 0.0174 · 10⁻⁷, 0.0222 · 10⁻⁷ и 0.0592 · 10⁻⁷ для структур предплавления ОЦК, ГЦК, ГПУ и ртути.

4.3. Аппроксимация для $(\mu - \tilde{\mu})/\mu$ и $\rho(z)$. Воспользуемся следующим представлением для величины $(\mu - \tilde{\mu})/\mu$ (оно аналогично, но не тождественно соотношению, используемому при получении уравнения Гирифалко и Гуда [29])

$$\frac{\mu - \tilde{\mu}}{\mu} \cong \frac{\mu - \tilde{\mu}^{(\alpha)}}{\mu} + \frac{\mu - \tilde{\mu}^{(\beta)}}{\mu} - 2\Phi \sqrt{\frac{\mu - \tilde{\mu}^{(\alpha)}}{\mu}} \frac{\mu - \tilde{\mu}^{(\beta)}}{\mu}$$
$$= 2(1 - \Phi) \left(\frac{\Delta \mu}{\mu}\right)_{\xi V}, \tag{22}$$

 $\tilde{\mu}_{\xi}$ — химический потенциал, приведенный к изотропному давлению в объемной фазе на границе с паром, $(\Delta \mu/\mu)_{\xi V} = (\mu - \tilde{\mu}_{\xi})/\mu$. В первом приближении для параметра Ф может быть принято выражение (13). Следуя [1], можно принять для среднего значения плотности вещества в переходном слое

$$\bar{\rho}(z) = \rho^{(\sigma)} \cong (\rho^{(\alpha)} \tau^{(\alpha)} + \rho^{(\beta)} \tau^{(\beta)}) / (\tau^{(\alpha)} + \tau^{(\beta)}).$$
(23)

В таком случае, используя (9), (13) и (23), получаем

$$\Delta z_{\rm SL} \cong B_{\rm SL} \left[1 - \frac{1}{18} \frac{\Delta D}{D} - \frac{11}{36} \left(\frac{\Delta D}{D} \right)^2 \right] \\ \times \left[(v^{(\alpha)})^{1/3} + (v^{(\beta)})^{1/3} \right].$$
(24)

Межфазное натяжение на плоской границе твердое тело-жидкость в однокомпонентной системе тогда будет выражаться в виде

$$\sigma_{\rm SL\infty} = 2B_{\rm SL} |\mu| \frac{\Delta D}{D} \left[1 + \frac{7}{9} \frac{\Delta D}{D} + \frac{23}{54} \left(\frac{\Delta D}{D} \right)^2 \right] \\ \times \left(\frac{D^{(\beta)}}{A} \right)^{2/3}.$$
(25)

Вычислим теперь $\Delta z_{\rm SL}$ и $\sigma_{\rm SL\infty}$ с учетом профиля плотности вещества в переходном слое $\rho(z)$. В самом простейшем случае можно предположить постоянство первой производной $\rho'(z)$ в переходном слое $(d\rho/dz = \text{const})$. Помещая начало координат в точке $\rho(0) = (\rho^{(\alpha)} + \rho^{(\beta)})/2$, будем иметь линейную функцию для плотности вещества

$$\rho(z) = \frac{(\rho^{(\alpha)} + \rho^{(\beta)})}{2} + \frac{(\rho^{(\beta)} - \rho^{(\alpha)})}{\tau_{\rho}} z, \qquad (26)$$

где τ_{ρ} — общая толщина переходного слоя, определяемая по плотности вещества. Вычисление интеграла (9) с использованием (22) и (26) приводит к результатам, совпадающим с (24) и (25) с точностью до второго слагаемого в квадратной скобке. В точках, где $z = -\tau_{\rho}/2$ и $z = \tau_{\beta}/2$, первая производная $d\rho/dz$ скачком меняется от своего постоянного значения до нуля, что является следствием приближенного характера функции (26). Аналогичным образом можно находить выражения для $\Delta z_{\rm SL}$ и $\sigma_{\rm SL\infty}$ с использованием других, более реалистичных профилей плотности вещества (функция ошибок, экспоненциальная, гиперболический тангенс и др.).

