01

Экспериментальное и теоретическое исследование осциллятора с соударениями

© В.В. Нарожнов

Институт прикладной математики и автоматизации филиал Федерального научного центра "Кабардино-Балкарский научный центр РАН", 360000 Нальчик, Россия e-mail: narojnov.victor@gmail.com

Поступило в Редакцию 15 апреля 2019 г. В окончательной редакции 19 февраля 2020 г. Принято к публикации 27 апреля 2020 г.

Представлены результаты исследования колебаний нелинейного механического осциллятора с упругими соударениями. Эксперимент проводился с помощью электромеханического осциллятора с соударениями. Теоретическая модель построена на основе уравнения движения с учетом упругой силы, рассчитываемой в рамках контактной теории Герца. Показано, что для осциллятора с соударениями могут иметь место бифуркации и аттракторы типа "устойчивый фокус" и "предельный цикл". Для анализа спектральных характеристик сигналов использовалась фурье-фильтрация.

Ключевые слова: нелинейный осциллятор, упругий удар, контактная теория Герца, бифуркации при соударениях, фурье-фильтрация.

DOI: 10.21883/JTF.2020.10.49798.166-19

Введение

Осциллятор с соударениями, являясь модельной физической системой, встречается в различных приборах и устройствах, например, в атомно-силовых микроскопах (ACM) и микроэлектромеханических системах (MЭМС). Колебания с соударениями наблюдаются также и во многих естественных процессах, в частности в микробиологических системах.

В [1] проводилось экспериментальное и численное исследование динамики осциллятора с соударениями при наличии вязкого демпфирования. Исследовались такие характеристики, как "сила-отклонение" и "сила-скорость". Система изучалась с учетом нелинейной жесткости и эффектов трения, рассматриваемых отдельно. Авторы наблюдали множество бифуркационных явлений, в том числе возникновение бифуркаций при ударе (в английской терминологии — grazing bifurcations). Было отмечено, что бассейны притяжения аттрактора дают информацию относительно полного набора решений для системы, учитывая определенный набор параметров. В [2] обнаружили три основных типа бифуркаций при ударе осциллятора: 1) переход с одного устойчивого цикла на другой с добавлением каскада, 2) переход от устойчивого цикла к хаотическому аттрактору, 3) столкновение хаотического аттрактора и устойчивого цикла, который считается локальной бифуркацией. Бифуркации такого типа являются "нетрадиционными", в том смысле, что они не встречаются в гладких системах. Помимо этого зафиксированы различные бифуркационные сценарии, возникающие при изменении амплитуды возбуждения осциллятора [3]. При этом наиболее типичный сценарий имеет место, когда

устойчивый цикл аттрактора в результате соударений осциллятора переходит к другому устойчивому циклу. Другой динамический сценарий связан с эволюцией аттрактора, которая определяется сложным взаимодействием между гладкими и негладкими бифуркациями. В некоторых случаях проявилось сосуществование аттракторов через прерывистый переход от одного цикла к другому. Наблюдался также переход и к хаотическому аттрактору через удвоение цикла.

Осциллятор с соударениями можно рассматривать как частный случай билинейного осциллятора с бесконечной жесткостью при сжатии [4]. Было показано, что без учета внешней силы имеется некоторое множество собственных времен удара осциллятора, которое в целом устойчиво относительно изменения начальных условий. Если период внешней силы соответствует данному множеству собственных времен ударов, то может возникать резонансный режим колебаний. Другие режимы вынужденных колебаний не приводят к явлению резонанса. Из этого следует важный вывод: если период внешней силы соизмерим с временем между двумя последовательными ударами, то резонансный режим в данном случае может не достигаться.

В [5] изучался нелинейный динамический отклик кантилеверов АСМ при соударении зонда с образцом. Были выявлены нелинейные особенности системы сканирования АСМ, включая явление многократного отскока кантилевера, ведущее к образованию петли гистерезиса. Установлена тесная связь между особенностями потенциального взаимодействия и нелинейным откликом кантилевера. В частности, подробно обсуждаются эффекты сил Ван-дер-Ваальса, наноразмерные контактные нелинейности, затухание кантилевера, а также влияние вынужденного и параметрического возбуждения на бифуркации и неустойчивости вынужденного периодического движения системы. Результаты показывают, что методы идентификации нелинейных систем могут быть использованы в качестве эффективных инструментов для извлечения подробной информации о потенциале взаимодействия "зонд-поверхность". Измерения максимальной силы взаимодействия в режиме амплитудной модуляции АСМ проведены в [6]. Была также выведена формула для максимальной силы при отталкивающем гармоническом законе взаимодействия и проведено численное моделирование. Результаты численного моделирования согласуются с теорией. Кроме того, проанализированы основные факторы, влияющие на результаты эксперимента: сила адгезии, точность определения добротности кантилевера, точность измерения статической жесткости, возможное несовпадение его статической и динамической жесткости. По мнению авторов, результаты работы можно использовать для прогнозирования максимальной силы в системе зонд-образец.

