14.10

Влияние хлорида аммония на структуру наночастиц гидроксиапатита и пролиферативную активность мезенхимных стромальных клеток

© И.П. Добровольская,^{1,2} К.В. Малафеев,¹ Ю.А. Нащекина,^{1,4} И.А. Касаткин,³ Е.Н. Попова,² В.Е. Юдин^{1,2}

 ¹Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия
 ²Институт высокомолекулярных соединений РАН, 199004 Санкт-Петербург, Россия
 ³Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия
 ⁴Институт цитологии РАН, 194064 Санкт-Петербург, Россия
 е-mail: zair2@mail.ru

Поступило в Редакцию 21 января 2020 г. В окончательной редакции 10 апреля 2020 г. Принято к публикации 10 апреля 2020 г.

Получены наночастицы синтетического гидроксиапатита, содержащие кристаллы хлорида аммония. Методами рентгеновской дифракции, термогравиметрического анализа и БЭТ показано, что разложение кристаллов хлорида аммония в среде аргона происходит в интервале $T = 220 - 270^{\circ}$ С. Обработка при $T = 300^{\circ}$ С приводит к термической стабильности наночастиц. Наличие хлорида аммония в культуральной среде существенно влияет на биосовместимость наночастиц, увеличение его содержания снижает пролиферативную активность мезенхимных стромальных клеток.

Ключевые слова: наночастицы, гидроксиапатит, хлорид аммония, структура, пролиферативная активность, стромальные клетки.

DOI: 10.21883/JTF.2020.09.49696.27-20

Введение

Гидроксиапатит (ГА) используют в медицине, в частности в трансплантологии, при замене костных тканей, поврежденных в результате травм или болезней. Ортофосфаты кальция входят в состав костей, зубов, сухожилий, придавая им прочность и упругость. Ткани животных и человека включают до 70 mass% ГА в виде наночастиц различной формы и размеров. ГА наряду с молекулами коллагена, а также клетками (остеобластами, остеоцитами, остеокластами и др.) включен в процессы рекомбинации ткани, необходимые для жизнедеятельности организма. Поэтому важной характеристикой материалов, используемых в клеточных технологиях и в тканевой инженерии, является их биосовместимость. Только отсутствие негативного влияния как самого материала, так и продуктов его биоразложения на адгезию и пролиферативную активность клеток позволяет успешно использовать синтетические материалы в составе матриц для тканевой инженерии. [1].

В связи с развитием тканевой инженерии, активно ведутся исследования по разработке способов получения и изучению свойств синтетического ГА [2,3]. Известно 11 иононезамещенных ортофосфатов кальция с молярным соотношением Са/Р от 0.5 до 2.0 [4]. Наиболее широко используются фосфаты кальция из группы ГА. Наночастицы фосфатов кальция могут быть синтезированы различными способами: сухим и мокрым, гидротермальным, механохимическим, с использование микроволновых процессов, а также с применением микро- и наноэмульсионной технологии. Наиболее полно способы получения и свойства синтетического ГА описаны в работах [5,6]. В статье [7] обобщены методы синтеза кристаллов фосфатов кальция, определения их размеров от нано- до макроуровня. Особое внимание уделено изучению формы одно-, двух- и трехмерных частиц. Результаты исследования влияния термической обработки на структуру и свойства наночастиц синтетического и биологического ГА приведены в работе [3]. Методами рентгеновской дифракции, электронной просвечивающей микроскопии показано, что ГА, полученный методом осаждения, представляет собой порошок, состоящий из анизометричных частиц, продольный размер которых составляет 70-100 nm, а поперечный — 7-9 nm. Частицы состоят из кристаллитов с продольными размерами 22-24 nm, поперечными — 8-10 nm. При температуре 600°С происходит рост кристаллитов, уменьшение объемной пористости и удельной поверхности. Синтетический ГА характеризуется меньшей термической устойчивостью по сравнению с ГА биологического происхождения.

Одним из наиболее распространенных методов получения синтетических наночастиц ГА является их осаждение из смеси водных растворов $CaCl_2$ и $(NH_4)_2HPO_4$ [8], в качестве осадителя используют раствор аммиака (NH_4OH) . В результате реакции, кроме кристаллов ГА

и воды, образуется хлористый аммоний NH_4Cl — кристаллическое вещество, растворимое в воде, кристаллы которого при нагревании до $338^{\circ}C$ распадается на NH_3 и HCl.

Поэтому целью настоящей работы являлось исследование структуры наночастиц синтетического ГА, полученного методом осаждения, изучение влияния ГА на пролиферативную активность мезенхимных стромальных клеток (СК).

