12,13

О диполь-дипольном взаимодействии атомов в слоях, адсорбированных на трехмерных и двумерных полупроводниках

© С.Ю. Давыдов¹, А.В. Зубов²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО), Санкт-Петербург, Россия

E-mail: Sergei_Davydov@mail.ru

Поступила в Редакцию 17 марта 2020 г. В окончательной редакции 17 марта 2020 г. Принята к публикации 23 апреля 2020 г.

> Предложены простые модельные схемы учета диполь-дипольного отталкивания адатомов в субмонослоях на полупроводниковых трех- и двумерных подложках. Приведены общие выражения для определения вкладов зонных и локальных состояний в переход заряда между адсорбированном слоем и подложкой в функции от степени покрытия подложки адатомами. Аналитические оценки сделаны для ряда частных характерных случаев.

> Ключевые слова: адсорбция, переход заряда, диполь-дипольное отталкивание, зонные и локальные состояния.

DOI: 10.21883/FTT.2020.08.49618.061

1. Введение

При адсорбции атомов на твердотельных подложках нужно учитывать их взаимодействие. Самыми важными каналами такового являются диполь-дипольное взаимодействие, косвенный обмен через электронные состояния подложки и прямой обмен при высоких концентрациях адатомов [1–3]. Диполь-дипольное взаимодействие возникает, когда адатомы имеют заряд, возникший вследствие перехода электронов (дырок) с адатома в подложку. Именно этот вид взаимодействия будет рассмотрен в настоящей статье.

Для атомов, адсорбированных на металле, дипольдипольное отталкивание адекватно описывается моделью Муската—Ньюнса [4] (см. также [2,3]). В этой модели рассматривается решетка параллельных диполей, образованных заряженными адатомами и их изображениями в подложке. При этом речь идет об адсорбции одинаковых атомов, занимающих одинаковые адсорбции онные позиции. Отметим, что модель Муската—Ньюнса основана на использовании гамильтониана Андерсона [2,3,5–7].

Согласно модели Муската-Ньюнса [2-4], число заполнения *n_a* одноэлектронного (однодырочного) адатома может быть определено из самосогласованного уравнения

$$n_a(\Theta) = \frac{1}{\pi} \operatorname{arcctg} \frac{\varepsilon_a - \Theta^{3/2} \xi Z_a(\Theta) - E_{\mathrm{F}}}{\Gamma}.$$
 (1)

Здесь $\Theta = N_a/N_{ML}$ — степень покрытия, где N_a и N_{ML} — двумерные концентрации адатомов в субмо-

нослое и монослое, $0 \leq \Theta \leq 1$, ε_a — энергия уровня адатома, E_F — уровень Ферми, $Z_a(\Theta)$ — заряд адатома, равный $1 - n_a(\Theta)$, если уровень адатома изначально (до адсорбции) заполнен (адатомы-доноры), и $-n_a(\Theta)$, если уровень адатома изначально пуст (адатомы-акцепторы), $\Gamma = \text{const}$ — полуширина квазиуровня адатома, $\xi = 2e^2 l^2 N_{ML}^{3/2} A$ — константа дипольдипольного взаимодействия, e — заряд электрона, l — длина адсорбционной связи, $A \sim 10$ — множитель, слабо зависящий от геометрии адслоя [8].

В случае адсорбции на полупроводнике дело обстоит не столь просто, так как в формировании заряда адатома участвуют не только зонные состояния n_b (как это имеет место в случае металлической подложки), но и локальные состояния адсорбционной системы n_l , лежащие в запрещенной зоне подложки [2,3]. Та же ситуация имеет место и при адсорбции на графеноподобных соединениях [9]. Именно такие подложки мы и рассмотрим в настоящей работе.

