14,19

Влияние гамма-облучения на фазовые переходы в политетрафторэтилене, допированном диоксидом кремния растительного происхождения

© В.М. Егоров¹, П.Н. Якушев¹, М.А. Арсентьев², А.С. Смолянский¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² АО "МЕТАКЛЭЙ Исследования и разработки", Москва, Россия
 ³ Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия
 E-mail: victor_egorov1@inbox.ru

Поступила в Редакцию 10 апреля 2020 г. В окончательной редакции 10 апреля 2020 г. Принята к публикации 11 апреля 2020 г.

> Методом дифференциальной сканирующей калориметрии исследовано влияние гамма-облучения и допирования диоксидом кремния на твердотельный фазовый переход первого рода в политетрафторэтилене. Проведен количественный анализ профилей пиков теплоемкости на основе теории размытых фазовых переходов. Показано, что элементарный объем фазового превращения зависит от γ -облучения и концентрации диоксида кремния.

Ключевые слова: политетрафторэтилен, фазовый переход, калориметрия, радиационное облучение.

DOI: 10.21883/FTT.2020.08.49624.083

В последнее время предпринимаются попытки создания технологии изготовления новых полимерных композитов методом терморадиационной модификации политетрафторэтилена (ПТФЭ) с добавкой наполнителей различной природы, в том числе диоксида кремния растительного происхождения [1,2]. Прогнозирование физико-механических, в частности, прочностных свойств этих композитов связано с учетом структурных особенностей строения полимера. Структура ПТФЭ в температурном диапазоне 200-350 К претерпевает по мере повышения температуры значительные изменения. В кристаллической части полимера вначале происходит двойной фазовый переход из структуры с триклинной элементарной ячейкой (существующей в области температур < 290 К) в структуру, поперечная упаковка молекул в которой близка к гексагональной. При температурах свыше 290 К элементарная ячейка кристаллической фазы ПТФЭ, имеющая вид спирали, включающей 6 витков и содержащей 13 групп CF₂ (конформация 13/6), трансформируется в спираль, которая содержит уже 7 витков и 15 групп CF₂ (15/7). Выше 303 К усиливается вращательная подвижность полимерных цепей, что приводит к образованию многочисленных хиральных дефектов. В то же время поперечная упаковка молекул сохраняется близкой к гексагональной вплоть до температуры плавления ПТФЭ [3]. В настоящей работе для исследования этих твердотельных фазовых переходов использовался метод дифференциальной сканирующей калориметрии (ДСК).

Испытания исследуемых образцов проводились на модуле DSC6100 рабочей станции EXSTAR6000 фирмы "Seiko Instruments". В качестве образцов для исследования использовался промышленный ПТФЭ марки Ф-4Д производства ОАО "Галоген". Наполнителем являлся порошкообразный аморфный диоксид кремния, изготовленный из отходов риса (производство — ООО "Карборундас", Литва). Смешивание наночастиц диоксида кремния с порошком ПТФЭ производилось в смесителе. Результаты электронно-микроскопического анализа, полученные с помощью растрового электронного микроскопа Versa 3DTM Dual Beam TM показали, что порошки диоксида кремния состоят из нано/микрочастиц разнообразной формы. Сами частицы представляют собой рыхлоупакованные конгломераты из более мелких частиц [1]. Радиационную обработку ПТФЭ проводили при температурах от 330 до 370°C в атмосфере азота с использованием у-излучения изотопа ⁶⁰Со (энергия 1.25 MeV). Расчет дозы у-излучения, поглощенной нкПТФЭ, проводили согласно требованиям ГОСТ 27602-88. В таблице приведены все виды образцов, исследуемых в настоящей работе.

Перед изложением калориметрических экспериментальных данных необходимо сделать предварительное замечание. Известно [4], что при использовании метода ДСК возникает методическая погрешность (смещение пиков по температуре на величину ΔT), обусловленная наличием термосопротивления R испытываемого образца в калориметрической ячейке. Величина погрешности зависит от массы образца *m* и скорости сканирования *V* по соотношению $\Delta T = R(mV)^{1/2}$. Однако, в большинстве