Колебания с соударениями встречаются также в микромеханических и микро-электромеханических системах. Так, в [7] изучалась динамика осцилляторов с соударениями с применением кусочно-нелинейной модели. Авторы рассмотрели случай, когда деформация при соударениях велика и функционирование МЭМС происходит в области нелинейного частотного отклика. С помощью численного эксперимента было показано, что нелинейность не только сдвигает область бифуркации, но также изменяет ширину полосы пропускания. В [8] разработан и изготовлен другой вариант МЭМС — автономный механический осциллятор-ударник с МЭМС-резонатором в качестве элемента управления частотой. С помощью численного моделирования было показано, что нелинейные свойства осциллятора-ударника существенно влияют на принцип работы МЭМС. Нелинейность, в частности, проявляется в том, что амплитуда вынужденных колебаний осциллятора может изменять частоту колебаний.

Учитывая актуальность проведенных ранее исследований [1–8], целью настоящей работы являлось детальное экспериментальное и теоретическое изучение нелинейных физических явлений, возникающих при колебаниях осциллятора с соударениями. Данная цель достигалась решением следующих задач: экспериментальные исследования сигналов, возникающих при соударениях электромеханического осциллятора с поверхностью твердого тела; разработка и реализация математической модели осциллятора с соударениями; применение фурьефильтрации для интерпретации экспериментальных и теоретических сигналов.

1. Эксперимент

В настоящей работе использовался электромеханический осциллятор, конструкция которого была предло-

Рис. 1. Экспериментальная осциллограмма осциллятора с соударениями: *1* — сигнал возбуждения, *2* — сигнал, соответствующий соударениям осциллятора.

жена в [9]. Его принцип работы заключается в следующем. Переменный сигнал синусоидальной формы с генератора подается на катушку. Переменное магнитное поле, возникающее в катушке, приводит в колебательное движение упругий элемент (осциллятор), который представляет собой тонкую металлическую балку с корундовым зондом на свободном конце. В процессе колебаний зонд совершает удары по поверхности образца. Амплитуда колебаний осциллятора и соответственно сила удара зависят от величины переменного напряжения на катушке. Для измерения сигналов использовался пьезоэлектрический датчик и двухканальный осциллограф. Отметим, что похожие измерения с пружинным маятником проводились в [10].

В процессе эксперимента регистрировались поверхностные акустические волны с вертикальной поляризацией (так называемые волны Релея), которые возникают при ударе зонда о поверхность образца. Если упругая среда является линейной и непоглощающей, то амплитуда регистрируемых колебаний должна однозначно определяться силой удара твердого зонда о поверхность образца. В качестве образца использовалась толстая алюминиевая пластина. Модуль упругости корунда, из которого изготовлен зонд, составляет 382 GPa, что намного превышает модуль упругости алюминия 70 GPa (указанные значения приведены в [11]). В связи с этим деформация зонда в экспериментах была исключена. Радиус кривизны кончика зонда составлял приблизительно 100 µm. Расстояние между зондом и пьезоэлектрическим датчиком составляло 0.5 ст. Частота возбуждающего сигнала 25 Hz.

На рис. 1 показаны осциллограммы сигналов: *1* — сигнал, подаваемый на катушку, *2* — сигнал отклика. При максимумах и минимумах задающего сигнала *1* происходят смещения осциллятора. В промежутках между ними осциллятор совершает затухающие колебания. При этом зонд наносит удары по образцу с частотой, близкой к некоторой собственной частоте.

В экспериментах было обнаружено существенное увеличение частоты колебаний осциллятора с соударениями по сравнению с частотой задающего сигнала. Из осциллограммы на рис. 1 следует, что при частоте задающего сигнала 25 Hz частота соударений осциллятора составляет ~ 2.5 kHz, т.е. происходит умножение частоты приблизительно в 100 раз. Тем самым осциллятор с соударениями функционирует как своеобразный электромеханический умножитель частоты.

