⁰¹ Радиационные константы в спектре иона W VII

© А.В. Логинов, В.И. Никитченко

Петербургский государственный университет путей сообщения, 190031 Санкт-Петербург, Россия e-mail: andrlgnv@yandex.ru

Поступила в редакцию 23.03.2020 г. В окончательной редакции 23.03.2020 г. Принята к публикации 15.04.2020 г.

Полуэмпирическим методом промежуточной связи с использованием экспериментальных уровней энергии, известных из литературы, в электродипольном приближении рассчитаны радиационные вероятности переходов $4f^{13}5p^{6}6p + 4f^{14}5p^{5}6p - 4f^{13}6s$, $4f^{13}7s$ и времена жизни уровней $4f^{13}7s$ в спектре эрбийподобного иона W VII. Радиальные интегралы переходов, необходимые для вычисления абсолютных значений вероятностей переходов, получены в форме длины с функциями Хартри-Фока.

Ключевые слова: вероятности радиационных переходов, времена жизни уровней, полуэмпирический метод, изоэлектронный ряд эрбия.

DOI: 10.21883/OS.2020.08.49700.113-20

Введение

Мотивом для выполнения настоящего расчета послужили два фактора. Во-первых, согласно базе данных [1], какие-либо опубликованные данные по радиационным константам в спектре иона W VII отсутствуют. Во-вторых, ранее [2,3] нами были вычислены вероятности переходов и времена жизни уровней в спектрах ионов Yb III—Та VI изоэлектронного ряда эрбия, к которому принадлежит ион W VII. Таким образом, настоящий расчет можно рассматривать как продолжение работ [2,3]. Рассмотрены электродипольные переходы между четными ypoвнями $4f^{13}5p^{6}6p + 4f^{14}5p^{5}6p$ и нечетными $4f^{13}6s$, $4f^{13}7s$.

Метод расчета

Волновые функции промежуточной связи нечетных уровней $4f^{13}6s$, $4f^{13}7s$, необходимые для вычисления вероятностей переходов, найдены в одноконфигурационном приближении. При вычислении волновых функций промежуточной связи четных уровней принято во внимание наложение конфигураций $4f^{13}5p^{6}6p + 4f^{14}5p^{5}6p$. Радиальные интегралы, входящие в выражения для матричных элементов оператора энергии, получены методом наименьших квадратов (МНК) по известным экспериментальным значениям [4] уровней энергии. Отметим, что эти значения фигурируют как рекомендованные в базе данных [1]. Приняты во внимание электростатическое, спин-орбитальное и так называемое эффективное взаимодействия. Соответствующие величины обозначены в табл. 1, 2 как F_{fl}^k , G_{fl}^k (электростатические интегралы Слэтера прямого и обменного взаимодействий), ξ_{4f} , ξ_{6p} (спин-орбитальные константы), F_1 (интеграл Слэтера прямого взаимодействия с запрещенным рангом, "эффективно" учитывающий вклад двухчастичных взаимодействий, операторы которых действуют только на пространственные координаты). Правила вычисления угловых коэффициентов перед параметрами F_{fl}^k , G_{fl}^k , ξ_{4f} , ξ_{6p} общеизвестны (например, [5]), правила вычисления угловых коэффициентов перед эффективным параметром F_1 можно найти в [3]. Здесь только напомним, что для описания межэлектронных взаимодействий в конфигурациях типа $f^{13}l$, p^5p (дырка–электрон) достаточно привлечь одно- и двухчастичные операторы.

Качество реализации предписания наименьших квадратов определяется дисперсиями параметров, а также стандартными (σ) и среднеквадратичными (Δ) отклонениями по энергии:

$$\sigma = \sqrt{\sum_{i=1}^{n} (E_{\text{calc}}^{i} - E_{\text{exp}}^{i})^{2}/(n-m))},$$
$$\Delta = \sqrt{\sum_{i=1}^{n} (E_{\text{calc}}^{i} - E_{\text{exp}}^{i})^{2}/n)},$$

где n — число экспериментальных уровней, включенных в процедуру МНК, m — число свободно варьируемых параметров, E_{calc}^i , E_{exp}^i — соответственно вычисленное и экспериментальное значения энергии *i*-го уровня.