			•	•				•	•			,			
Me	$\frac{\Delta D}{D},$		$\sigma_{\rm SL} = m I/m^2$			$\sigma_{ m SL}(r_e), { m mJ/m^2}$									
струк-		$\Delta z_{SL\infty}$, nm	0,	$O_{\mathrm{SL}\infty},\mathrm{m}/\mathrm{m}$			Радиус, пт								
тура представ-	[31]	(30)	(31)	Данные [14]											
ления			(51)	Экспе- римент	Расчет	0.1	0.5	1	5	20	30	40	50	100	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Li	1.57	0.136	26.94	30	35	6.92	20.28	23.45	26.21	26.76	26.82	26.85	26.87	26.90	
ОЦК Na ОЦК	2.49	0.165	20.60	20	20	5.31	14.55	17.39	19.93	20.43	20.49	20.52	20.54	20.57	
K OIIK	2.48	0.207	11.43	—	12	4.09	7.36	9.23	10.97	11.32	11.36	11.37	11.39	11.41	
Rb ОЦК	2.53	0.221	9.67	_	10	4.02	5.99	7.65	9.20	9.51	9.55	9.56	9.57	9.60	
Сs ОЦК	2.47	0.238	7.97	_	8	4.02	4.78	6.22	7.59	7.87	7.90	7.92	7.93	7.95	
Be OUK	5.60	0.106	304.00	_	270	28.96	73.84	82.54	89.99	91.44	91.6	91.68	91.73	91.83	
Мg ГПУ	4.98	0.200	125.94	—	100	42.09	82.24	102.41	120.91	124.69	125.10	125.31	125.44	125.69	
Са ОЦК	3.20	0.172	48.89	_	62	13.02	33.99	40.96	47.23	48.47	48.61	48.68	48.73	48.81	
Sr	3.72	0.199	49.92	—	52	16.41	32.71	40.66	47.96	49.42	49.59	49.67	49.72	49.82	
Ва ОЦК	1.88	0.198	24.14	_	44	7.85	15.86	19.69	23.20	23.90	23.98	24.02	24.04	24.09	
Си ГЦК	5.00	0.121	315.14	237 ± 26	234	88.10	245.44	278.77	307.63	313.25	313.88	314.17	314.39	314.76	
Аg ГЦК	5.28	0.136	109.96	172	159	28.19	82.72	95.66	107.00	109.21	109.46	109.59	109.66	109.81	
Au ГЦК	5.00	0.137	278.00	270 ± 10	177	71.17	208.97	241.76	270.47	276.10	276.73	277.05	277.24	277.62	
Zn ГПУ	4.45	0.174	128.65	132	110	34.55	89.16	107.61	124.24	127.54	127.91	128.10	128.22	128.43	
Cd ГПУ	4.45	0.195	88.82	87	73	28.15	58.71	72.64	85.40	87.96	88.24	88.39	88.47	88.65	
А1 ГЦК	6.90	0.135	304.82	158 ± 30	155	78.44	229.84	265.47	302.77	302.08	303.45	303.80	304.00	304.41	
Ga	-3.23	0.128	103.32	_	58	27.43	79.05	90.62	100.69	102.66	102.88	102.99	103.05	103.19	
In OUK	2.25	0.144	52.45	_	34	13.17	38.78	45.25	52.07	51.95	52.20	52.26	52.30	52.38	
TI OUK	2.77	0.149	49.64	_	43	12.41	36.27	42.59	48.17	49.27	49.39	49.45	49.49	49.57	
Fe OIIK	3.30	0.113	234.63	221	241	69.55	185.73	209.19	229.38	233.31	233.75	233.97	234.10	234.37	
Со ГШК	4.40	0.118	351.83	328	306	99.79	275.19	311.87	343.58	349.76	350.45	350.79	351.00	351.42	
Ni FKH	4.90	0.118	387.74	326	325	109.97	303.27	343.70	378.64	385.45	386.22	386.60	386.83	387.28	
Rh FLIK	5.70	0.128	521.46	—	348	138.97	399.58	457.69	508.25	518.14	519.25	519.80	520.13	520.80	
Рd ОЦК	5.60	0.129	365.40	_	272										
Ir ГЦК	4.80	0.130	502.96	—	411	132.64	383.76	440.54	490.02	499.70	500.79	501.33	501.65	502.31	