Другое замеченное явление при малых действующих значениях переменного тока заключается в том, что пакеты сигналов, относящиеся к нарастающей и спадающей фазам задающего сигнала 1, имеют различную амплитуду, но повторяются с каждым периодом (рис. 1). Это объясняется следующим образом. При подаче на катушку переменного тока в нарастающей фазе напряжение возрастает и магнитное поле катушки увеличивается. ЭДС самоиндукции в этот момент препятствует протеканию тока от генератора. За спадающую фазу задающего сигнала, когда напряжение на катушке уменьшается, магнитное поле создает ЭДС самоиндукции, которая совпадает по фазе с током. Ток самоиндукции в катушке старается теперь "поддержать" уменьшающийся переменный ток и сохранить большую величину магнитного потока. В данный полупериод индуктивная катушка не потребляет энергию, а отдает ее обратно генератору. Таким образом, происходит непрерывный обмен энергий между катушкой и генератором. При этом средняя потребляемая мощность катушки равна нулю. С увеличением действующего значения переменного тока описанное явление перестает быть заметным.

2. Теоретическая модель

Для интерпретации экспериментов воспользуемся моделью, согласно которой при ударах зонда по поверхности твердого тела возникает ее упругая деформация. В теории контактного взаимодействия Герца этой деформации соответствует сила [12]:

$$F = -\theta(x-h) \frac{4E\sqrt{R(x-h)^3}}{3(1-\nu^2)},$$
(1)

$$\theta(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

где $\theta(x)$ — функция Хэвисайда, x — смещение зонда, h — высота, на которой находится зонд в начальный момент времени, R — радиус кривизны кончика зонда, E и ν — модуль упругости и коэффициент Пуассона материала образца. Функция Хэвисайда $\theta(x)$ определяет условие удара: если x > h, то в нижней фазе движения зонда происходит удар, в противном случае F = 0 и деформации поверхности нет.

С учетом (1) движение осциллятора с соударениями можно описать следующей задачей Коши:

$$\frac{d^2u}{d\xi^2} + 2a\,\frac{du}{d\xi} + u + b\theta(u-1)(u-1)^{3/2} = c\,\cos\Omega\xi, \quad (2)$$

$$u(0) = 0, \quad \left(\frac{du}{d\xi}\right)_{\xi=0} = 0, \quad (3)$$
$$u = \frac{x}{h}, \quad \xi = \omega_0 t,$$

$$a = \frac{\gamma}{m\omega_0}, \ b = \frac{4E\sqrt{Rh}}{3(1-v^2)m\omega_0^2}, \ c = \frac{F_0}{m\omega_0^2h}, \ \Omega = \frac{\omega_g}{\omega_0},$$

где ω_0 — собственная (резонансная) частота свободных колебаний осциллятора, t — время, γ — коэффициент затухания, m — эффективная масса осциллятора, F_0 амплитуда внешней силы, ω_g — частота внешнего возбуждения, a, b, c, Ω — безразмерные коэффициенты. Коэффициент а характеризует затухание колебаний осциллятора; b определяется упругими характеристиками образца; c задает амплитуду приложенной внешней силы; Ω определяет частоту внешнего возбуждения. Уравнение, близкое по виду к (2), использовалось в [13] для расчета фазовых траекторий.

Дифференциальное уравнение (2) является нелинейным и получить его общее решение в аналитическом виде не представляется возможным. Задача Коши (2), (3) решалась численно. Если в данной задаче шаг интегрирования превышает характерный временной масштаб осцилляций, относящихся к соударениям осциллятора, то решение не будет устойчивым. Поэтому шаг интегрирования уменьшался до стабилизации решения с наперед заданной точностью. Кроме того, для сравнения применялся метод интегрирования Адамса. Было обнаружено, что оба метода применительно к рассматриваемой задаче дают приблизительно одинаковые результаты. Таким образом, были получены устойчивые решения задачи.

Рис. 2. Результаты численного решения задач (2), (3).

На рис. 2 показаны примеры решений, полученные методом Рунге-Кутты 4-го порядка точности с фиксированным шагом для различных значений безразмерных коэффициентов.

Результаты численного моделирования подтверждают явление многократного отскока зонда, которое обнаруживается экспериментально. В решении, которое имеет общий осциллирующий характер, можно выделить две компоненты: низкочастотные колебания, отвечающие за приложенную внешнюю силу, и высокочастотные затухающие колебания, соответствующие ударам осциллятора. При увеличении параметра *b* частота затухающих колебаний осциллятора возрастает, а амплитуда убывает.

На рис. 3, а представлен фазовый портрет экспериментального сигнала. Для его построения проводилась кубическая сплайн интерполяция данных с целью обеспечения непрерывности первой производной. Можно видеть, что в фазовом пространстве образуется аттрактор типа "устойчивый фокус", который соответствует затухающим колебаниям осциллятора при его ударах о поверхность образца. Аналогичный аттрактор возникает в фазовом пространстве и при численном решении задачи (2), (3), что показано на рис. 3, b. Здесь также имеют место бифуркации при ударе и еще один аттрактор — "предельный цикл", который соответствует приложенной внешней силе. В наших экспериментах данный аттрактор отсутствует, так как сигнал измеряется пьезоэлектрическим датчиком с образца. Чтобы экспериментально выявить аттрактор типа "предельный цикл", необходимо измерять сигнал непосредственно с осциллятора.

