14.03 Мальформации как нарушение фрактальной структуры кровеносной системы организма

© В. Антонов, П. Ефремов

Санкт-Петербургский политехнический университет Петра Великого, 195251 Санкт-Петербург, Россия e-mail: antonovvi@mail.ru

Поступило в Редакцию 21 января 2020 г. В окончательной редакции 21 января 2020 г. Принято к публикации 17 февраля 2020 г.

Описаны математические модели, в основу которых положено рассмотрение кровеносной системы организма как мультифрактального объекта. Приведено решение двух задач. Первая связана с нормальным состоянием системы жизнеобеспечения организма, а именно теплообмен в коже человека Основой модели служат уравнения гидродинамики и теплообмена. Приведены количественные результаты расчетов тепловых потоков в трех слоях дермы. Вторая — с нарушением фрактальности за счет наличия артериовенозной мальформации в сосудистой системе головного мозга. Моделирование кровотока при наличии мальформации выполнено с помощью программного продукта SolidWorks 2017 Flow Simulation. Приведены данные о скоростях и потоках крови в сосудах для различных случаев расположения мальформации.

Ключевые слова: кровеносная система, фракталы, мальформации, моделирование.

DOI: 10.21883/JTF.2020.09.49683.24-20

В настоящее время для исследования процессов кровообращения широко применяется математическое и аналоговое моделирование. Основой математических моделей в большинстве случаев являются уравнения гидродинамики [1–12]. К особенностям физической модели следует отнести замкнутость и разветвленность сердечно-сосудистой системы, а также эластичность сосудов.

Современный взгляд на строение сосудистой системы состоит в том, чтобы рассматривать ее как фрактальный или, точнее, мультифрактальный объект (рис. 1).

Фрактальный анализ включает в себя определение фрактальной размерности и других фрактальных характеристик объекта. Фракталы, связанные с геометрическими объектами, удовлетворяют двум критериям: самоподобие и дробная размерность.

Мультифрактал состоит из отдельных частей, каждая из которых обладает своим свойством самоподобия. Важным примером применения мультифракталов является анализ сигналов и поведения хаотических систем.

Рассмотрим две задачи. Первая связана с нормальным состоянием системы жизнеобеспечения организма. Вторая — с нарушением фрактальности.

Моделирование теплообмена в коже человека выполнено методом конечных разностей. На рис. 2 представлена схема ячейки сосудистой система дермы. Ее можно рассматривать как трехуровневый мультифрактал.

В математическую модель стационарной теплопередачи в коже человека включены артерии, вены, венулы и капилляры. С помощью модели проведен анализ изменения температуры в ткани при изменении скорости движения крови по большим артериям, "тромбозу" одной или нескольких вен и т.д. В настоящей работе рассмотрен случай теплообмена в термонейтральной зоне с температурой окружающей среды 28.5°С.

Рис. 1. Фрагмент сосудистой системы [18].

Рис. 2. Двумерная модель сосудистой системы дермы.

Слои дермы состоят из сосудов и окружающей ткани. Ткани в дерме неоднородны, однако их теплопроводные свойства обычно не изменяются в пространстве. Это позволяет описать изменение температуры θ стационарным уравнением теплопроводности:

$$-\lambda_t \, \nabla^2 \theta = q^{\nu}. \tag{1}$$

Здесь λ_t — теплопроводность ткани [W/(mm · °C)], q^{ν} — удельная производительность внутренних источников тепла [W/mm³].

Кровь рассматривается как ньютоновская жидкость, течение которой можно описать приближением Буссинеска для несжимаемой жидкости

$$(\bar{\nu}\nabla)\bar{\nu} = -\frac{1}{\rho_0}\nabla P + \nu\nabla^2\bar{\nu} - g\beta(\theta - \theta_0),$$

$$(\bar{\nu}\nabla)\theta = a^{bl}\nabla^2\theta,$$

$$di\nu\,\bar{\nu} = 0,$$

$$\rho = \rho_0[1 - \beta(\theta - \theta_0)].$$
(2)

Здесь ρ_0 — плотность жидкости при температуре θ_0 ,

$$eta = -rac{1}{
ho_0} \left(rac{\partial
ho}{\partial heta}
ight) \Big|_{ heta_0}$$

— коэффициент температурного расширения, *v* — кинематическая вязкость, *a* — температуропроводность.