Таблица 2. Межфазное натяжение $\sigma_{SL\infty}$, $\sigma_{SL}(r)$ и параметр $\Delta z_{SL\infty}$ для металлов (расчет)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Pt	5.65	0.132	497.85	323	299	130.06	378.28	435.19	494.58	493.49	495.67	496.21	496.54	497.20
ГЦК Ті	2.50	0.129	152.91	_	207	40.39	116.76	133.98	151.92	151.59	152.25	152.41	152.51	152.71
ОЦК		~												
Zr	2.00	0.143	130.03	-	187	32.72	96.38	112.32	129.10	128.79	129.41	129.57	129.66	129.84
ОЦК Нf	5.00	0139	380.83	_	271	96.62	284 50	330.20	370 31	378 19	379.07	379 51	379 77	380 30
ОЦК	5.00	0.137	500.05		2/1	90.02	204.30	550.20	570.51	570.17	579.07	577.51	517.11	500.50
v	3.70	0.111	333.60	_	317	100.55	265.17	298.02	326.27	331.76	332.37	332.68	332.86	333.23
ОЦК														
Nb	3.10	0.131	224.33	-	347	58.68	170.56	196.15	218.50	222.86	223.35	223.59	223.74	224.03
ОЦК Та	5.00	0130	560.24	_	415	147 50	427 16	490 54	545 79	556.60	557.81	558 42	558 78	559 51
ОЦК	5.00	0.120	500.21			117.50	127.10	19 0.5 1	515.75	550.00	557.61	556.12	556.76	557.51
Cr	6.10	0.114	428.58	_	293	125.23	337.98	381.41	418.84	426.13	426.94	427.35	427.59	428.08
ОЦК	1.00					100.01								
Mo	4.00	0.124	398.55	-	464	108.94	308.18	351.34	388.78	396.09	396.91	397.32	397.56	398.05
W	5.50	0.126	700.57	_	510	188.46	538.71	615.92	683.04	696.15	697.62	698.35	698.79	699.68
ОЦК	0100	01120	, ,		010	100110	0001/1	01002	000101	070110	077102	0,0000	0,011,2	077100
Mn	3.30	0.129	147.31	-	206	39.04	112.62	129.15	143.55	146.36	146.68	146.84	146.93	147.12
ГЦК	2.00	0.100	202.22		515	105.50	20 (10	227.46	252.05	270.00	200 (7	201.07	201.20	201 76
Re OUK	3.00	0.122	382.23	-	517	105.50	296.48	337.46	372.97	379.90	380.67	381.06	381.30	381.76
Sn	2.70	0.147	76.79	62 ± 10	62	19.22	56.42	66.05	74.56	76.23	76.42	76.51	76.57	76.68
ОЦК									,					,
Pb	3.30	0.162	6 6.82	76	46	17.02	47.51	56.58	64.68	66.28	66.46	66.55	66.60	66.71
ГЦК	2,42	0.167	56.07	55 00	(0)	1 4 1 1	40.22	47.74	54.22	55 (2)	66.70	55.05	55.00	55.00
BI	-3.42	0.157	56.07	55-80	69	14.11	40.32	47.74	54.33	55.63	55.78	55.85	55.89	55.98
Нд	3.47	0.576	102.53	_	23	645.78	29.77	54.81	91.17	99.60	100.57	101.06	101.35	101.94
ромб														
Ru	7.00	0.126	761.52	-	389	204.74	585.47	669.50	742.46	756.72	758.32	759.12	759.60	760.56
ГЦК	1.22	0.160	49.01		102	12.21	24.42	40.00	16.69	47.92	47.05	49.01	49.05	40.12
OIIK	1.55	0.100	40.21	_	105	12.21	54.42	40.90	40.08	47.82	47.95	46.01	48.05	46.15
Ogi	6.10	0.120	781.66	_	507	219.45	609.56	691.86	763.11	777.00	778.55	779.33	779.80	780.73
ОЦК														
Ce	-0.65	0.158	22.96	-	50	5.79	16.47	19.52	22.24	22.78	22.83	22.86	22.88	22.92
ОЦК	0.15	0.150	4.50		50	1.1.4	2.22	2 0 1	4 2 7	1 10	4.40	4.50	4.50	4.51
OIIK	0.15	0.139	4.32	_	39	1.14	5.25	5.64	4.57	4.40	4.49	4.30	4.30	4.31
Nd	0.45	0.160	13.83	_	65	3.50	9.89	11.74	13.72	13.68	13.75	13.77	13.78	13.81
ОЦК														
Gd	1.24	0.160	45.54	—	94	11.55	32.50	38.63	44.10	45.18	45.300	45.36	45.40	45.47
ОЦК	2.00	0.135	125 42		109	37.76	0/ 55	100 22	122.06	110.85	124.85	124.00	125.08	125.25
ОЦК	2.00	0.135	123.42	_	100	52.20	74.55	109.22	122.00	119.05	124.03	124.77	123.00	123.23
La	0.45	0.164	15.36	_	54	3.94	10.88	12.98	14.86	15.24	15.28	15.30	15.31	15.335
ОЦК														