2. Общие соотношения

В рамках модельного подхода к проблеме адсорбции [2,3], плотность состояний на одиночном адатоме $\rho_a(\omega)$ может быть представлена в виде

$$\rho_a(\omega) = \frac{1}{\pi} \frac{\Gamma(\omega)}{[\omega - \varepsilon_a - \Lambda(\omega)]^2 + \Gamma^2(\omega)}.$$
 (2)

Здесь ω — энергетическая переменная, $\Gamma(\omega) = \pi V^2 \rho_{sub}(\omega)$ — функция уширения квазиуровня, где

 $\rho_{sub}(\omega)$ — плотность состояний подложки, V — матричный элемент взаимодействия адатом—подложка, и $\Lambda(\omega)$ — функция сдвига квазиуровня (гильбертова трансформанта функции $\Gamma(\omega)$). Выражение (2) легко переписать на случай конечных покрытий, заменив $\rho_a(\omega)$ на $\rho_a(\omega, \Theta)$ и ε_a на $\varepsilon_a(\Theta) = \varepsilon_a - \varepsilon_{dip}(\Theta)$, $\varepsilon_{dip}(\Theta) = \Theta^{3/2} \xi Z_a(\Theta)$. При нулевой температуре вклады в суммарное число заполнения $n_a(\Theta)$ валентной зоны $n_v(\Theta)$ и локального состояния $n_l(\Theta)$ равны соответственно

$$n_{\nu}(\Theta) = \int_{-\infty}^{E_{\nu}} \rho_{a}(\omega, \Theta) \, d\omega,$$
$$n_{l}(\omega) = \left| 1 - \frac{d\Lambda(\omega)}{d\omega} \right|_{\omega(\Theta)}^{-1}, \tag{3}$$

где E_V — энергия потолка валентной зоны, $\omega_l(\Theta)$ — энергия локального уровня, определяемая из уравнения

$$\omega - \varepsilon_a(\Theta) - \Lambda(\omega) = 0, \quad |\omega| \le E_g/2.$$
 (4)

Легко показать, что учет дипольного отталкивания ведет к уменьшению величины заряда адатомов. Действительно, при $Z_a(\Theta) > 0$ уровень адатома $\varepsilon_a(\Theta)$ сдвигается вниз по шкале энергий, что ведет к возрастанию значений $n_{\nu}(\Theta)$, $n_l(\Theta)$ и, следовательно, к убыли $Z_a(\Theta)$. Если же $Z_a(\Theta) < 0$, уровень $\varepsilon_a(\Theta)$ сдвигается по энергии верх, вследствие чего значения $n_{\nu}(\Theta)$, $n_l(\Theta)$ и $|Z_a(\Theta)|$ убывают.

3. Адсорбция на трехмерном полупроводнике

Для плотности состояний трехмерной (3D) полупроводниковой подложки воспользуемся моделью Халдейна–Андерсона [2,3]: $\rho_{\rm SC}(\omega) = \rho = {\rm const}$ для $|\omega| \ge E_g/2$ (зоны разрешенных состояний) и $\rho_{\rm SC}(\omega) = 0$ при $|\omega| < E_g/2$ (запрещенная зона), где за нуль энергии принят центр запрещенной зоны E_g . При этом функция сдвига

$$\Lambda_{\rm SC}(\omega) = (\Gamma/\pi) \ln |(\omega - E_g/2)/(\omega + E_g/2)|,$$

где $\Gamma = \pi V^2 \rho$ = const. Обобщая результаты работы [10] на конечные покрытия, можем записать:

$$n_{\nu}(\Theta) = \frac{1}{\pi} \operatorname{arcctg} \frac{\varepsilon_{a}(\Theta) + R}{\Gamma}, \quad R = \frac{E_{g}}{2} \sqrt{1 + \frac{4\Gamma}{\pi E_{g}}}, \quad (5)$$
$$n_{l}(\Theta) = \nu_{l}(\Theta)\Theta_{H}(E_{F} - \omega_{l}(\Theta)),$$
$$\nu_{l}(\Theta) = \left(1 + \frac{\Gamma}{\pi} \frac{E_{g}}{(E_{g}/2)^{2} - \omega_{l}^{2}(\Theta)}\right)^{-1}, \quad (6)$$

где $\Theta_H(E_F - \omega_l(\Theta))$ — функция Хэвисайда. Связь вкладов зонных и локальных состояний с парамет-

Зависимости вкладов состояний валентной зоны n_v^0 (темные символы) и локальных состояний v_l^0 (светлые символы) в число заполнения одиночного адатома n_a^0 от (*a*) полуширины Г и (*b*) энергии ε_a квазиуровня. Все энергетические величины представлены в ед. $E_g/2$.