Рис. 3. Фазовые портреты: *а* — экспериментальный сигнал, *b* — численное решение задач (2), (3).

Рис. 4. Решение задач (2), (3) с выделенными частотными характеристиками.

Математическая модель (2), (3) не учитывает флуктуации, которые имеют место в натурных экспериментах. Между тем стохастический характер колебаний реального осциллятора выявляется на фазовом портрете (рис. 3, *a*). Несмотря на то, что колебания осциллятора описываются детерминистическим уравнением (2), в натурных экспериментах всегда обнаруживается определенный динамический хаос, который вызывается разбросом начальных условий и всевозможными механическими и электрическими шумами. Математически это может, в частности, означать, что в натурных экспериментах условия (3) не выполняются точно.

Численные решения задачи (2), (3) анализировались с применением фурье-преобразования. Проводилась фильтрация сигналов с целью выделения высокочастотных составляющих, относящихся к ударам осциллятора. Фильтрация осуществлялась путем изменения фурьеспектра

$$C'_n = C_n \theta(\Delta - |C_n|),$$

где Δ — задает уровень обрезания спектра, C_n — коэффициенты дискретного преобразования Фурье функции $u(\xi)$. Сигнал восстанавливается путем обратного преобразования с коэффициентами C'_n . Результаты решения задачи фильтрации показаны на рис. 4. Здесь можно видеть, что в восстановленном сигнале отсутствуют низкочастотные колебания, соответствующие внешней переменной силе. Несмотря на наличие явления Гиббса, модельные сигналы с выделенными частотными характеристиками качественно похожи на экспериментальные (рис. 1).

Заключение

В работе представлены результаты исследования вынужденных колебаний осциллятора с соударениями. Было обнаружено, что осциллятор совершает затухающие колебания с частотой, которая может намного превышать частоту внешней силы. Для интерпретации экспериментов была предложена модель, в которой удар осциллятора описывается с помощью контактной теории Герца. Выведено нелинейное уравнение движения осциллятора и получены его численные решения. Численное моделирование выявляет явление многократного отскока зонда, которое наблюдается экспериментально. Показано, что для экспериментальных сигналов и численных решений уравнения движения осциллятора в фазовой плоскости имеет место аттрактор типа "устойчивый фокус", который описывает затухающие колебания. С применением фурье-фильтрации получено численное решение с выделенными частотными характеристиками, которое качественно воспроизводит экспериментальные сигналы.

Полученные результаты могут оказаться полезными при разработке новых динамических методов диагностики упругих свойств твердых тел.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- Lawrence N.V., Christopher J.B. // AIP Conf. Proceed. 2000. Vol. 502. P. 469–475.
- [2] Chin W., Ott E., Nusse H.E., Grebogi C. // Phys. Rev. E. 1994.
 Vol. 50. N 6. P. 4427–4444.
- [3] Ing J., Pavlovskaia E., Wiercigroch M., Banerjee S. // Physica D. 2010. Vol. 239. P. 312–321.
- [4] Dyskin A.V., Pasternak E., Pelinovsky E. // J. Sound Vibration. 2012. Vol. 331. N 12. P. 2856–2873.
- [5] Lee S.I., Howell S.W., Raman A., Reifenberger R. // Phys. Rev. B. 2002. Vol. 66. P. 115409.
- [6] Щербин Б.О., Анкудинов А.В., Киюц А.В., Лобода О.С. // ФТТ. 2014. Т. 56. Вып. 3. С. 516–521.
- [7] Zhang W., Turner K.L. // The 13th Intern. Conf. Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers. TRANSDUCERS'05. Seoul, Korea, 2005. June 5–9. Vol. 1. P. 768–771.
- [8] Wei X., Anthony C., Lowe D., Ward M. // Procedia Chemistry 1. 2009. Vol. 1. N 1. P. 855–858.
- [9] Пат. РФ. № 2552600. Рехвиашвили С.Ш., Нарожнов В.В. Стенд для исследования вязкоупругих свойств металлов и сплавов с помощью зондового акустического метода.
- [10] Зейликович И.С., Никитин А.В., Василевич А.Е. // ЖТФ. 2020. Т. 90. Вып. 1. С. 5–10.
- [11] Физические величины: Справочник / А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др. / под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [12] Ландау Л.Д., Лифици Е.М. Теория упругости. М.: Физматлит, 2001. 264 с.
- [13] Pust L., Peterka F. // Meccanica. 2003. Vol. 38. P. 99-116.