05,13

Spin-Dependent Electron Transport in MeRAM

© N.Kh. Useinov¹, A.P. Chuklanov², D.A. Bizyaev², N.I. Nurgazizov², A.A. Bukharaev²

¹ Institute of Physics, Kazan Federal University,

Kazan, Russia

² Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences,

Kazan, Russia

E-mail: nuseinov@mail.ru Received: March 26, 2020 Revised: March 26, 2020 Accepted: April 2, 2020

The paper presents theoretical model of a straintronics magnetoelectric random-access memory (MeRAM) storage cell with configurational anisotropy. The MeRAM cell consists of ferromagnetic layers with different orientations of the quasi-uniform magnetization, which is divided into identical magnetic tunnel junction's ferromagnet|insulator|ferromagnet, in the form of a sandwich of planar layers. The modified theory for magnetic tunnel junction is used to calculate the spin-dependent current and tunnel magnetoresistance like functions of orientations magnetizations of layers.

Keywords: straintronics, magnetic heterostructure, magnetic tunnel junction, spin-dependent current, tunnel magnetoresistance.