1. Экспериментальная часть

Образцы наночастиц, содержащие ГА и хлорид аммония, получены в университете Сапиенза, Рим, Италия, методом синтеза, который описывается реакцией:

$$10CaCl_{2} + 6(NH_{4})_{2}HPO_{4} + 8NH_{4}OH$$

$$\rightarrow Ca_{10}(PO_{4})_{6}(OH)_{2} + 20(NH_{4})Cl + 6H_{2}O.$$
(1)

Содержание хлорида аммония варьировалось от 20 до ~ 40 mass%, что достигалось режимом отмывки реакционной смеси в деионизованной воде. Были получены образцы, содержащие 20 и 40 mass% хлорида аммония (ГА20, ГА40).

Для сравнения было проведено исследование структуры и свойств порошка, полученного методом осаждения и содержащего 40 mass% хлорида аммония, который дополнительно обрабатывали при $T = 300^{\circ}$ С в течение 30 min (образец ГА).

Фазовый анализ и расчет параметров кристаллической структуры образцов проводили методом рентгеновской дифракции на установке D2 Phaser (Bruker, Germany) использовали Cu K_{α} -излучение. Обработка данных была выполнена с помощью программного обеспечения Topas 5.0 (Bruker). Размеры кристаллитов рассчитывали по интегральной ширине рефрексов с помощью программного обеспечения MAUD.

Пористую структуру и величину удельной поверхности определяли сорбционными методами, измерения проводили на газоадсорбционном порозиметре NOVA-1200e, США.

Термогравиметрический анализ (ТГА) образцов ГА был проведен на установке 209 F1 NETZSCH, Германия, в диапазоне температур от 30 до 800°C при скорости нагрева 10 deg/min в инертной среде (аргон). Расход инертного газа составлял 40 ml/min.

Частицы ГА, ГА20 и ГА40 выдерживали в питательной среде α-МЕМ (Lonza, США) с добавлением 10% сыворотки крупного рогатого скота (HyClone, США) в течение 1 суток. Концентрация частиц ГА в питательной среде составила 0.01 g/ml. Ранее другими авторами было продемонстрировано, что даже незначительное содержание ГА, которое составляло не более 1% или 0.01 mg/ml, увеличивает остеогенный потенциал клеток [9]. Пролиферацию СК *in vitro* изучали в системе

Журнал технической физики, 2020, том 90, вып. 9

хСЕLLigenceRealTimeCellularAnalysis (RTCA). Первоначально измеряли фоновое сопротивление $100\,\mu$ l питательной среды в лунках. $100\,\mu$ l суспензии, содержащей $5 \cdot 10^3$ клеток, вносили в лунки, и с помощью RTCAсистемы оценивали пролиферацию. После культивирования в течение l суток питательную среду удаляли, и в лунки с клетками добавляли $100\,\mu$ l питательной среды после инкубирования с частицами ГА. Клетки, культивируемые в питательной среде без инкубирования с частицами, служили положительным контролем. Изменения в сопротивлении, обозначенные как клеточный индекс (КИ), рассчитывали автоматически как СК, которые взаимодействуют с электродами *E*-планшетов.

2. Обсуждение результатов

На рис. 1 приведены рентгеновские дифрактограммы образцов ГА, ГА20 и ГА40. Из приведенных данных следует, оба образца синтетического ГА, не подвергнутые термической обработке, содержат хлорид аммония в виде второй фазы. Образец, обработанный при $T = 300^{\circ}$ С, содержит только кристаллы ГА.

Количественный фазовый анализ показал, что концентрация хлорида аммония в образце ГА20 составляет 21.5 и 38.6 mass% в образце ГА40. Узкие дифракционные максимумы на рентгенограмме образца ГА свидетельствуют о более высокой кристалличности (больших размерах кристаллитов, меньшей их дефектности) по сравнению с образцами, содержащими NH₄Cl. Средний размер кристаллитов в ГА составляет 24 nm, для образца ГА20 это значение несколько ниже и равно 18 nm, аналогичная величина для ГА40 составляет 15 nm.

Термические свойства образцов ГА, ГА20 и ГА40 исследовали методом ТГА. На рис. 2 приведены зависимости потери массы от температуры в интегральном и дифференциальном виде. Видно, что для образцов ГА20 и ГА40 при $T = 240-250^{\circ}$ С наблюдается интенсивная потеря массы, величина которой для ГА40 составляет

Рис. 2. ТГА кривые для *1* — ГА, *2* — ГА20, *3* — ГА40.

Рис. 3. Результаты термического анализа образцов ГА20 и ГА40: *1* — ГА20 после обжига, *2* — ГА40 после обжига, *3* — ГА20 исходный, *4* — ГА40 исходный.

