11

Особенности фазовых состояний двумерного разбавленного магнетика с фрустрацией

© Д.Н. Ясинская, В.А. Улитко, Ю.Д. Панов

Уральский федеральный университет, Екатеринбург, Россия E-mail: daria.iasinskaia@urfu.ru

Поступила в Редакцию 26 марта 2020 г. В окончательной редакции 26 марта 2020 г. Принята к публикации 2 апреля 2020 г.

> Для изучения свойств разбавленного изинговского магнетика рассматривается двумерная спин-псевдоспиновая модель с заряженными примесями и фрустрацией, вызванной конкуренцией зарядового и магнитного типов упорядочений. С помощью численного расчета классическим методом Монте-Карло была получена фазовая диаграмма основного состояния, а также исследованы необычные фазовые состояния, возникающие при конечных температурах. Были обнаружены области, в которых наблюдаются фазовые переходы порядок– порядок, а также возвратные фазовые переходы.

> Ключевые слова: разбавленный изинговский магнетик, классический метод Монте-Карло, фрустрация, фазовые переходы.

DOI: 10.21883/FTT.2020.09.49784.18H

1. Введение

В настоящее время изучение свойств неупорядоченных и фрустрированных магнетиков, а также разбавленных систем, представляет большой интерес с фундаментальной и практической точки зрения. Такие системы имеют богатую фазовую диаграмму основного состояния и обладают высокой чувствительностью к внешним воздействиям, демонстрируя различные типы фаз и фазовых переходов при конечных температурах [1–3]. Интерес к необычным фазовым состояниям таких систем особенно актуален с учетом их тесной связи со спиновыми жидкостями [4].

Рассматриваемая нами спин-псевдоспиновая модель принадлежит к широкому классу псевдоспиновых моделей типа Блюма–Эмери–Гриффитса [5], которые широко используются для описания свойств квантовых и классических жидкостей, бинарных и тернарных сплавов, метамагнетиков, разбавленных магнетиков, холодных атомов и многих других физических систем [6]. Спинпсевдоспиновая модель была предложена нами ранее [7] для описания конкуренции магнитного и зарядового упорядочений в ВТСП-купратах в нормальном состоянии. В данной модели для CuO2 плоскости купрата наряду с [CuO₄]⁶⁻ центрами, обладающими спином 1/2, рассматриваются взаимодействующие $[CuO_4]^{5-}$ и [CuO₄]⁷⁻-центры со спином 0 в основном состоянии. Более подробное обоснование модели и возможность ее применения для описания физических свойств купратов, а также результаты в приближении среднего поля приведены в работах [8,9]. Гамильтониан модели включает одноузельные (Δ) и межузельные (V) заряд-зарядовые корреляции для немагнитных центров, имеющие вид одноионной анизотропии и изинговского обмена на языке псевдоспиновых операторов, а также обычное спиновое обменное взаимодействие в форме Изинга (J):

$$\mathscr{H} = \Delta \sum_{i} S_{iz}^{2} + V \sum_{\langle ij \rangle} S_{iz} S_{jz} + \tilde{J} \sum_{\langle ij \rangle} \sigma_{iz} \sigma_{jz} - \mu \sum_{i} S_{iz}.$$
(1)

Здесь $\sigma_{iz} = (1 - S_{iz}^2)s_{iz}$, $\tilde{J} = Js^2$, μ — химический потенциал, необходимый для учета условия постоянства заряда

$$n = \frac{1}{N} \sum_{i} \hat{S}_{iz} = \text{const}, \qquad (2)$$

где n — плотность заряда. Состояния, отвечающие двум проекциям псевдоспина $S_z = \pm 1$, соответствуют двум немагнитным состояниям $[CuO_4]^{5-,7-}$ с зарядами ± 1 , отсчитываемыми от заряда, которым обладает магнитное состояние $[CuO_4]^{6-}$ с $S_z = 0$. Магнитное состояние с $S_z = 0$ является спиновым дублетом s = 1/2. Суммирование идет по узлам двумерной квадратной решетки, $\langle ij \rangle$ означает ближайших соседей.

Термин "фрустрация" может иметь разные значения, поэтому в данной работе его необходимо уточнить. Фрустрированными можно назвать системы с отличной от нуля энтропией основного состояния [10]. В рассматриваемой нами системе из-за наличия сильно взаимодействующих примесей ненулевая энтропия основного состояния наблюдается в широком диапазоне параметров [11]. В данной работе точкой фрустрации мы будем называть значения параметров модели, при которых наблюдается смена типа упорядочения с зарядового на магнитное в основном состоянии. Она является классическим аналогом квантовой критической точки.