Из табл. 1, 2 видно, что все параметры хорошо определены. Сопоставление с соответствующими величинами из [2,3] для Yb III-Та VI показывает также, что эти параметры (исключая F_1) монотонно меняются с изменением заряда ядра. Отметим, что учет наложения конфигураций $4f^{13}5p^66p + 4f^{14}5p^56p$

Таблица 1. Параметры (в ст $^{-1}$) матрицы энергии конфигураций $4f^{13}6s, 4f^{13}7s$

Параметр	$4f^{13}6s$	$4f^{13}7s$
F_{fs}^{0}	34605 ± 8	52702 ± 3
G_{fs}^3	5229 ± 118	1800 ± 40
ξ_{4f}	4960 ± 5	4966 ± 2
σ	17	6
Δ	8	3

заметно уменьшил стандартное отклонение по энергии — от 197 ст⁻¹ для $4f^{13}5p^{6}6p$ и 210 ст⁻¹ для $4f^{14}5p^{5}6p$ (в одноконфигурационном приближении) до 40 ст⁻¹. Однако на вероятностях переходов указанное наложение конфигураций сказалось не очень заметно, а значения времен жизни уровней $4f^{13}7s$, определяемые наиболее интенсивными переходами, совпадают при расчете в одно- и многоконфигурационном приближениях с точностью до четырех значащих цифр.

Результаты и обсуждение

Полученные функции промежуточной связи использованы далее для расчета вероятностей электродипольных переходов, обозначенных в табл. 3, 4 как *A*, и сил осцилляторов *gf*. При этом радиальные интегралы переходов найдены в форме длины с радиальными функциями, рассчитанными методом Хартри-Фока по программе [6]. Суммированием вероятностей переходов найдены времена жизни уровней $4f^{13}7s$. Для идентификации уровней в табл. 3, 4 принята система обозначений J_1j -связи: уровни обозначаются тремя числами $(J_1j)J$, где J_1 — полный угловой момент электронной оболочки f^{13} , j — полный угловой момент s- или pэлектрона, J — полный угловой момент конфигурации $f^{13}l$ (l = s, p). Эта схема связи хорошо выполняется [4] для рассмотренных уровней, поэтому именно она использована в [4] для их идентификации. В табл. 3, 4 для удобства пользования приведены также длины волн переходов — экспериментальные из [4] и вычисленные (заключены в квадратные скобки) в настоящей работе для тех переходов, для которых экспериментальные значения отсутствуют.

В табл. 3, 4 отсутствуют переходы с участием четных уровней $4f^{14}5p^56p$. Заметим, что в рассмотренном приближении эти переходы возможны только в результате перемешивания $4f^{13}5p^66p + 4f^{14}5p^56p$. Поскольку это перемешивание не очень значительно, вероятности переходов $4f^{14}5p^56p - 4f^{13}6s$, $4f^{13}7s$ невелики в сравнении с приведенными в табл. 3, 4 вероятностями переходов $4f^{13}5p^66p - 4f^{13}6s$, $4f^{13}7s$. Поэтой причине (дабы не перегружать таблицы) вероятности переходов $4f^{14}5p^56p - 4f^{13}6s$, $4f^{13}7s$ не приведены.

В заключение приведем значения времен жизни τ (в ns) уровней $4f^{13}7s$, полученные суммированием вероятностей переходов $4f^{13}7s \rightarrow 4f^{13}5p^{6}6p +$ $+4f^{14}5p^{5}6p$: $\tau[(5/2, 1/2)2]=1.191$, $\tau[(7/2, 1/2)3] =$ = 1.199, $\tau[(5/2, 1/2)3] = 1.198$, $\tau[(7/2, 1/2)4] = 1.191$, и отметим (ссылаясь на [1]), что сравнивать представленные результаты пока не с чем.

Благодарности

Авторы благодарят А.Н. Рябцева (Институт спектроскопии РАН) за полезные консультации.

