05,13

Ферромагнетизм в гетероструктуре ферромагнитная пленка железо-иттриевого граната/ферромагнитный интерметаллид

© Т.А. Шайхулов¹, Г.А. Овсянников¹, К.И. Константинян¹, А.А. Климов^{1,2}, В.В. Демидов¹, К.Л. Станкевич¹, N. Tiercelin³, P. Pernod³, С.А. Никитов¹

¹ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия ² Российский технологический университет (МИРЭА), Москва, Россия ³ University of Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, Lille F-59000, France

E-mail: gena@hitech.cplire.ru

Поступила в Редакцию 26 марта 2020 г. В окончательной редакции 26 марта 2020 г. Принята к публикации 2 апреля 2020 г.

> Исследованы магнитные свойства и ферромагнитный резонанс в гетероструктуре, состоящей из эпитаксиальной пленки железо-иттриевого граната ($Y_3Fe_5O_{12}$) и редкоземельной интерметаллической сверхрешетки нанометровой толщины, представляющая собой обменно-связанные слои ($TbCo_2/FeCo$)_n. Сверхрешетка ($TbCo_2/FeCo$)_n обеспечивает гигантскую магнитострикцию и управляемую наведенную магнитную анизотропию, индуцированную магнитным полем или упругими напряжениями. Было экспериментально обнаружено магнитное взаимодействие пленок в гетероструктуре ($TbCo_2/FeCo$)_n/ $Y_3Fe_5O_{12}$ и зарегистрирован спиновый ток, протекающий через их границу.

> Ключевые слова: ферромагнитный резонанс, гетероструктура, сверхрешетка, магнитную анизотропия, спиновый ток.

DOI: 10.21883/FTT.2020.09.49774.08H

1. Введение

Структура, в которой происходит генерация спинового тока, как правило, состоит из двух слоев: магнитного (металла или диэлектрика) и немагнитного металла. Спиновый ток может детектироваться с помощью обратного спинового эффекта Холла (ISHE) в материале с сильным спин-орбитальным взаимодействием, путем преобразования в ток проводимости [1,2]. Однако не только немагнитные металлы могут применяться в качестве ISHE-детекторов спинового тока. В ряде работ было показано, что магнитные металлы, такие как пермаллой Ni₈₁Fe₁₉, а также Fe, Co, Ni могут использоваться в качестве детекторов спинового тока [3-5]. Когда спиновый ток инжектируется в ферромагнетик, происходит его конвертация в зарядовый ток из-за ISHE. Было показано наличие самоиндуцированного обратного спинового эффекта Холла в пермаллое [6,7].

Сверхрешетки (TbCo₂/FeCo)_n (TCFC), содержащие элемент Tb с сильным спин-орбитальным взаимодействием (большой атомный вес Z = 159), отличаются высокой температурой Кюри ($T_{CU} \approx 420$ K), гигантской магнитострикцией и управляемой наведенной магнитной анизотропией [8,9]. Такие свойства пленок TCFC полезны для создания элементов спинтроники. Сильное спин-орбитальное взаимодействие TCFC позволяют надеяться, что эти пленки можно использовать для детектирования спинового тока с помощью обратного спинового эффекта Холла (ISHE). Использование ферромагнитных изоляторов таких как Y₃Fe₅O₁₂ (YIG) имеет преимущество по сравнению с проводящими ферромагнетиками из-за малого затухания спиновых возбуждений (Гильберт параметр $\alpha = 6 - 7 \cdot 10^{-5}$) и высокой температуры Кюри ($T_{CU} = 560 \,\mathrm{K}$), что позволяет проводить эффективную спиновую накачку при комнатной температуре [10]. Сообщалось, что спиновый ток возникает при контакте пленки YIG с ферромагнитной пленкой FeNi, в которой детектировалось напряжение за счет ISHE [3-5]. В предыдущей работе [11] были представлены предварительные результаты исследования магнитных взаимодействий в гетероструктурах TCFC/YIG, а также TCFC/La_{0.7}Sr_{0.3}MnO₃. Наблюдалось увеличение ширины линии ферромагнитных резонансов в гетерострктурах ТСFC/YIG, оценена величина спиновой проводимости границы. Экспериментально наблюдалось электрическое напряжение, вызванное обратным спиновым эффектом Холла в пленке TCFC в условиях ферромагнитного резонанса в YIG. В настоящей работе сообщается об исследовании ферромагнитного резонанса и обратного спинового эффекта Холла в гетероструктурах TCFC/YIG в широком частотном и температурном диапазонах. Определена энергия обменного взаимодействия пленок УІС и ТСГС в гетероструктуре. Из измерений ширины линии ферромагнитных резонансов в гетероструктурах ТСFС/YIG оценены величины спиновой проводимости границ. Экспериментально наблюдалось электрическое напряжение, вызванное обратным спиновым эффектом Холла в пленке TCFC в условиях ферромагнитного резонанса в YIG.