Рис. 1. Фазовые диаграммы основного состояния для предела слабого спинового обмена, полученные *a*) в ПСП и *b*) с помощью метода МК.

Особенностью нашей модели является наличие как беспорядка (отожженных заряженных примесей), так и фрустрации, связанной с конкуренцией взаимодействий разного типа. В работах [12,13] показано, что внесение в систему примесей и различных дефектов структуры существенно влияет на фазовые состояния и критическое поведение, а также расширяет возможности использования рассматриваемой модели для описания реальных физических систем. Таким образом, представляется интересным изучить влияние заряженных примесей на фазовые состояния нашей системы вблизи точки фрустрации.

2. Методы

Для численного моделирования мы использовали классический метод Монте-Карло (МК). Условие постоянства заряда (2) обеспечивалось модификацией алгоритма Метрополиса [14]. Расчеты проводились на квадратной решетке с периодическими граничными условиями, линейными размерами *La* и количеством узлов $N = L \times L$, где a — постоянная решетки, принятая за 1. Все расчеты МК проводились для решетки L = 64, с отжигом $1 \cdot 10^6$ МК шагов на узел, данные усреднялись по 100 копиям системы. Все обсуждаемые в статье эффекты и результаты проверялись для L = 256.

Температурные зависимости теплоемкости и восприимчивости определяются с помощью флуктуационных соотношений

$$C = \frac{1}{N} \frac{\langle E^2 \rangle - \langle E \rangle^2}{k_{\rm B} T^2}; \quad \chi = \frac{1}{N} \frac{\langle \mathcal{O}^2 \rangle - \langle \mathcal{O} \rangle^2}{k_{\rm B} T}, \qquad (3)$$

где $k_{\rm B}$ — постоянная Больцмана, E — энергия системы с гамильтонианом (1). Параметры порядка \mathcal{O} для шахматных антиферромагнитной и зарядово-упорядоченной фазы определялись следующим образом:

$$\mathcal{O} = \begin{cases} m_1 - m_2, \\ M_1 - M_2. \end{cases}$$
(4)

Здесь $m_{\lambda} = \sum_{i \in \lambda} s_{iz}$ — намагниченность подрешетки $\lambda = 1, 2, \ M_{\lambda} = \sum_{i \in \lambda} S_{iz}$ — суммарный заряд подрешетки λ (псевдонамагниченность).

Зарядовый и спиновый структурные факторы вычислялись с помощью следующих выражений

$$S(\mathbf{q}) = \frac{1}{N^2} \sum_{lm} e^{i\mathbf{q}(\mathbf{r}_l - \mathbf{r}_m)} \langle S_{lz} S_{mz} \rangle,$$

$$s(\mathbf{q}) = \frac{1}{N^2} \sum_{lm} e^{i\mathbf{q}(\mathbf{r}_l - \mathbf{r}_m)} \langle s_{lz} s_{mz} \rangle.$$
(5)

Критические температуры фазовых переходов определялись по максимумам теплоемкости и восприимчивостей. Погрешности определения критических температур в этом случае не превышали 1% в сравнении с критическими температурами, полученными по методу кумулянтов Биндера. Наличие зарядового и антиферромагнитного порядков (как дальнего, так и ближнего) определялось с помощью значений структурных факторов в точке $a\mathbf{q} = (\pi, \pi)$.

3. Результаты и их обсуждение

В работе [15] было показано, что в приближении среднего поля (ПСП) изменение соотношения параметров V и J приводит к двум качественно различающимся фазовым диаграммам основного состояния. В настоящей работе мы ограничились случаем слабого спинового обмена (V = 4J). В этом случае в ПСП в основном состоянии формируются 4 фазы с зарядовым упорядочением (CO) типа шахматной доски (рис. 1, *a*). Фаза COI соответствует зарядовому порядку без спиновых центров, COII и COIII разбавлены спиновыми центрами, распределенными только по одной подрешетке. В фазе COII, при $|n| \ge 0.5$, одна подрешетка полностью заселена зарядовыми центрами одного типа. В ПСП обе фазы обладают магнитным упорядочением, которого, очевидно, не наблюдается при численном

Рис. 2. Диаграмма возможных фазовых состояний. Вблизи точки фрустрации $\Delta^*/J = 1.5$ существуют области 1, 2 и 3, в которых наблюдается смена типов упорядочений при понижении температуры. Горизонтальные пунктирные линии соответствуют температурным фазовым диаграммам, изображенным на рис. 3–5. Вертикальная пунктирной линия соответствует зависимостям структурных факторов от плотности заряда *n* на рис. 6.