Параметр	$4f^{13}5p^{6}6p$	Параметр	$4f^{14}5p^56p$	Параметр	$4f^{13}5p^{6}6p + 4f^{14}5p^{5}6p$
F_{fp}^{0}	41455 ± 11	F^0_{pp}	113796 ± 18	$R^2(5p,6p;4f,6p)$	-9265 ± 304
F_{fp}^2	12676 ± 143	F_{pp}^2	21974 ± 370	$R^2(5p, 6p; 6p, 4f)$	-2937 ± 970
G_{fp}^2	3783 ± 105	G^0_{pp}	3855 ± 17	σ	40
G_{fp}^4	3926 ± 280	G_{pp}^2	10233 ± 298	Δ	23
ξ4 _f	4967 ± 8	ξ5p	57597 ± 20		
<i>ξ</i> 6 <i>p</i>	14130 ± 19	ξ6p	14224 ± 21		
		F_1	-40 ± 17		

Таблица 2. Параметры (в сm⁻¹) матрицы энергии конфигураций $4f^{13}5p^{6}6p + 4f^{14}5p^{5}6p$

$4f^{13}6p$	$4f^{13}6s$	λ_{exp} [4], λ_{calc}^{*} , nm	A, s^{-1}	gf
(5/2,3/2)1	(5/2,1/2)2	104.9333	$3.39 + 9^{**}$	1.679
(7/2,3/2)2	(5/2,1/2)2	125.2168	3.37 + 7	0.040
	(7/2,1/2)3	103.7327	3.32 + 9	2.680
	(5/2,1/2)3	126.2511	6.33 + 7	0.076
(5/2,1/2)2	(5/2,1/2)2	130.0940	2.66 + 8	0.337
	(7/2,1/2)3	107.0580	1.42 + 8	0.122
	(5/2,1/2)3	131.2109	1.40 + 9	1.809
(5/2,3/2)2	(5/2,1/2)2	101.9322	3.12 + 9	2.427
	(7/2,1/2)3	[87.210]	1.60 + 7	0.009
	(5/2,1/2)3	102.6169	5.94 + 8	0.469
(7/2,3/2)3	(5/2,1/2)2	124.5772	4.75 + 7	0.077
	(7/2,1/2)3	103.2935	2.53 + 9	2.836
	(5/2,1/2)3	125.6008	3.31 + 7	0.055
	(7/2,1/2)4	102.4069	4.37 + 8	0.481
(7/2,1/2)3	(5/2,1/2)2	[171.358]	1.13 + 5	$3\cdot 10^{-4}$
	(7/2,1/2)3	133.5899	2.76 + 8	0.515
	(5/2,1/2)3	[173.355]	1.03 + 6	0.003
	(7/2,1/2)4	132.1113	1.42 + 9	2.596
(5/2,3/2)3	(5/2,1/2)2	100.9883	1.49 + 9	1.593
	(7/2,1/2)3	[86.514]	5.56 + 6	0.004
	(5/2,1/2)3	101.6603	2.30 + 9	2.494
	(7/2,1/2)4	[85.903]	3.42 + 6	0.003
(5/2,1/2)3	(5/2,1/2)2	131.7119	1.02 + 9	1.859
	(7/2,1/2)3	108.1515	1.02 + 8	0.125
	(5/2,1/2)3	132.8575	6.26 + 8	1.159
	(7/2,1/2)4	[107.179]	1.16 + 7	0.014
(5/2,3/2)4	(7/2,1/2)3	[87.974]	7.38 + 6	0.008
	(5/2,1/2)3	103.6662	3.55 + 9	5.142
	(7/2,1/2)4	[87.342]	3.07 + 6	0.003
(7/2,3/2)4	(7/2,1/2)3	[101.631]	1.39 + 9	1.935
	(5/2,1/2)3	[123.178]	3.34 + 6	0.007
	(7/2,1/2)4	100.7742	2.44 + 9	3.339
(7/2,1/2)4	(7/2,1/2)3	132.2495	1.08 + 9	2.546
	(5/2,1/2)3	[171.202]	1.66 + 5	$7 \cdot 10^{-4}$
	(7/2,1/2)4	130.8002	6.53 + 8	1.507
(7/2,3/2)5	(7/2,1/2)4	103.6219	3.55 + 9	6.297

Таблица 3. Длины волн (λ , nm), вероятности (A, s⁻¹) и силы осцилляторов (gf) переходов $4f^{13}6p \rightarrow 4f^{13}6s$ в спектре W VII

Таблица 4. Длины волн (λ, nm) , вероятности (A, s^{-1}) и силы осцилляторов (gf) переходов $4f^{13}7s \rightarrow 4f^{13}6p$ в спектре W VII