около 50%, а для ГА20 30%. При этом потери массы для ГА в этом температурном диапазоне не наблюдается. Отметим, что по данным рентгенофазового анализа образцы ГА20 и ГА40 содержат в значительном количестве кристаллы хлорида аммония.

Известно [10], что температура возгонки кристаллов хлорида аммония составляет 337° С. Процесс возгонки сопровождается образованием аммиака (NH₃) и хлористого водорода (HCl), которые при снижении температуры способны вновь соединяться в хлорид аммония. Отметим, что температура плавления кристаллических веществ существенно зависит от таких параметров, как размеры кристаллов, наличие примесей, пористость и др. Исходя из этого, можно предположить, что значительная потеря массы при $T = 250^{\circ}$ С связана с разложением кристаллов хлористого аммония, входящего в состав ГА20 и ГА40. В пользу этого свидетельствует полное отсутствие потери массы в этом температурном

Объемная пористость и удельная поверхность образцов ГА, ГА20 и ГА40

Образец	Объем пор, cm ³ /g	Удельная поверхность, m ² /g
ГА20	0.152	57.789
ГА40	0.055	14.492
ГА	0.050	13.616

диапазоне для ГА, полученного из ГА40 и термообработанного при 300°С.

Справедливость высказанного предположения подтверждается результатами экспериментов по термообработке при $T = 300^{\circ}$ С образцов синтетического ГА. На рис. 3 приведены ТГА кривые для образцов ГА20 и ГА40 до и после термообработки в течение 30 min при $T = 300^{\circ}$ С. Видно, что для исходных образцов наблюдается существенная потеря массы при $T = 220-250^{\circ}$ С. Образцы, подвергшиеся дополнительной высокотемпературной обработке (300°С), обладают термостабильностью в широком температурном диапазоне. Эти данные свидетельствуют в пользу удаления хлорида аммония в процессе термообработки при $T = 300^{\circ}$ С.

Отметим, что разложение хлорида аммония, выделение аммиака и хлористого водорода происходит при температурах, которые для получения материалов для тканевой инженерии, а также в клеточных технологиях не используют.

Наночастицы ГА используют в качестве наполнителей в композиционных материалах. Композиционные волокна, пленки и губки в последнее время находят применение как матрицы для тканевой инженерии. Взаимодействие полимерной матрицы с наполнителем в значительной степени зависит от его удельной поверхности. Пористая структура, величина удельной поверхности определяют реакционную способность материала, скорость протекания химических и биологических процессов в активных средах. Последнее важно при прогнозировании резорбции наночастиц ГА и материалов, в состав которых они входят после имплантации.

В таблице приведены значения объемной пористости и величины удельной поверхности образцов ГА, ГА20 и ГА40.

Из приведенных данных видно, что наибольшим объемом пор и величиной удельной поверхности обладает образец синтетического ГА20. Параметры пористой структуры образца ГА40 близки к аналогичным значениям ГА, подвергнутого термической обработке. Можно предположить, что кристаллы хлорида аммония располагаются в порах наночастиц. Поэтому пористость образца ГА40 ниже, чем аналогичная величина образца, содержащего меньшее количество фазы NH₄Cl. Уменьшение пористости и удельной поверхности термообработанного образца, видимо, связано с повышением его кристалличности в процессе отжига. Как показали

Рис. 4. Световая микроскопия СК после 1 недели культивирования в жидких средах, полученных после культивирования аналогичных клеток в присутствии частиц ГА, ГА20 и ГА40; увеличение $10 \times .$

Рис. 5. Изменение индекса пролиферации стромальных клеток в зависимости от времени культивирования в присутствии питательной среды после инкубирования с частицами ГА, ГА20, ГА40; контроль — клетки после культивирования в среде без предварительного инкубирования с частицами ГА.

результаты рентгеноструктурного анализа, этот образец отличается повышенными размерами кристаллитов, меньшей их дефектностью.

Результаты исследования пролиферации СК в культуральных средах, полученных после сокультивирования аналогичных клеток и частиц с разным содержанием хлорида аммония, приведены на рис. 4. Видно, что в контрольном образце СК образовали полный монослой. Клетки имеют веретенообразную форму и расположены по гиперболическим траекториям. После культивировании клеток в жидких средах, полученных после сокультивирования с ГА20 и ГА40, большинство клеток сохраняют округлую форму. Отметим, что в эксперименте по пролиферации СК в среде с меньшим содержанием хлористого аммония (после сокультивирования СК и частиц ГА20), наряду с клетками округлой формы видны клетки вытянутой формы, характерной для контрольного образца. Морфология клеток в присутствии питательной среды после инкубирования частиц ГА, обработанных при высокой температуре, близка к морфологии клеток в контрольном образце. Клетки имеют вытянутую веретеновидную форму.