Граничные условия на границах $\Gamma_1 - \Gamma_9$ поставлены традиционным способом. Например, на границе теплообмена с окружающей средой

$$\left|\frac{\partial\theta}{\partial z} = -\frac{\alpha}{\lambda} \left(\theta - \theta_{cp}\right).$$
(3)

Геометрические параметры дермы и скорости кровотока приведены в табл. 1.

Полученная система уравнений приведена в безразмерную форму и построен разностный аналог методом контрольного объема. Зависимость температуры в модельных ячейках от скорости кровотока приведена в табл. 2.

Таблица 1. Параметры дермы и скорости кровотока

Величина	Капилляры	Второй уровень	Третий уровень
Количество сосудов, pieces/cm ²	6300	65	3
Диаметр артерии, mm	0.01	0.04	0.1
Диаметр вены, mm	0.01	0.1	0.25
Высота слоя, mm	2	3	4.5
Скорость кровотока в артерии, mm/s	1	8	20
Скорость кровотока в вене, mm/s	1	2	2.3

Таблица 2. Зависимость температуры в модельных ячейках от скорости кровотока

Скорость кровотока, mm/s	Температура на выходе из артериолы, °С	Температура в средней части артериолы, °С	Температура в средней части вены, °С
0	36.1097	36.2048	36.2048
0.5	36.1098	36.2048	36.2048
1	36.1098	36.2049	36.2048
10	36.1104	36.2051	36.2046
20	36.1112	36.2055	36.2044
30	36.1121	36.2058	36.2041
50	36.1097	36.2066	36.2035
100	36.1181	36.2076	36.2026

Артериовенозная мальформация, которую можно рассматривать как нарушение фрактальности сосудистой системы головного мозга (ABM), представляет собой клубок аномальных кровеносных сосудов, соединяющих артерии и вены (рис. 3).

Люди могут родиться с ABM, но нарушения могут образовываться позже в жизни. Симптомы ABM могут включать приступы, головную боль, мышечную слабость, потерю зрения, нарушение речи. Признаки ABM обычно появляются в возрасте 10–40 лет.

Существенным вкладом в аналоговое моделирование мальформаций явилась работа Е. Гао и соавторов [13]. Модель состоит из 55 артерий, 37 вен и 20 микроваскулярных групп. АВМ моделирована афферентными сосудами и дренирующими венами. Приведена зависимость давления от индекса кровотока $BP_a = 71 \times \exp(-1.47 \frac{FVI}{1000})$, где: $FVI = 0.25D^2V \cdot 60 \text{ (ml/min)} -$ индекс кровотока через афферентный сосуд, D — диаметр сосуда [cm], V — средняя скорость кровотока [cm/s].

Нашей группой разработана модель ABM на базе SolidWorks Flow Simulation. Мальформация представлена в виде посторонней связи между веной и артерией. Приняты следующие допущения: не рассматривается эластика сосудов, движение крови стационарно, известны данные о входных потоках. Для численной реализации модели приняты следующие параметры: диаметр артерии равен 0.5 mm, диаметр вены равен 1.5 mm, скорость кровотока на входе в артерию составляет 500 mm/s, что соответствует потоку жидкости $Q = VA = 500\pi r^2 = 98$, 125 mm³/s. Давление в сосудах мозга равно 5332.9 Pa. Распределение скоростей в артерии, вене и мальформации приведены на рис. 4.

Подробное изложение состояния дел по диагностике и лечению мальформаций можно найти в [14–17]. Современными методами лечения мальформаций являются эмболизация и гамма-нож. Эмболизация — рентгенохирургическая эндоваскулярная процедура, которая состоит в избирательной окклюзии (закупорке) кровеносных сосудов специально введенными эмболами.

Рис. 3. Артериовенозная мальформация [19].

Рис. 4. Распределение скоростей в мальформации: *1* — скорость кровотока [m/s], *2* — мозговой кровоток 600 ml/min, *3* — давление 5332 Ра, *4* — артериальный кровоток 180 ml/min, *5* — венозный кровоток 180 ml/min.

Гамма-нож использует ионизирующее излучение, источником для которого является Кобальт-60. По сравнению с радиохирургией, гамма-нож имеет большую пространственную точность (свыше 0.5 mm) и меньшую равномерность дозы внутри мишени (наиболее распространено облучение 50% изодозой), тогда как на линейных ускорителях используются изодозы 80–90% [17].