Sample				$T_{\max 1}$	$\Delta C_{p \max}$	q	В	ΔH_{Σ}	ΔH_2	$T_{\max 2}$	ΔS
N⁰		SiO ₂ %	SiO ₂ X	К	J/gK	J/g	_	J/g	J/g	К	J/gK
1	Original	-	—	294.3	0.85	2.24	450	8.50	6.25	304.0	0.016
2 3 4 5 6 7	RAD + SiO ₂	- 0.01 0.05 0.1 0.5	- 0.0001 0.0005 0.001 0.005 0.01	281.1 295.4 295.6 295.5 296.8 295.7	0.14 0.33 0.52 0.42 0.72 0.75	1.88 2.14 2.17 2.00 2.06 2.08	85 180 280 250 420 400	3.19 3.16 3.26 3.14 3.07 2.70	1.31 1.02 1.09 1.14 1.01 0.62	301 304.0 304.6 304.6 305.1 305.1	0.004 0.003 0.004 0.004 0.003 0.002

Таблица 1. Параметры расчета пика теплоемкости ПТФЭ при твердотельном фазовом переходе первого рода и термодинамические параметры перехода второго рода

опубликованных работ, как правило, не устраняют эту методическую погрешность, что приводит к существенным искажениям значений термодинамических характеристик ФП. Этот недостаток может быть устранен следующим образом: по экспериментальным данным, полученным при вариации скоростей нагревания V, строится зависимость $T_{\max,\min} = f(V^{1/2})$, которая при отсутствии каких-либо структурных трансформаций должна быть линейной. Экстраполяция линейной зависимости к $V \rightarrow 0$ позволяет получить истинные, методически неискаженные значения температур переходов и определить методическую погрешность ΔT . В настоящей работе использовалась зависимость $T_{\max} = f(V^{1/2})$, полученная ранее для одного из исследуемых образцов определенного веса [5,6]. В настоящей работе это позволило избежать трудоемких испытаний с разными скоростями нагрева для определения неискаженных значений T_{max} пиков на кривых ДСК. Отметим, что в отличие от температурных значений, экспериментальные данные по энтальпии (ΔH) и энтропии (ΔS) в методе ДСК не зависят от скорости сканирования по температуре и определяются по соотношениям

$$\Delta H = \int C_p(T) dT$$
 и $\Delta S = \int C_p(T) d(\ln T).$

На рис. 1 приведены кривые ДСК, полученные при нагревании образцов исходного ПТФЭ (кривая 1), облученного (2) и допированного (3-7) разным количеством диоксида кремния (см. таблицу).

Видно, что во всех случаях процесс изменения фазового состояния происходит в два этапа (температуры максимумов соответствующих им эндотермических пиков $T_{\max 1}$ и $T_{\max 2}$). На первом этапе (пик с $T_{\max 1}$) происходит фазовый переход первого рода — переход из структуры с триклинной элементарной ячейкой в структуру с гексагональной ячейкой. На втором этапе (пик с $T_{\max 2}$) происходит фазовый переход второго рода типа "порядок-беспорядок". В таблице приведены экспериментально полученные термодинамические параметры обоих переходов: $T_{\max 1}$ и $T_{\max 2}$, суммарные

Рис. 1. Кривые ДСК, полученные при нагревании (жирные линии) и рассчитанные по соотношению (1) (пунктир) для образцов I-7 (обозначения см. в табл.). Скорость нагревания V = 2 K/min.

значения энтальпии (ΔH_{Σ}) и ее составляющие для перехода первого рода (q) и второго рода (ΔH_2), амплитуды пиков теплоемкости для перехода первого рода $\Delta C_{p \max}$, энтропия перехода второго рода ΔS .

Анализ пиков теплоемкости, наблюдаемых на первом этапе фазового превращения, проводился согласно термодинамической теории самосогласованного поля [7,8] применительно к Л-образным размытым переходам первого рода. Тот факт, что переход становится размытым, означает, что изменение фазового состояния происходит в пределах определенного температурного интервала. Теория анализирует образование и последующий рост устойчивых зародышей новой фазы в матрице старой фазы. Механизм нуклеации — гетерогенный, причем зародыши новой фазы возникают в области различного типа дефектов кристаллической фазы ПТФЭ (краевые и винтовые дислокации, микропоры и т.д.). Суть предложенной теории [7,8] состоит в том, что в объеме старой фазы происходит локализация многочисленных флуктуаций в ограниченном объеме в виде стабильных зародышей новой фазы, так называемых элементарных объемов перехода ω . В дальнейшем, по мере развития перехода движение межфазной границы осуществляется путем последовательных добавлений зародышей с объемом ω на возникшую межфазную границу. Образование зародышей-доменов требует изменения температуры на малую величину, которая определяется энергией, необходимой на возникновение таких областей. Это и приводит к размытию перехода по температуре. Например, для сегнетоэлектрических материалов было показано, что элементарные объемы превращения сопоставимы с объемом так называемой области Кенцига $(\sim 10^{-18} - 10^{-17} \, \mathrm{cm}^3)$ и по своему масштабу соответствуют мезоскопическому уровню [9].

