Micro-structural and Thermoelectric Characterization of Zinc-Doped In_{0.6}Se_{0.4} Crystal Grown by Direct Vapour Transport Method

© P.B. Patel², H.N. Desai², J.M. Dhimmar¹, B.P. Modi^{1,¶}

 ¹ Department of Physics, Veer Narmad South Gujarat University, Surat, 395017 India
² C.B. Patel Computer College and J.N.M. Patel Science College, Surat, 395017 India
[¶] E-mail: bharatpmodi@gmail.com

Received August 10, 2019 Revised April 8, 2020 Accepted April 10, 2020

Crystal of zinc-doped In_{0.6}Se_{0.4} was successfully grown by direct vapour transport (DVT) method. Grown In_{0.6}Se_{0.4}:Zn crystal has been characterized by energy dispersive X-ray (EDAX) and powder X-ray diffractometer (XRD) techniques for compositional and micro-structural analysis, respectively. The EDAX spectra represent the grown In_{0.6}Se_{0.4}:Zn crystal enriched with excess indium doped with Zn, which consecutively shows enhanced *n*-type conductivity. The powder XRD spectrum signified that the grown sample was crystalline and had hexagonal structure. The micro-structural parameters: average crystallite size, average lattice strain, dislocation density, and domain population were determined from powder XRD spectra. The thermoelectric properties such as Seebeck coefficient (*S*), electrical resistivity (σ^-), and thermal conductivity (κ) were measured in the temperature range of 313 to 368 K. Grown In_{0.6}Se_{0.4}:Zn crystal reported Seebeck coefficient (*S*) as high as $-548 \mu V K^{-1}$ and figure of merit of 1.14 at 368 K.

Keywords: DVT method, X-ray diffraction, micro-structural parameters, Seebeck coefficient, figure of merit.

Full text of the paper will appear in journal SEMICONDUCTORS.