Ферромагнетизм гетероструктуры (TbCo₂/FeCo)_n/Y₃Fe₅O₁₂

Эпитаксиальная пленка граната $Y_3Fe_5O_{12}$ (YIG) толщиной $10\,\mu$ m выращивалась на подложке (111) $Gd_3Ga_5O_{12}$ толщиной $500\,\mu$ m с помощью молекулярной эпитаксии на обе стороны подложки. Подложка с пленкой YIG была разрезана на несколько частей с размерами $4 \times 5 \text{ mm}^2$. Поверх пленки YIG на одну из сторон с помощью магнетронного распыления наносилась сверхрешетка интерметаллидов (TbCo₂/FeCo)_n толщиной 10, 20 и 40 nm. Магнитная анизотропия в сверхрешетке TCFC наводилась с помощью дополнительного магнитного поля, накладываемого в процессе напыления [11,12]. Образец без напыленной пленки TCFC использовался для изучения автономных пленок YIG.

Исследование магнитного момента пленок с помощью вибромагнетометра (см. рис. 1) показало, что поле насыщения сверхрешетки TCFC $H_S \approx 1500$ Ое значительно превышает поле для YIG-пленки $H_S \approx 200$ Ое. Намагниченности обоих пленок лежат в плоскости подложки. При изменении направления внешнего магнитного поля четко наблюдается ярко выраженная анизотропия намагниченности сверхрешетки TCFC. В то же время анизотропия намагниченности YIG-пленки не была зарегистрирована. Значение намагниченности сверхрешетки TCFC составляет значение 920 G, а для YIG-пленки — 160 G.

Ферромагнитный резонанс в гетероструктуре (TbCo₂/FeCo)_n/Y₃Fe₅O₁₂

Ферромагнитный резонанс (ФМР) гетероструктур измерялся либо с использованием полосковой линии в режиме отражения СВЧ-излучения в диапазоне частот 1-20 GHz, либо с использованием объемного одномодового СВЧ-резонатора на частоте 9 GHz. Подложка с пленкой прижималась к полосковой линии с сопротивлением 50 Ω. Магнитная составляющая СВЧ-поля была направлена вдоль длинной стороны подложки. Постоянное магнитное поле прикладывалось в плоскости подложки перпендикулярно протекающему транспортному току. При измерениях в дипазоне 9 GHz угол между транспортным током и магнитным полем изменялся в дипазоне 180 градусов (см. часть 4). Температура гетероструктуры при СВЧ-измерениях изменялась в диапазоне 77-300 К. На регистрируемых спектрах были видны только линии ФМР от слоев YIG, так как их толщины на три порядка превышали толщину слоя TCFC.

В режиме модуляции магнитного поля измерялась производная коэффициента отражения (*dP/dH*).

Рис. 1. Зависимость намагниченности гетероструктур YIG/GGG и TCFC/Si от внешнего магнитного поля при направлении магнитного поля вдоль легкой (*ea*) и трудной (*ha*) осей намагниченности при T = 300 K.