Размеры устойчивых зародышей ω можно определить из формы пиков $\Delta C_p(T)$, соответствующих переходам I рода. В работе [10] получено соотношение для температурной зависимости теплоемкости при размытом фазовом переходе в виде

$$\Delta C_p(t) = 4\Delta C_{p \max} \cdot [B(T - t_0)/t_0] \\ \times [1 + \exp[]B(T - T_0)/T_0]^{-2}, \qquad (1)$$

где T_0 — температура ФП первого рода, $\Delta C_{p \max}$ — максимальное значение теплоемкости при $T = T_0, B$ — атермический параметр, определяющий размытие перехода по температуре [11]:

$$\Delta T_M = 4B^{-1}T_0. \tag{2}$$

Вводя обозначения $R(T) = \Delta C_p(T) / \Delta C_{p \text{ max}}$ и $K = [1 - R(T)]^{1/2}$, уравнение (1) можно представить также в виде линейных от температуры зависимостей

$$Ln[(1-K)/(1+K)] = B(t-T_0)/T_0$$
(3)

для высокотемпературного плеча пика, и

$$Ln[(1+K)/(1-K)] = B(T-T_0)/T_0$$
(4)

для низкотемпературного плеча. Согласно соотношениям (3) и (4) наклон этих линейных зависимостей определяется параметром *B*.

На рис. 2 для примера представлены такие зависимости применительно к восходящему и нисходящему участкам пика для образца № 5 (см. таблицу).

Рис. 2. Зависимости, рассчитанные по соотношениям (3) и (4) для ПТФЭ с 0.1% SiO₂. Треугольники — экспериментальные данные, точки — результат расчета.

Видно, что в этих координатах обе зависимости составляют прямую линию, по наклону которой был определен параметр B, а по точке пересечения с осью абсцисс определяется $T_0 = T_{\max 1}$, что дает возможность воспользоваться соотношением (1) для построения симметричного Λ -образного пика. Такие же зависимости были получены для всех исследуемых образцов. Амплитуды пиков, т.е. величины $\Delta C_{p\max}$ определялись по экспериментальным кривым ДСК. Параметры расчета зависимостей $\Delta C_p(T)$ приведены в таблице. На рис. 1 в виде тонких линий представлены результаты расчета, удовлетворительно описывающие экспериментальные кривые ДСК в температурном диапазоне перехода первого рода.

Параметр *В* оказывается структурно чувствительным параметром, поскольку определяет в материалах с размытыми фазовыми переходами объемы зародышей новой фазы

$$\omega = kT_0 B / \rho q, \tag{5}$$

где k — постоянная Больцмана, ρ — плотность кристаллов ПТФЭ $\sim 2.2\,{\rm g\cdot cm^{-3}}$ [12]. На рис. 3 показана зависимость элементарного объема фазового превращения ω рассчитанная по параметрам, представленным в таблице, от весового содержания добавки SiO₂, а также для облученного ПТФЭ.

Из рисунка видно, что в облученном ПТФЭ наблюдается сильное уменьшение ω . Малые добавки SiO₂ также снижают ω , однако, по мере роста содержания добавок элементарный объем увеличивается и при SiO₂ $\approx 0.5 - 1\%$ достигает уровня наблюдаемого в исходном ПТФЭ.

Как отмечалось выше, рост объема новой фазы при фазовом превращении происходит за счет присоединения новых элементарных объемов к фазовой поверхности. Этот рост будет происходить до тех пор, пока перед фазовой поверхностью не появятся или не накопятся

Рис. 3. Зависимость элементарного объема фазового превращения ω от добавки SiO₂ (1). (2) — облученный ПТФЭ.

препятствия, увеличивающие поверхностную энергию. В этом случае группам $-CF_2$ – необходимо преодолевать помимо сил межмолекулярного взаимодействия (MMB) дополнительный барьер, препятствующий присоединению новых объемов к фазовой поверхности.

При радиационном облучении ПТФЭ происходит деструкция основных цепей полимера, уменьшение размеров кристаллитов, накопление концевых (–СFO и –CF₃) групп и серединных двойных связей. Происходит также разветвление цепей и замыкание этих разветвлений на соседние параллельно уложенные в кристаллите молекулы [13]. Все эти дефекты препятствуют распространению фазовой поверхности и значительно уменьшают элементарный объем фазового превращения. Такую же роль дополнительных барьеров выполняют частицы SiO₂, внедренные в кристаллические ламели или фибриллы полимера.