Таблица 2 (продолжение).

Из вышеизложенного следует, что при всех вариантах, рассмотренных в разделах 4.1–4.3, расстояние Δz между эквимолекулярной разделяющей поверхностью и разделяющей поверхностью, соответствующей условию $\bar{F} = 0$, пропорционально $(v^{(\alpha)})^{1/3} + (v^{(\beta)})^{1/3}$. Для межфазного натяжения на плоской границе твердое тело—жидкость при этом получаются выражения, отличающиеся только множителями в квадратных скобках, значения которых близки к единице. При получении этих соотношений для Δz_{SI} и $\sigma_{SL\infty}$ использовались разложения в степенной ряд функции $f(\Delta D/D) = (1 + \Delta D/D)^{n_0}$ с точностью до члена, пропорционального $(\Delta D/D)^2$.

Если пренебречь указанными выше отличиями скобок, получаем

$$\Delta z_{\rm SL} \cong B_{\rm SL} \left[(v^{(\alpha)})^{1/3} + (v^{(\beta)})^{1/3} \right], \qquad (27)$$

$$\sigma_{\rm SL\infty} \cong 2B_{\rm SL} \frac{\Delta D}{D} \left(\frac{D^{(\beta)}}{A}\right)^{2/3} |\mu|, \qquad (28)$$

где значение $B_{\rm SL}$ равно $0.0287 \cdot 10^{-7}$, $0.03052 \cdot 10^{-7}$, $0.0408 \cdot 10^{-7}$ и $0.1183 \cdot 10^{-7}$ соответственно для структур ОЦК, ГЦК, ГПУ предплавления и ртути. Из (28) получаем компактное и легко запоминающееся выражение для межфазного натяжения в виде

$$\sigma_{\rm SL\infty} \cong 4 \, \frac{\Delta D}{D} \, \sigma_{\rm LV\infty}. \tag{29}$$

В (27) и (28) в рамках допущений, принятых при получении соотношений (12) и (13), а также (17) и (19), вместо коэффициента B_{SI} фигурируют $B_{SL}^{L} = B_{SL}/2$.

Из (29) следует, что отношение межфазного натяжения на плоской границе кристалл—жидкость к поверхностному натяжению жидкости на плоской границе со своим насыщенным паром при температуре фазового равновесия определяется скачком плотности при плавлении твердого металла. Аналогичный вывод был сделан для металлов в [30].