рами задачи для нулевых покрытий демонстрируется на рисунке. Из рисунка следует, во-первых, что зависимости $n_v^0 \equiv n_v(0)$ и $v_l^0 \equiv v_l(0)$ являются монотонными функциями параметров Г и ε_a . Во-вторых, для представленных на рисунке значений Г и ε_a сумма $n_v^0 + v_l^0$ близка к 1 (достаточно резкий рост $n_v^0 + v_l^0$ ммеет место только при $2\Gamma/E_g \rightarrow 0$). В пределе $|\varepsilon_a + R|/\Gamma \gg 1$ получаем из (5) и (6) соответственно $n_v^0 \approx [1 - 1 \operatorname{sgn}(\varepsilon_a + R)]/2 + \Gamma/\pi(\varepsilon_a + R)$ и $v_l^0 \approx (2\pi E_g/\Gamma) \exp[-\pi|\varepsilon_a|/\Gamma]$. В обратном случае

 $|\varepsilon_a + R|/\Gamma \ll 1$ получаем

$$n_v^0 \approx 1/2 - \Gamma/\pi(\varepsilon_a + R)$$

И

$$\nu_l^0 \approx (1 + 4\Gamma/\pi E_g)^{-1} \\ \times \left(1 - \frac{16\Gamma\varepsilon_a^2}{E_g^3(1 + 4\Gamma/\pi E_g)(1 + 4\Gamma/E_g)^2}\right).$$
(7)

Переходя к конечным покрытиям, рассмотрим два частных случая. Как вытекает из (6), при $E_{\rm F} < \omega_l(\Theta)$ имеем $n_a(\Theta) = n_v(\Theta)$ и $Z_a(\Theta) = Z_v(\Theta)$, так как локальные состояния пусты во всем диапазоне изменений Θ . Тогда задача сводится к решению уравнения (5), в котором $\varepsilon_{dip}(\Theta) = \Theta^{3/2}\xi Z_v(\Theta)$, где $Z_v(\Theta) = 1 - n_v(\Theta)$ для адатомов-доноров и $Z_v(\Theta) = -n_v(\Theta)$ для адатомовакцепторов. (Отметим, что уравнение (5) совпадает с уравнением (1) при замене $\varepsilon_a - E_{\rm F}$ на $\varepsilon_a + R$). К аналогичному результату приходим в пределе $|\varepsilon_a(\Theta)| \gg \max\{E_g/2, \Gamma\}$. Действительно, положив $\omega_l(\Theta) = \pm E_g/2 \mp \delta(\Theta)$, где $\delta(\Theta) \ll E_g/2$, получим

$$\nu_l(\Theta) \approx (2\pi E_g/\Gamma) \exp[-\pi |\varepsilon_a(\Theta)|/\Gamma] \ll 1.$$

Так как в том же пределе $n_{\nu}(\Theta) \sim 1$, имеем $n_{\nu}(\Theta) \gg \nu_{l}(\Theta)$. Для адатома-донора с точностью до второго порядка по $\gamma = \Gamma/|\varepsilon_{a} + R| \ll 1$ при $\varepsilon_{a}(\Theta) < 0$ получим $Z_{\nu}(\Theta) \approx \alpha(\Theta)$, где $\alpha(\omega) = (\gamma/\pi) \times (1 - \Theta^{3/2}\gamma\xi/|\varepsilon_{a} + R|)$. При тех же условиях для адатома-акцептора имеем $Z_{\nu}(\Theta) \approx -\alpha(\Theta)$.