В работе [8] установлена связь между элементарным объемом фазового превращения ω и концентрацией дефектов в кристалле *C*, препятствующих движению межфазной границы при мартенситном превращении

$$\Delta T_{\mu} = 3kT_0^2 C/\pi q R^3, \tag{6}$$

где k — постоянная Больцмана, R — радиус препятствия, т.е. размытие перехода тем больше, чем больше концентрация препятствий и меньше их радиус. На мезоскопическом уровне гетерофазная мартенситноаустенитная структура представляет собой систему мартенситных пластинок толщиной от 0.1 до 10 mkm. В процессе мартенситного превращения число и ширина пластинок возрастает до тех пор, пока весь кристалл не перейдет в мартенситное состояние. Движение межфазной границы в ламелярной пластине полимера аналогично движению межфазной границы в мартенситной пластине. Боковая часть фазовой границы в ламелях проходит через относительно слабые вандерваальсовы связи между – СF₂ – группами соседних молекул. Другая часть фазовой границы, необходимая для образования объема новой фазы, проходит по торцевой поверхности параллельно упакованных молекул или в так называемых межламелярных прослойках. Эти прослойки состоят из сегментов молекул в различной конформации, задаваемой разным набором и последовательностью "гош" и "транс" изомеров, обеспечивающих изогнутую форму того или иного элемента структуры. Торцевая поверхностная энергия в такой надмолекулярной структуре значительно превосходит боковую поверхностную энергию. Поэтому распространение фазовой границы в пластине ламели будет происходить за счет боковой поверхности, то есть за счет увеличения ширины полимерной ламели, как и в мартенситной пластине.

Наличие препятствий приводит к тому, что общее увеличение объема новой фазы происходит за счет присоединения меньших по объемам ω . Массовая доля X добавок SiO₂, создающих препятствия для движения фазовой границы в полимере, равна $X = m_1/m_1 + m_2$, где m_1 и m_2 массы SiO₂ и ПТФЭ, соответственно. Если объем препятствия представить в виде $W = 4/3\pi R^3$, то $X = 4/3 \cdot \pi R^3 \rho_1 C(X)/(4/3\pi R^3 \rho_1 C(X) + \rho_2 \omega)$, где ρ_1 — плотность SiO₂ (~ 2–2.2 g/cm³) и ρ_2 — плотность ПТФЭ. С учетом $\rho_1 \approx \rho_2$ получаем выражение $R^3 = 1/4 \cdot C(X) \cdot \omega \cdot \{X/(1-X)\}$. Для размытия перехода по температуре соответственно находим

$$\Delta T_{\mu} = 12kT_0^2 C^2(X) \cdot \{(1-X)/X\}/\pi 1\omega.$$
 (7)

Из сопоставления полученного выражения и (2) следует условие $C^2(X) \cdot \{(1-X)/X\} = \pi/3$. Учитывая малую долю добавок SiO₂ ($X \ll 1$) последнее соотношение можно записать в виде $C(X) \approx (X)^{1/2}$, что позволяет рассчитать зависимости концентрации и радиуса препятствий от весовой доли добавок SiO₂. На рис. 4 представлены эти зависимости.

Видно, что по мере увеличения X обе зависимости носят возрастающий характер — увеличиваются как концентрация препятствий, так и их радиус.

Диапазон изменения размеров препятствий при этом составляет $2R \sim 1.5-4$ nm, а в объем препятствий захватывается от ~ 40 до ~ 1000 групп SiO₂. По отношению к элементарному объему фазового превращения, объем препятствий составляет незначительную величину. Если объем препятствий будет сопоставим с ω , то соотношение $C(X) \approx (X)^{1/2}$ нельзя использовать для расчета $\Delta T_{\mu}(X)$, поскольку для его вывода требовалось условие $X \ll 1$.

По отношению к температурному интервалу фазового превращения зависимости R(X) и C(X), как это видно из соотношения (6), носят противоположный характер. Они вступают в "конкуренцию" по определению характера зависимости $\Delta T_{\mu}(X)$, поскольку размытие перехода тем больше, чем больше концентрация препятствий и меньше их радиус. На рис. 5 представлена зависимость

Рис. 4. Зависимости концентрации *С* препятствий (кривая 2) и радиуса *R* препятствий (кривая 1) от весовой концентрации *X* добавок SiO₂.

Рис. 5. Зависимость величины размытия перехода $\Delta T_{\mu}(X)$ от весовой концентрации добавок SiO₂.