Зависимость межфазного натяжения от размера твердой наночастицы, находящейся в равновесии в собственном расплаве в равновесных условиях, может быть рассчитана по формуле

$$\sigma_{\rm SL} = \sigma_{\rm SL\infty} \left[1 - \frac{\Delta z_{\rm SL}}{r_e} + \frac{1}{3} \left(\frac{\Delta z_{\rm SL}}{r_e} \right)^2 \right], \qquad (30)$$

где значения $\sigma_{SL\infty}$ и Δz_{SL} находятся с использованием приведенных выше выражений. При этом для металлов, плавящихся с возрастанием плотности, во всех этих выражениях необходимо брать $\Delta D/D$ и Δz_{SL} с отрицательным знаком, а $\sigma_{SL\infty}$ — с положительным.

5. Результаты численных расчетов $\Delta z_{SL}, \sigma_{SL\infty}, \sigma_{SL}(r_e)$ и их краткое обсуждение

Нами рассчитаны значения Δz_{SL} , $\sigma_{SL\infty}$ и $\sigma_{SL}(r_e)$ для пятидесяти металлов при температуре плавления по формулам (24), (25), (30) соответственно. Все входные данные для чистых металлов, необходимые для расчетов, приведены в [10]. В табл. 2 приведены результаты численных расчетов. Там же приведены наиболее надежные литературные данные (экспериментальные и теоретические) $\sigma_{SL\infty}$ этих металлов, а также значения по скачкам плотности при фазовом переходе. Из табл. 2 следует, что результаты расчетов межфазного натяжения поликристаллов металлов на плоской границе со своим расплавом при температуре плавления неплохо согласуются с литературными данными. Результаты теоретических расчетов расстояния $\Delta z_{SL\infty}$ также удовлетворительно согласуются с аналогичными данными, приведенными в таблице, которые получены с использованием экспериментальных данных $\sigma_{SL\infty}$.

Результаты расчетов по формулам (17) и (19) неплохо согласуются с теоретическими данными, полученными электронно-статическим методом в [30]. Более заметное расхождение наблюдается при сравнении их с результатами расчетов, приведенных в [14]. Довольно часто эти расхождения связаны со значениями объемных характеристик металлов, используемых в расчетах. Так, в [14] использовались в качестве входных данных коэффициенты упаковок для металлов η, а при расчете в настоящей работе — данные, полученные нами из статистических соображений для относительного числа недостающих соседей $\Delta \bar{n}/n$, ретикулярной плотности \bar{n}_s и характерного расстояния d. Использование еще одного входного параметра η для ОЦК $\eta = 0.68$, для ГЦК и ГПУ $\eta = 0.74$ и для Hg $\eta = 0.52$ приводит к возрастанию вычисленных нами значений $\sigma_{SL\infty}$ и их лучшему совпадению с результатами эксперимента и вычислений в [14]. При этом, однако, необходимо иметь в виду, что использование коэффициентов упаковок η при вычислении с тех же позиций поверхностного натяжения жидких металлов $\sigma_{LV\infty}$ приводит к результатам, хуже согласующимся с экспериментальными данными (наиболее надежно измеряются $\sigma_{LV\infty}$, а не $\sigma_{SL\infty}$).

6. Заключение

В заключение отметим, что согласованные значения поверхностного натяжения металлов на границах жидкость-пар, твердое тело-пар (формула (17) из [10]) и твердое тело-жидкость (формула (25)), вычисленные с единых позиций, позволяют, в свою очередь, рассчитать важнейшие характерстики границы раздела контактирующих тел, в том числе работу адгезии (по формуле Дюпре), краевой угол смачивания твердого тела металла собственным расплавом (по формуле Юнга), коэффициент растекания (по формуле Харкинса) и построить треугольник Неймана [32]. Результаты таких расчетов, в частности, отчетливо показывают, что имеет место неполное смачивание твердого металла собственным расплавом при температуре тройной точки. Последнее имеет принципиальное значение для процесса нуклеации [33] и при рассмотрении возможности перегрева твердых тел [34].