Рис. 2. Спектры ФМР (dP/dH) гетероструктуры TCFC/YIG при толщине пленки TCFC 10 nm для частот F = 1.8, 1.7, 1.5, 1.2 GHz сверху вниз, при температуре T = 300K. Спектры сдвинуты по оси ординат для наглядности. Точки — эксперимент, сплошные линии — подгонка кривых тремя лоренцевыми линиями.

На рис. 2 представлены спектры ФМР (зависимости dP/dH(H)) для гетероструктуры TCFC/YIG при комнатной температуре для значений частоты CBЧ-поля F = 1.8, 1.7, 1.5, 1.2 GHz. В ФМР-спектре гетероструктуры при комнатной температуре доминируют две лоренцевые линии, вызванные наличием двух спиновых подсистем по обе стороны от GGG-подложки.

Связь СВЧ-поля с намагниченностью YIG-пленки приводит к возникновению спин-волновых резонансов. Из-за малого затухания в YIG-пленки при магнитном поле, расположенном в плоскости пленки при $H < H_0$ (H_0 — резонансное поле ФМР) возбуждаются поверхностные магнитостатические волны (MSSW), резонансы

которых проявляются в виде пиков ФМР. Не исключено, что пики на dP/dH(H), возникающие после двух доминирующих пиков вызваны резонансом поверхностных магнитостатических волн. При больших значениях магнитного поля $(H > H_0)$ могут возбуждаться резонансы объемных магнитостатических волн (MSBVWs) [13–17], однако резонансы этих волн отсутствуют в нашем случае.

На рис. 3 приведена зависимость резонансного поля от частоты ФМР. Сплошной линией показана кривая, определенная по формуле Кителя

$$(\omega/\gamma)^2 = H_0(H_0 + 4\pi M_0), \tag{1}$$

где $\omega = 2\pi F$ — круговая частота ФМР, M_0 — намагниченность YIG в гетероструктуре. Наилучшее совпадение эксперимента и расчета дают значения $M_0 \approx 100$ G. Отличие намагниченности YIG, полученной из измерений на вибромагнетометре (рис. 1) и зависимости резонансного поля от частоты ФМР (рис. 3), вероятно вызвано деградацией магнитных параметров YIG при напылении пленки TCFC.

Для гетероструктуры с толщиной пленки TCFC равной 40 nm при увеличении частоты CBЧ-поля до 9 GHz спектры гетероструктуры хорошо описываются двумя лоренцевыми линиями (см. рис. 4, *a*). Мы предполагаем, что одна из линий соответствует чистому YIG, а другая — двуслойной структуре TCFC/YIG. Из-за разницы на три порядка толщин пленок YIG и TCFC и сильного затухания ФМР в TCFC [11], ФМР от TCFC не наблюдается на фоне сигнала от YIG. По уширению линии ФМР за счет возбуждения на границе двух ферромагнетиков спинового тока мы определили, какая

Рис. 3. Частотная зависимость резонансного поля H_0 для YIG в гетероструктуре TCFC/YIG при толщине пленки TCFC 40 nm. Сплошной линией показана зависимость (1) при намагниченности $M_0 \approx 100$ G. На вставке показана частотная зависимость $H_0(F)$ на низких частотах. Показанная ошибка соответствует частотной зависимости разности резонансных полей двух линий с наибольшей интенсивностью.

Рис. 4. *а* — ФМР-спектры гетероструктуры TCFC/YIG с толщиной пленки TCFC равной 40 nm. *b* — ФМР спектр пленки YIG до напыления TCFC. Частота CBЧ-поля равна 9 GHz.

из линий соответствует чистому YIG (ширина линии 15 Oe), а какая — двуслойной структуре YIG/TCFC (ширина линии 26 Oe). Увеличение ширины линии ФМР для гетероструктуры TCFC/YIG вызвано увеличением затухания из-за протекания спинового тока через границу гетероструктуры. Отметим, что пленка YIG до напыления TCFC описывается одной лоренцевой линией с шириной линии 9 Oe (см. рис. 4, *b*).