 $\Delta T_{\mu}(X)$, рассчитанная с использованием полученных зависимостей R(X) и C(X).

Видно, что размытие перехода уменьшается с возрастанием X. Заметим, что в совершенном монокристалле, при отсутствии препятствий (C = 0), элементарный объем превращения $\omega = W$, где W — объем кристалла, а размытие перехода по температуре $\Delta T_{\mu} = 0$. То есть в этом случае вместо размытого перехода будет точечный переход, а зависимость теплоемкости от температуры будет представлять собой δ -функцию. Наличие препятствий делает недостижимым предел $\Delta T_{\mu} \to 0$ однако

характер зависимости $\Delta T_{\mu}(X)$ при более высоком содержании SiO₂ в сравнении с полученным в настоящей работе, может измениться.

Возвращаясь к фазовому переходу второго рода, частично охарактеризованному выше, следует отметить, что он связан с потерей спиральной хиральности длинноцепочечной молекулы кристалла ПТФЭ, то есть с потерей элемента симметрии кристалла. Потеря спиральной хиральности кристалла ПТФЭ приводит к увеличению конформационной энтропии на величину ΔS . Этот процесс на молекулярном уровне можно рассматривать как переход элементарных независимых групп, состоящих из Z звеньев -CF2-, из одного состояния в другое, то есть до и после перехода. Изменение конформационной энтропии для одного моля звеньев -CF₂- кристалла (N_a) тогда можно представить в виде соотношения $\Delta S = (N_a/Z)kln(2)$ [14]. Оценка величины Z, исходя из экспериментально определенной энтропии фазового перехода второго рода для исходного ПТФЭ, дает 14-15 звеньев CF₂-групп. Эта величина сопоставима с периодом спирали молекулы ПТФЭ. у-облучение и допирование диоксидом кремния приводит к резкому уменьшению энтропии фазового перехода (см. табл.). Оценка величины Z для облученного и допированного ПТФЭ приводит к значениям Z ~ 60-100, указывающим на приближение исходной спиралевидной молекулы полимера к конформации типа "плоский зигзаг".

Проведенный в данной работе анализ влияния у-облучения и допирования диоксидом кремния на твердотельный фазовый переход первого рода в политетрафторэтилене показал следующее: 1) облучение и допирование (малым количеством добавок SiO₂) влияют на надмолекулярную структуру полимера сходным образом, что проявляется в виде резкого уменьшения элементарного объема фазового превращения; 2) увеличение весового количества добавок SiO2 приводит к увеличению элементарного объема фазового превращения, что обусловлено определенным соотношением между размером частиц допанта и их концентрацией; 3) вариацией этого соотношения путем изменения распределения размеров добавок SiO₂ или подбором других допантов можно, по-видимому, регулировать дисперсность надмолекулярной структуры полимера.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.Ю. Рашковский, Е.Д. Политова, А.О. Меркушкин, М.А. Арсентьев, Е.В. Масленкова, А.С. Смолянский. Безопасность в техносфере 1, 38 (2018).
- [2] А.С. Смолянский, М.А. Арсентьев, А.Ю. Рашковский, Е.Д. Полнтова. Кристаллография 64, 4, 529 (2019).
- [3] Б. Вундерлих. Физика макромолекул. Мир, М. (1984). Т. 3, 479 с.

- [4] K. Illers. Eur. Polym. J. 10, 911 (1974).
- [5] В.М. Егоров, П.Н. Якушев. ФТТ 60, 9, 1824 (2018).
- [6] В.М. Егоров, П.Н. Якушев, М.А. Арсентьев, А.С. Смолянский. ФТТ 61, 7, 1386 (2019).
- [7] М. Фишер. Природа критического состояния. Мир, М. (1968). 221 с.
- [8] Г.А. Малыгин. Успехи физ. наук 171, 187 (2001).
- [9] В. Кенциг. Сегнетоэлектрики и антисегнетоэлектрики. ИЛ, М. (1960). 347 с.
- [10] Г.А. Малыгин. ФТТ 43, 1911 (2001).
- [11] Г.А. Малыгин. ФТТ 36, 1489 (1994).
- [12] D.M. Small. The Physical Chemistry of Lipids. Plenum Press, N.Y — London (1986). 262 p.
- [13] С.А. Хатипов, Е.М. Конова, Н.А. Артамонов. Рос. хим. журн. **5**, 64 (2008).
- [14] G.A. Adam, J.H. Gibbs. J. Chem. Phys. 43, 139 (1965).

Редактор К.В. Емцев