Список литературы

- [1] А.И. Русанов. Фазовые равновесия и поверхностные явления. Химия, Л. (1967). 388 с.
- [2] А.И. Русанов. Доклады АН СССР. 3, 700 (1981).
- [3] А.И. Русанов, В.А. Прохоров. Межфазная тензиометрия. Химия, СПб. (1994). 398 с.

- [4] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Поверхность. Синхротронные и нейтронные исследования 11, 102 (2009).
- [5] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Поверхность. Синхротронные и нейтронные исследования 12, 94 (2009).
- [6] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 71. 755 (2007).
- [7] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 72. 1424 (2008).
- [8] M.A. Shebzukhova, A.A. Shebzukhov. J. Phys.: Conf. Ser. 98, 062 025 (2008).
- [9] З.А. Шебзухов, М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 73, 983 (2009).
- [10] М.А. Шебзухова, З.А. Шебзухов, А.А. Шебзухов. Изв. РАН. Сер. физ. **74**, 751 (2010).
- [11] М.А. Шебзухова, А.А. Шебзухов. Изв. РАН. Сер. физ. 74, 1238 (2010).
- [12] M.A. Shebzukhova, A.A. Shebzukhov. In: XIV liquid and amorphous metals conference. Roma (2010). P. 132.
- [13] В.И. Ниженко, Л.И, Флока. Поверхностное натяжение жидких металлов и сплавов. Металлургия. М. (1981). 208 с.
- [14] Q. Jiang, H.M. Li. Surf. Sci. Rep. 63, 427 (2008).
- [15] В.П. Скрипов, М.З. Файззулин. Фазовые переходы кристалл-жидкость-пар и термодинамическое подобие. Физматлит, М. (2003). 160 с.
- [16] J.J. Hoyt, M. Asta, A. Karma. Phys. Rev. Lett. 86, 5530 (2001).
- [17] Н.Т. Гладких, С.И. Богатыренко. Вестн. ЧГУ. Сер. Физика. 417, 51 (1998).
- [18] Д.Н. Холломон, Д. Тарнбалл. Успехи физики металлов. 1, 304 (1956).
- [19] J.J. Hoyt, M. Asta, A. Karma. Mater. Sci. Eng. R 41, 121 (2003).
- [20] L. Granasy, M. Tegze. Mater. Sci. Sci. Forum 77, 243 (1991).
- [21] M.E. Glicsman, C.L. Vold. Scripta Met. 5, 493 (1971).
- [22] M.E. Glicsman, C.L. Vold. Acta Met. 17, 1 (1969).
- [23] E.G. Wash, M.E. Glicsman. Phil. Mag. 24, 577 (1971).
- [24] W.D. Harkins. Proc. Nat. Acad. Sci. 5, 562 (1919).
- [25] С.Н. Задумкин. Докл. АН СССР 112, 453 (1957).
- [26] С.Н. Задумкин. В сб.: Поверхностные явления в расплавах и возникающих из них твердых фазах / Под ред. С.Н. Задумкина. Кабардино-Балкарское книжное изд-во. Нальчик (1965). С. 12.
- [27] С.И. Попель. Поверхностные явления в расплавах. Металлургия, М. (1994). 432 с.
- [28] В.К. Семенченко. Поверхностные явления в металлах и сплавах. Государственное издательство техникотехнической литературы. М. (1957). 491 с.
- [29] L.A. Girifalco, R.J. Good. J. Phys. Chem. 61, 904 (1957).
- [30] С.Н. Задумкин. Физика металлов и металловедение. 13, 24 (1962).
- [31] С.В. Станкус. Изменение плотности элементов при плавлении. Методы и экспериментальные данные. Предпринт № 247-91, Новосибирск. (1991). 78 с.
- [32] F.P. Buff, H. Saltsburg. J. Chem. Phys. 26, 23 (1957).
- [33] Н.Т. Гладких, А.П. Крышталь, Р.П. Сухов. ФТТ 52, 585 (2010).
- [34] Ю.В. Найдич, В.М. Перевертайло, Э.М. Лебович, Л.П. Обущак. В сб.: Адгезия расплавов. Наук. думка, Киев (1974). С. 3.