Обратимся теперь к противоположному предельному случаю, когда $n_{\nu}(\Theta) \ll \nu_{l}(\Theta)$, так что при $\omega_{l}(\Theta) < E_{\rm F}$ имеем $n_{a}(\Theta) \approx n_{\nu}(\Theta)$ и $Z_{a}(\Theta) \approx Z_{l}(\Theta)$. В этом случае задача сводится к решению уравнения (6). В пределе $|\varepsilon_{a}(\Theta)| \ll \min\{E_{g}/2, \Gamma\}$ получаем $\omega_{l}(\Theta) \approx \varepsilon_{a}(\Theta)/(1 + 2\Gamma/E_{g})$ и $n_{l}(\Theta) \approx n_{*} - C\Gamma\varepsilon_{a}^{2}(\Theta)/E_{g}^{3}$, где $n_{*} = (1 + 4\Gamma/\pi E_{g})^{-1}$ и $C = 16/n_{*}^{2}(1 + 4\Gamma/E_{g})^{2}$. Положив для простоты $\varepsilon_{a} = 0$, для адатома-донора находим $Z_{l}(\Theta) \approx Z_{*}(1 - \beta(\Theta))$, где $Z_{*} = 1 - n_{*}$ и $\beta(\Theta) = CZ_{*}\Gamma\xi^{2}\Theta^{3/2}/E_{g}^{3}$, а для адатома-акцептора $Z_{*} = -n_{*}(1 - \beta(\Theta)n_{*})$.

Итак, в рассмотренных предельных случаях с ростом Θ величина заряда уменьшается, что совпадает с выводами теории адсорбции на металлах [1–3]. В общем случае необходимо решать систему уравнений (5) и (6) методом итераций для каждого значения Θ .

Адсорбция на двумерном полупроводнике

Рассмотрим теперь адсорбцию на графеноподобных соединениях (ГПС) [9,11], являющихся двумерными (2D) аналогами классических трехмерных полупроводников, рассмотренных в предыдущем разделе. Для описания плотности состояний ГПС-подложки воспользуемся низкоэнергетическим (линейном по ω) приближением, в рамках которого $\rho_{GLC}(\omega) = 2|\omega|/\xi^2$ при $\sqrt{\xi^2 + \Delta^2} \ge |\omega| \ge \Delta$ и $\rho_{GLC}(\omega) = 0$ при $|\omega| < \Delta$ и $|\omega| > \sqrt{\xi^2 + \Delta^2}$, где 2 Δ — ширина запрещенной зоны (щели), $\xi = \sqrt{2\pi\sqrt{3}t}$ — нормировочный множитель, t — энергия перехода между p_z -орбиталями ближайших соседями, начало отсчета энергии помещено в центр щели [9,11]. (При $\Delta = 0$ получаем плотность состояний свободного графена). Такой плотности состояний соответствует функция сдвига

$$\Lambda_{\rm GLC}(\omega) = 2\omega (V/\xi)^2 \ln |(\omega^2 - \Delta^2)/(\omega^2 - \Delta^2 - \xi^2)|$$

Обобщая оценки работы [9] на случай конечных покрытий, представим вклад состояний валентной зоны в суммарное число заполнения в виде

$$n_{\nu}(\Theta) \approx \frac{1}{\pi} \times \left(\operatorname{arctg} \frac{\omega_{r}(\Theta) + \sqrt{\xi^{2} + \Delta^{2}}}{2\pi v |\omega_{r}(\Theta)|} - \operatorname{arctg} \frac{\omega_{r}(\Theta) + \Delta}{2\pi v |\omega_{r}(\Theta)|} \right), \quad (8)$$

где $v = 2V^2/\xi^2$, $\omega_r(\Theta)$ — энергия резонансного уровня, равная корню уравнения $\omega - \varepsilon_a(\Theta) - \Lambda_{GLC}(\omega) = 0$ в интервале $(-\sqrt{\xi^2 + \Delta^2} - \Delta)$ и соответствующая валентной зоне (см. подробности в [9]). В предположении, что $\xi \gg \max{\{\Delta, V, \omega_r(\Theta)\}}$, получаем уравнение (5), где Г заменяется на $2\pi v |\omega_r(\Theta)|$ и *R* на Δ . Легко показать, что при $\xi \gg \max{\{\Delta, V, \omega_r(\Theta)\}}$ с точностью до *v* имеем $n_v(\Theta) \approx 1 - 2v$, а значения $n_l(\Theta)$ (как и в предыдущем полупроводниковом случае) экспоненциально малы, т.е. $n_v(\Theta) \gg v_l(\Theta)$. Так как одним из условий полученного решения является выполнения неравенства $\xi \gg \Delta$, этот случай можно отнести к узкощелевым ГПС.