расчете МК. ПСП для фазы FIM предсказывает ферромагнитное упорядочение, однако численный расчет показал наличие разбавленного антиферромагнитного (AFM) упорядочения при малых n и ближнего AFMупорядочения при 0.33 $\leq n < 0.5$. Кроме того, фазовая диаграмма основного состояния, полученная в рамках метода МК (рис. 1, b), отличается наличием большой области ближнего зарядового порядка (SRO) того или иного типа. Звездочками обозначены фазы, полученные в рамках ПСП. Особый интерес представляет исследование фазовых состояний системы при конечных температурах. Полная диаграмма возможных фазовых состояний для $V = 4\tilde{J}$ представлена на рис. 2. Вблизи точки фрустрации $\Delta^*/J = 1.5$ наблюдаются три области, обозначенные цифрами 1, 2 и 3 в рамках, в которых происходит смена типа упорядочения при понижении температуры.

На рис. 3–5 представлены температурные фазовые диаграммы для n = 0.1, n = 0.15 и n = 0.225, соответствующие горизонтальным линиям в областях 1, 2 и 3 на рис. 2 соответственно. Справа от фазовых диаграмм представлены моментальные снимки фрагментов решетки 16×16 узлов. Разным градациям серого соответствуют разные проекции псевдоспина $S_z = \pm 1$ (2 зарядовых состояния) и спина $s_z = \pm 1/2$ (2 магнитных состояния). В области 1 для n = 0.1 (рис. 3) при понижении температуры происходит фазовый переход из неупорядоченного состояния (NO) в AFM-фазу, а затем, при более низких температурах, происходит второй фазовый переход типа порядок-порядок со сменой AFM-упорядочения на COIII. Смена типа упорядочения наблюдается вплоть до значения $\Delta/J = 1.5$.

В области 2 ("перемычка") такая смена упорядочений происходит дважды при понижении температуры. Это изображено на рис. 4 для n = 0.15. Таким образом, происходят три последовательных фазовых перехода: из высокотемпературной NO-фазы в упорядоченное AFM-состояние, затем смена на зарядовое упорядочение COIII и возвратный фазовый переход в AFM-фазу. На линии для n = 0.225 (рис. 5) при $\Delta/J > \Delta^*/J = 1.5$ также наблюдается смена одного типа упорядочения на другой, а именно COIII на AFM.

На рис. 6 представлена зависимость максимальных значений зарядового и спинового структурных факто-

Рис. 3. Температурная фазовая диаграмма для *n* = 0.1 вблизи точки фрустрации. При понижении температуры наблюдается второй фазовый переход, сопровождающийся сменой AFM-упорядочения на СОШ.

Рис. 4. Температурная фазовая диаграмма для *n* = 0.15 вблизи точки фрустрации. Наблюдается двойная смена типа упорядочения при понижении температуры, т. е. возвратный фазовый переход в AFM.

Рис. 5. Температурная фазовая диаграмма для *n* = 0.225 вблизи точки фрустрации. При понижении температуры наблюдается второй фазовый переход с COIII на AFM.

ров в точке (π, π) от концентрации заряда *n*. Этот рисунок соответствует вертикальной линии $\Delta/J = 1.52$ на рис. 2. Величина максимума спинового (зарядового) структурного фактора в точке (π, π) позволяет судить о наличии АFM- (СО-) упорядочения и определить границу между дальним и ближним порядками. В данном случае мы определяли эту границу по величине структурного фактора, равной 0.1. Важно отметить, что определенный структурный фактор может достигать своего максимального значения не в основном состоянии, а при конечных температурах в связи со сменой типов упорядочений. Как показано на рис. 6, при малых *n* в системе формируется дальний АFM-порядок. При

увеличении *n* (области 2 и 3), СО- и АFM-упорядочение "сосуществуют", сменяют друг друга. Условие сохранения концентрации заряда (2) формально соответствует наличию внешнего поля, действующего на псевдоспиновую подсистему. В случае слабого обмена при больших *n* зарядовое упорядочение минимизирует энергию зарядзарядовых корреляций. В этом смысле зарядовое упорядочение индуцируется условием постоянства заряда. В фазе FIM одна подрешётка целиком заполнена различными магнитными центрами, а вторая — зарядовыми состояниями одного типа, разбавленными небольшим количеством магнитных центров. Поэтому фаза FIM выглядит как порядок типа COII, разбавленный ближним

Рис. 6. Зависимость максимумов зарядового и спинового структурных факторов в точке (π, π) от концентрации заряда n для $\Delta/J = 1.52$.