Округлая форма клеток, отсутствие веретенообразных клеток при культивировании в среде, полученной после сокультивирования клеток с частицами ГА20 и ГА40, свидетельствуют о ее негативном влиянии на клеточные процессы. Можно предположить, что в процессе сокультивирования клеток и наночастиц в биологически активной культуральной среде происходит частичный гидролиз хлорида аммония в соответствии с уравнением

$$NH_4^+ + Cl^- + HOH \rightleftharpoons NH_4OH + H^+ + Cl.$$
 (2)

NH₄Cl используют в гистологии в качестве красителя тканевого материала, гематологии — для лизиса эритроцитов крови, в цитологии — для сортировки клеток, т. е. это вещество взаимодействует с клетками, способствует их разделению для последующего анализа. Также известно, что ионы аммония синтезируются некоторыми бактериями в организме и участвуют в физиологических процессах [11]. Однако, как показали результаты проведенных исследований, наличие в культуральной среде достаточно большого количества NH₄Cl препятствует распластыванию клеток, существенно снижает их пролиферативную активность.

Это подтверждает количественная оценка индекса пролиферации СК (рис. 5). Видно, что по истечении 1 суток при добавлении питательной среды после инкубирования с частицами ГА, индекс пролиферации клеток существенно снижается по сравнению с контролем. Причем чем больше хлористого аммония в образце, тем ниже индекс пролиферации. Отжиг образца ГА приводит к уменьшению количества хлористого аммония, и к увеличению пролиферативной активности СК. Хотя и этот образец уступает контролю, но в меньшей степени по сравнению с образцами ГА20 и ГА40.

Выводы

Получены наночастицы, содержащие ГА и хлорид аммония в различном соотношении. Показано, что разложение кристаллов хлорида аммония происходит в интервале температур $220-270^{\circ}$ С. Наличие хлорида аммония в культуральной среде существенно снижает пролиферативную активность стволовых клеток. Термическая обработка наночастиц при $T = 300^{\circ}$ С приводит к снижению их негативного влияния на пролиферативную активность стромальных клеток, существенному повышению биосовместимости.

Благодарности

Авторы благодарят Ресурсный центр "Рентгенодифракционные методы исследования" Научного парка СПбГУ за проведение исследований по рентгеноструктурному анализу.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда, проект № 19-73-30003.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Dobrovolskaya I.P., Yudin V.E., Popryadukhin P.V., Ivan'kova E.M. St. Petersburg: Mediapapir, 2018. 232 p.
- [2] *Parisi M., Stoller M., Chianese A. //* Chem. Eng. Trans. 2011. Vol. 24. P. 211–216.
- [3] Dobrovol'skaya I.P., Tsarev N.S., Osmolovskaya O.M., Kasatkin I.A., Ivan'kova E.M., Popova E.N., Yudin V.E. // Russ. J. Appl. Chem. 2018. Vol. 91. N 3. P. 368–374. DOI: 10.1134/S1070427218030035
- [4] Dorozhkin S. // Materials. 2009. Vol. 2. N 2. P. 399–498. DOI:10.3390/ma2020399
- [5] Šupová M. // J. Nanoscience Nanotechnol. 2014. Vol. 14. N 1.
 P. 546–563. DOI: 10.1166/jnn.2014.8895
- [6] Sadat-Shojai M., Khorasani M.T., Dinpanah-Khoshdargi E., Jamshidi A. // Actabiomater. 2013. Vol. 9. N 8. P. 7591–7621. DOI:10.1016/j.actbio.2013.04.012
- [7] Lin K., Wu C., Chang J. // Actabiomater. 2014. Vol. 10. N 10.
 P. 4071-4102. DOI: 10.1016/j.actbio.2014.06.017
- [8] Caprariis B., Chianese A., Stoller M., Verdone N. // Hydroxyapatite-Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets. IntechOpen. 2018. DOI: 10.5772/intechopen.71775
- [9] Carles-Carner M., Saleh L.S., Bryant S.J. // Biomed. Mater. 2018. Vol. 13. N 4. P. 045009.
 DOI: 10.1088/1748-605X/aabb31
- [10] *Galston A.W.* Biological Chemistry Henry R. Mahler Eugene H. Cordes. 1967.
- [11] Matsui T., Matsukawa Y., Sakai T., Nakamura K., Aoike A., Kawai K. // Dig. Dis. Sci. 1997. Jul. Vol. 42. N 7. P. 1394-9. DOI: 10.1023/A:1018837920769