На рис. 5 представлены температурные зависимости резонансных полей двух выделенных линий гетероструктуры, имеющих наибольшую интенсивность. Наблюдаемый сдвиг в резонансных полях можно объяснить влиянием межслойного взаимодействия двух соседних ферромагнитных слоев: сверхрешетки TCFC и пленки YIG. Аналогичный эффект наблюдался ранее на гетероструктурах TCFC/LSMO [18]. В [18] показано, что в этом случае ФМР YIG описывается соотношением (1), но с заменой H_0 на $H_0 + H_J$, где $H_J = J/(Md)$, J — константа межслойного обмена, M — намагниченность, а d — толщина пленки YIG, покрытой TCFC.

Рис. 5. Температурные зависимости резонансного поля (H_0) для двух пиков ФМР-спектра гетероструктуры TCFC/YIG при толщине TCFC пленки 40 nm. Треугольники (H_1) относятся к двуслойной структуре YIG/TCFC, квадраты (H_2) — к YIG. Частота СВЧ-воздействия равна 9 GHz.

Рис. 6. Температурные зависимости намагниченности и энергии обменного взаимодействия в гетероструктуре TCFC/YIG при толщине 40 nm.

Для определения температурной зависимости константы взаимодействия J сначала, используя соотношение (1), была определена температурная зависимость намагниченности чистого YIG (см. квадраты на рис. 5). Затем, из разности ($H_2 - H_1$) была получена температурная зависимость для H_J . Полученные в результате температурные зависимости J представлены на рис. 6. Отрицательные значения энергии межслойного взаимодействия позволяют нам заключить, что граница раздела TCFC/YIG может характеризоваться антиферромагнитным межслойным взаимодействием.

4. Спиновый ток в гетероструктуре TCFC/YIG

ТСFС имеет сильное спин-орбитальное взаимодействие и имеет низкое удельное сопротивление $10^{-4}-10^{-5}$ Ωст в нашем температурном интервале. Для детектирования спинового тока за счет ISHE в двуслойной структуре YIG/TCFC на поверхности пленки TCFC-гетероструктуры формировались контактные площадки. Образец помещался в центральной плоскости прямоугольного микроволнового резонатора TE₁₀₂. Переменное поле было направлено вдоль линии измерения напряжения. Постоянное поле вращалось в плоскости образца. Переменное поле создавалось диодом Ганна, работающим на частоте 9 GHz. Для увеличения чувствительности переменное поле модулировалось на частоте 100 kHz. При этих же условиях измерялся сигнал ФМРобразца.

Был обнаружен сигнал, который является суммой двух составляющих: первая появляется вследствие детектирования ФМР-сигнала образца на контактах, а вторая является следствием обратного спинового эффекта Холла, который преобразует спиновый ток в электрический. Для разделения этих двух вкладов сигналы напряжения были измерены при двух противоположно направленных внешних магнитных полях. На верхнем графике рис. 7, а представлен спектр ФМР, снятый при модуляция внешнего СВЧ-поля. Сигнал ФМР не меняет своего знака при повороте поля на 180 градусов, в то время как сигнал от спинового тока меняет свой знак на противоположный (см., например, [19]). Таким образом, составляющую, определяемую спиновым током, можно выделить путем вычитания сигналов, полученных при противоположно направленных магнитных полях. На рис. 7, b и с представлены сигналы, которые измеряются на контактах к пленке TCFC. На рис. 7, d представлен результат вычитания двух кривых, что дает сигнал спинового тока. Видно, что у спинового тока

Рис. 7. $a - \Phi$ MP-спектр гетероструктуры, измеренный на отражение при модуляции СВЧ-поля; b и c — напряжение на пленке TCFC для противоположно направленных полей V_+ и V_- ; d — напряжение на пленке V_{sp} , вызванное протекающим поперек границы спиновым током, полученное путем вычитания двух напряжений для противоположно направленных полей.

b

Рис. 8. *а* — Угловая зависимость интенсивности линии напряжения на контактах. Квадраты и кружки соответствуют двум противоположным направлениям поля. *b* — Угловые зависимости напряжения на пленке TCFC, полученные в режиме ФМР (квадраты) и напряжения на пленке TCFC, вызванное протеканием спинового тока (кружки).