$4f^{13}7s$	$4f^{13}6p$	λ_{exp} [4], λ_{calc}^* , nm	A, s^{-1}	gf
(5/2,1/2)2	(5/2,3/2)1	69.7423	$1.48 + 9^{**}$	0.539
	(7/2,3/2)2	[62.969]	5.65 + 7	0.017
	(5/2,1/2)2	[61.783]	5.30 + 8	0.152
	(5/2,3/2)2	71.1339	1.95 + 9	0.741
	(7/2,3/2)3	[63.120]	1.09 + 8	0.033
	(7/2,1/2)3	[55.453]	1.00 + 6	$2 \cdot 10^{-4}$
	(5/2,3/2)3	71.6010	1.25 + 9	0.479
	(5/2,1/2)3	61.4402	3.00 + 9	0.849
(7/2,1/2)3	(7/2,3/2)2	70.5562	1.62 + 9	0.848
	(5/2,1/2)2	[69.077]	6.21 + 7	0.031
	(5/2,3/2)2	[80.990]	4.52 + 6	0.003
	(7/2,3/2)3	70.7607	1.69 + 9	0.890
	(7/2,1/2)3	61.2456	6.11 + 8	0.241
	(5/2,3/2)3	[81.599]	1.00 + 5	$7 \cdot 10^{-5}$
	(5/2,1/2)3	[68.654]	6.91 + 7	0.034
	(5/2,3/2)4	[80.342]	1.13 + 5	$8 \cdot 10^{-5}$
	(7/2,3/2)4	71.5617	1.09 + 9	0.588
	(7/2,1/2)4	61.5320	2.94 + 9	1.167
(5/2,1/2)3	(7/2,3/2)2	[62.880]	5.59 + 7	0.023
	(5/2,1/2)2	61.7156	2.08 + 9	0.831
	(5/2,3/2)2	71.0240	2.71 + 8	0.143
	(7/2,3/2)3	[63.031]	3.71 + 7	0.015
	(7/2,1/2)3	[55.384]	3.17 + 6	0.001
	(5/2,3/2)3	71.4896	1.41 + 9	0.757
	(5/2,1/2)3	61.3571	1.38 + 9	0.544
	(5/2,3/2)4	70.5300	3.09 + 9	1.614
	(7/2,3/2)4	[63.671]	2.13 + 6	$9 \cdot 10^{-4}$
	(7/2,1/2)4	[55.608]	4.02 + 5	$1 \cdot 10^{-4}$
(7/2,1/2)4	(7/2,3/2)3	70.9085	2.19 + 8	0.148
	(7/2,1/2)3	61.3571	2.34 + 9	1.191
	(5/2,3/2)3	[81.793]	6.57 + 5	6.10^{-4}
	(5/2,1/2)3	[68.791]	7.30 + 6	0.005
	(5/2,3/2)4	[80.530]	8.35 + 5	7.10^{-4}
	(7/2,3/2)4	71.7131	1.44 + 9	1.001
	(7/2,1/2)4	61.6436	1.33 + 9	0.682
	(7/2,3/2)5	70.3377	2.97 + 9	1.979

Примечание.* Вычисленные значения длин волн λ_{calc} заключены в квадратные скобки. ** $1.48 + 9 = 1.48 \cdot 10^9$.

Примечание. * Вычисленные значения длин волн λ_{calc} заключены в квадратные скобки. ** $3.39 + 9 = 3.3 \cdot 10^9$.

Список литературы

- [1] Kramida A., Ralchenko Yu., Reader J., and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.3). Электронный pecypc. Режим доступа: http://physics.nist.gov/asd
- [2] Анисимова Г.П., Логинов А.В., Тучкин В.И. // Опт. и спектр. 2001. Т. 90. № 3.
- [3] Логинов А.В., Тучкин В.И. // Опт. и спектр. 2001. Т. 90. № 5. C. 709.
- [4] Sugar J., Kaufman V. // Phys. Rev. A. 1975. V. 12. N 3. P. 994.

- [5] Wybourne B.G. Spectroscopic Properties of the Rare Earths. NY.: Wiley, 1965.
- [6] Cowan R.D. The Theory of Atomic Structure and Spectra. Berkeley: Univ. Calif. Press, 1981.