АFM-порядком. Она сохраняется вплоть до n = 0.5, причём для $n \gtrsim 0.42$ величина пика спинового структурного фактора в точке (π, π) не превышает 0.002.

4. Заключение

С помощью классического метода МК мы исследовали двумерную спин-псевдоспиновую модель для изинговского магнетика, разбавленного заряженными примесями и фрустрированного конкуренцией зарядового и магнитного упорядочений. Особое внимание было уделено влиянию отожженных заряженных примесей на фазовые состояния системы вблизи точки фрустрации в случае слабого спинового обмена.

Показано, что в разбавленной системе конкуренция зарядового и магнитного упорядочений приводит к формированию необычных фазовых состояний при конечных температурах.

Моделирование методом МК позволило уточнить фазовую диаграмму основного состояния, полученную ранее в ПСП, и определить границу между дальним и ближним порядками. Также была построена диаграмма возможных фазовых состояний, учитывающая их эволюцию с понижением температуры. Вблизи точки фрустрации $\Delta^*/J = 1.5$ были обнаружены три области, в которых при конечных температурах происходит смена типов упорядочений, а также возвратные фазовые переходы. Данный эффект вызван комбинацией следующих факторов. В случае слабого спинового обмена существенная концентрация заряженных примесей приводит к зарядовому упорядочению, в отличие от случая сильного спинового обмена [8], при котором наблюдается фазовое расслоение на макроскопические области, состоящие из зарядовых и магнитных центров. Кроме того, в случае слабого обмена в точке фрустрации основное состояние вырождено по энергии для двух различных типов упорядочений — зарядового и антиферромагнитного. В результате, при конечных температурах вблизи точки фрустрации могут проявляться упорядочения, которые не соответствуют минимальной энергии при T = 0.

Финансирование работы

Работа была выполнена при поддержке программы повышения конкурентоспособности Уральского федерального университета (Акт 211 Правительства РФ, соглашение № 02.А03.21.0006) и Министерства образования и науки РФ, проект FEUZ-2020-0054, а также при поддержке РФФИ в рамках научного проекта № 18-32-00837\18.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- H.T. Diep. Frustrated Spin Systems. 2nd ed. World Scientific, Singapore (2013).
- [2] T.A. Kaplan, N. Menyuk. Phil. Mag. 87, 25, 3711 (2007).
- [3] S.T. Bramwell, M.J.P. Gingras. Science 294, 1595 (2001).
- [4] L. Balents. Nature 464, 7286, 199 (2010).
- [5] M. Blume, V.J. Emery, R.B. Griffiths. Phys. Rev. A 4, 1071 (1971).
- [6] V.V. Hovhannisyan, N.S. Ananikian, A. Campa, S. Ruffo. Phys. Rev. E 96, 6, 062103 (2017).

- [7] Y.D. Panov, A.S. Moskvin, A.A. Chikov, I.L. Avvakumov. J. Supercond. Nov. Magn. 29, 4, 1077 (2016).
- [8] Ю.Д. Панов, В.А. Улитко, К.С. Будрин, Д.Н. Ясинская, А.А. Чиков. ФТТ 61, 5, 822 (2019).
- [9] А.С. Москвин, Ю.Д. Панов. ФТТ 61, 9, 1603 (2019).
- [10] A.V. Zarubin, F.A. Kassan-Ogly, A.I. Proshkin. arXiv preprint 2002.05430 (2020).
- [11] A.V. Shadrin, V.A. Ulitko, Y.D. Panov. J. Phys.: Conf. Ser. 1389, *1*, 012088 (2019).
- [12] V.S. Dotsenko. Phys.-Usp. 165, 481 (1995).
- [13] G. Giacomin. École d'Été de Probabilités de Saint-Flour XL 2025 (2010).
- [14] K.S. Budrin, V.A. Ulitko, A.A. Chikov, Yu.D. Panov, A.S. Moskvin. PCT'2018, 22 (2018).
- [15] Y.D. Panov, A.S. Moskvin, A.A. Chikov, K.S. Budrin. J. Low Temp. Phys 187, 5-6, 646 (2017).

Редактор Е.В.Толстякова