наблюдается только один пик. Это объясняется тем, что спиновый ток возникает на границе YIG-TCFC, а вторая сторона не влияет на спиновый ток. Поскольку сигнал ФМР на контактах соизмерим с сигналом спинового тока, то даже небольшая погрешность, обусловленная экспериментальной установкой, искажает выделяемый сигнал спинового тока, что затрудняет количественное исследование характеристик спинового тока.

Далее были сняты угловые зависимости сигналов Φ MP и напряжений на контактах при противоположных направлениях внешнего магнитного поля. Для каждого угла спектры были апроксимированы двумя лоренцевыми линиями и была рассчитана интенсивность каждого сигнала. На рис. 8, *а* представлена угловая зависимость интенсивностей сигналов (площадей регистрируемых линий). Постоянное поле для красных и черных точек направлено в противоположные стороны. Как было указано выше, разница интенсивностей для сигналов с противоположно направленными полями будет характеризовать спиновый ток, а сумма сигналов — сигнал Φ MP (см. рис. 8, *b*). На графиках интенсивность нормирована на максимальное значение сигнала Φ MP.

Используя данные, представленные в разделе 3, можно определить спиновую проводимость границы гетероструктуры TCFC/LSMO. Мы предполагаем, что уширение линии гетероструктуры $\alpha = \alpha_0 + \alpha'$ происходит только за счет протекания спинового тока через границу YIG/TCFC. В этом случае спиновая проводимость выражается как [20]:

$$g_{eff}^{\uparrow\downarrow} = \frac{4\pi\gamma_g M_s d_{\rm YIG}}{g\mu_B\omega_f} \left(\Delta H_{\rm YIG/TCFC} - \Delta H_{\rm YIG}\right), \qquad (2)$$

где $\gamma = 17.605 \cdot 10^6 \text{ s}^{-1} \text{G}^{-1}$ — гиромагнитное отношение для электрона, $\omega = 2\pi \cdot 9.51 \cdot 10^9 \text{ s}^{-1}$ — угловая частота, $M_s = 100 \text{ Oe}$ — намагниченность пленки YIG, $d_{\text{YIG}} = 5\,\mu\text{m}$ — толщина пленки YIG, $\mu_B = 9.274 \cdot 10^{-21} \text{ erg/G}$ — магнетон Бора, g = 2 фактор Ланде. При комнатной температуре получено увеличение ширины линии ФМР после напыления TCFC пленки $\Delta H_{\text{YIG/TCFC}} - \Delta_{\text{HYIG}} = 3 \text{ Oe } \text{и}$, следовательно, $g_{eff} = 3.1 \cdot 10^{20} \text{ m}^{-2}$. Для сравнения, для границ Py/Pt было получено $g_{eff} = 2.1 \cdot 10^{19} \text{ m}^{-2}$ [21], а для YIG/Pt $g_{eff} = 4.8 \cdot 10^{20} m^{-2}$ [22].

5. Заключение

Проведенные экспериментальные исследования магнитных свойств гетероструктур, состоящих из эпитаксиально выращенного граната YIG, покрытого редкоземельной интерметаллической сверхрешеткой ТСFC, показало, что магнитное взаимодействие в гетероструктуре имеет антиферромагнитный характер. Определена энергия обменного взаимодействия пленок YIG и TCFC в гетероструктуре. Наблюдается увеличение ширины линии ферромагнитного резонанса из-за протекания спинового тока через границу TCFC/YIG. Из измерений ширины линии ферромагнитных резонансов в гетерострктурах ТСFС/YIG оценены величины спиновой проводимости границ. Экспериментально наблюдалось электрическое напряжение, вызванное обратным спиновым эффектом Холла в пленке TCFC в условиях ферромагнитного резонанса в YIG.