Выводы. Современный подход к описанию структур человеческого организма содержит элементы мультифрактального анализа. Такой подход позволяет выявить наиболее характерные особенности, присущие системе регуляции большинства физиологических процессов. Нарушение фрактальности в строении и поведении системы жизнеобеспечения может служить первым признаком начала болезни или даже приближения критической ситуации. Математические модели, в основе которых лежит анализ хаотического поведения динамических систем, дают медикам дополнительную информацию для принятия решений о выборе пути лечения пациентов.

Благодарности

Авторы выражают благодарность руководителю лаборатории церебральной патологии Нейрохирургического института Поленова В.Б. Семенютину за предоставленную информацию.

Вклад авторов

Антонов В.И. — Концепция исследования, теплообмен в коже; Ефремов П. — Модель мальформации.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Холодов А.С. // Компьютерные модели и прогресс медицины. / Под ред. Белоцерковского О.М., Холодова А.С. М.: Наука, 2001. С. 127–163.
- [2] Холодов А.С., Симаков С.С. // Математическое моделирование. 2008. Т. 20 (4). С. 87–102.
- [3] Kholodov A.S., Simakov S.S. // J. Biomechanics. 2006. Vol. 39. Supplement 1. P. 401.
- [4] Ursino M., Lodi C.A. // J. Appl. Physiol. 1997. Vol. 82. N 4.
 P. 1256–1269.

- [5] Баранов А.П., Клименок М.Ф. Медицинская и биологическая физика. Витебский гос. мед. ун-т. 2-е изд. Витебск : ВГМУ, 2010. 390 с.
- [6] Семенов Ю.С., Дьяченко А.И. // Труды МФТИ. 2014. Т. 6. № 3. С. 102–113.
- [7] *Петров И.Б.* // Труды МФТИ. 2009. Т. 1. № 1. С. 5–14.
- [8] Gosfa K.D., Hunter P.J., Pogers J.M., Gussione G.M., Waldmen L.K. // Part I. ASME J. Biomech. Eng. 1996. N 118 (4). P. 452–463.
- [9] Ашметов И.В., Буничева А.Я., Мухин С.И., Соколова Т.В., Соснин Н.В., Фаворский А.П. // Компьютер и мозг. Новые технологии. М.: Наука, 2005. С. 321–337.
- [10] Gataulin Y.A., Zaitsev D.K., Smirnov E.M., Yukhnev A.D. // Rus. J. Biomechan. 2019. Vol. 23. N 1. P. 58–66.
 DOI: 10.15593R.J. Biomech., 2019.1.07
- [11] Gataulin Y.A., Yukhnev A.D., Zaitsev D.K., Smirnov E.M., Kulikov V.P., Kirsanov R.I. // J. Physics: Conf. Series. 2018. Vol. 1135. P. 012089. (7 p).
 DOI: 10.1088/1742-6596/1135/1/012089
- [12] Gataulin Y.A., Zaitsev D.K., Smirnov E.M., Yukhnev A.D. // J. Phys. Mathem. 2017. Vol. 3. N 1. P. 1–6. https://doi.org/10.1016/j.spjpm.2017.02.001
- [13] Young W.L., Gao T., Hademenos G.J., Massoud T.F. // Intracranial Arteriovenous Malformation. Informa Healthcare. USA. 1997. P. 49–70.
- [14] Spetzler R.F., Wilson C.B., Weinstein P., Mehdorn M., Townsend J., Telles D. Normal Perfusion Pressure Breakthrough Theory. Clin Neurosurg. 1978. Vol. 25. P. 651– 672.
- [15] Quick C.M., Hashimoto T., Young W.L. // Neurol. Res. 2001. Vol. 23. P. 641–644.
- [16] Панунцев В.С., Воронов В.Г., Никитин П.И., Алиев В.А., Байрамов Р.Р., Бухаев И.М., Гафуров Р.Р., Дрягина Н.В., Панунцев Г.К., Раджабов С.Д., Размологова О.Ю., Рожченко Л.В., Семенютин В.Б. Современные представления о церебральных артериовенозных мальформациях СПб.: Синтез Бук, 2013. 427 с.
- [17] Mack A., Heinz Czempiel, Hans-Jürg Kreiner, Gerhard Dürr, Berndt Wowra // Medical Phys. 2002. Vol. 29. N 561. P. 561–568. https://doi.org/10.1118/1.1463062
- [18] Taringa.net. Espinacos convertidas en celulas del Corazon.
- [19] Электронный ресурс. Mayoclinic.org.