Благодарности

Авторы благодарны В.А. Ацаркину, А.М. Петржику, В.Л. Преображенскому и А.В. Шадрину за полезное обсуждение полученных результатов и помощь при проведении измерений.

Финансирование работы

Работа выполнена в рамках государственного задания и частично поддержана Российским фондом фундаментальных исследований: проектами РФФИ № 18-57-16001, 19-07-00143 и Международной лабораторией LEMAC-LICS.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] M.I. Dyakonov. V.I. Perel. Phys. Lett. A 35, 459 (1971).
- [2] E. Saitoh, M. Ueda, H. Miyajima, G. Tatara. Appl. Phys. Lett. 88, 182509 (2006).
- [3] B.F. Miao S.Y. Huang, D. Qu, C.L. Chien. Phys. Rev. Lett. 111, 066602 (2013).
- [4] P. Hyde, Lihui Bai, D. M.J. Kumar, B.W. Southern, C.-M. Hu, S.Y. Huang, B.F. Miao, C.L. Chien. Phys. Rev. B 89, 180404(R) (2014).
- [5] F. Yang, P.C. Hammel. J. Phys. D 51, 253001 (2018).
- [6] Tsukahara, Y. Ando, Y. Kitamura, H. Emoto, E. Shikoh, M.P. Delmo, T. Shinjo, M. Shiraishi. Phys. Rev. B 89, 235317 (2014).
- [7] L. Chen, S. Ikeda, F. Matsukura, H. Ohno. Appl. Phys. Exp. 7, 013002 (2014).
- [8] Y. Gall, J. Ben, F. Socha, N. Tiercelin, V. Preobrazhensky, P. Pernod. J. Appl. Phys. 87, 5783 (2000).
- [9] E. Quandt, A. Ludwig, D.G. Lord, C.A. Faunce J. Appl. Phys. 83, 7267 (1998).

- [10] Y. Kajiwara K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh. Nature **464**, 262 (2010).
- [11] Г.А. Овсянников, В.В. Демидов, Т.А. Шайхулов, А.А. Климов, N. Tiercelin, P. Pernod. ФТТ 61, 1700 (2019).
- [12] A.S. Grishin, G.A. Ovsyannikov, A. Klimov, V.V. Demidov, K.Y. Constantinian, I.V. Borisenko, V.L. Preobrazhensky, N. Tiercelin, P. Pernod. J. Electron. Mater. 47, 1595 (2018).
- [13] C.W. Sandweg, Y. Kajiwara, K. Ando, E. Saitoh, B. Hillebrands. Appl. Phys. Lett. 97, 252504 (2010).
- B.A. Kalinikos, A.N. Slavin. J. Phys. C, **19**, 7013 (1986),
 A.A. Serga, A.V. Chumak, B. Hillebrands. J. Phys. D **43**, 264002 (2010),
- [15] J. Barak, U. Lachish. J. Appl. Phys. 65, 1652 (1989).
- [16] I. Laulicht, J.T. Suss, J. Barak. J. Appl. Phys. 70, 2251 (1991).
- [17] Sergey Dushenko, Yukio Higuchi, Yuichiro Ando, Teīruya Shinjo, Masashi Shiraishi. Appl. Phys. Exp. 8, 103002 (2015).
- [18] V.V. Demidov, G.A. Ovsyannikov. J. Appl. Phys. **122**, 013902 (2017).
- [19] A. Azevedo A, L.H. Vilela-Leão, R.L. Rodríguez-Suárez, A.F. Lacerda Santos, S.M. Rezende. Phys. Rev. B 83, 144402 (2011).
- [20] Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin. Rev. Mod. Phys. 77, 1375 (2005).
- [21] O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann. Phys. Rev. 82, 214403 (2010).
- [22] M. Rezende, R.L. Rodriguez-Suarez, M.M. Soares, L.H. Vilela-Le, D. Ley Dominguez, A. Azeved. Appl. Phys. Lett. 102, 012402 (2013).

Редактор К.В. Емцев