Рассмотрим теперь другой предельный случай, когда $n_{\nu}(\Theta) \ll \nu_l(\Theta)$ и $\omega_l(\Theta) < E_F$, что может быть реализовано при $|\varepsilon_a(\Theta)| \ll \Delta$, или, принимая, как и в предыдущем случае для простоты $\varepsilon_a = 0$, получим $|\varepsilon_{dip}(\Theta)| \ll \Delta$. Последнее неравенство тем легче удовлетворить, чем выше значение отношения Δ/ξ . Таким образом, рассматриваемый случай можно отнести к широкощелевым ГПС.

Обсуждение результатов и заключительные замечания

В настоящей работе мы предложили простые модельные схемы учета диполь-дипольного отталкивания адатомов при адсорбции на трех- и двумерных полупроводниковых подложках. При этом каких-либо качественных различий между переходом заряда при адсорбции на 3D- и 2D-полупроводниках не наблюдается. Последнее обстоятельство требует пояснений.

В рамках использованного в настоящей работе подхода, легко выявить причину сходства адсорбционных характеристик для 3D- и 2D-полупроводниковых подложек, усложнив модель плотности 3D-состояний Халдейна—Андерсона и упростив использованную здесь модель плотности 2D-состояний. В первом случае следует положить $\rho_{SC}(\omega) = \text{const}$ при $W + E_g/2 \ge |\omega| \ge E_g/2$ и $\rho_{SC}(\omega) = 0$ при $|\omega| < E_g/2$ и $W + E_g/2 < |\omega|$, где W — ширина разрешенных зон (еще более усложняя модель, для валентной зоны можно ввести W_V , для зоны проводимости — W_C). С другой стороны, в случае ГПС плотность состояний можно представить в виде $\rho_{GLC}(\omega) = (\Delta + \sqrt{\xi^2 + \Delta^2})/\xi^2 = \text{const}$ при $\sqrt{\xi^2 + \Delta^2} \ge |\omega| \ge \Delta$ и $\rho_{GLC}(\omega) = 0$ при $|\omega| < \Delta$ и $|\omega| > \sqrt{\xi^2 + \Delta^2}$.

Можно поступить и по-другому, приняв за модель плотности состояний 3D-подложки параболическую модель вида

$$\rho_{\rm SC}(\omega) = A \begin{cases}
\sqrt{\omega - E_g/2}, & E_g/2 < \omega \le W + E_g/2, \\
\sqrt{-\omega - E_g/2}, & -W - E_g/2 \le \omega < -E_g/2, \\
0, & |\omega| \le E_g/2, \ |\omega| > W + E_g/2, \\
(9)
\end{cases}$$

где A — коэффициент [12]. Такая плотность состояний качественно близка к функции $\rho_{\rm GLC}(\omega)$, использованной в настоящей работе.

В общем случае плотность состояния 2D-системы (в отличие от 3D) обладает расходимостями, или особенностями Ван Хова (см., например, модель Вегера– Лаббе-Фриделя в [13] или плотность состояний графена [14]). При вычислении перехода заряда между подложкой и адчастицей (как и при нахождении энергии адсорбции) вследствие интегрирования качественные различия между 3D- и 2D-адсорбционными системами, связанные с расходимостями, исчезают.

Мы показали также, что, по сравнению со случаем адсорбции на металле, специфика задачи об адсорбции на 3D- и 2D-полупроводнике сводится к учету локальных состояний. Отметим, что эффект влияния температуры на переход заряда в системах со щелью, который рассматривался в работе [15], сводится, в первую очередь, к вопросу о заполнении локальных состояний. Следует подчеркнуть, что по сравнению с адсорбцией на металлах [1,2,4,7,16], адсорбция даже на классических трехмерных полупроводниках изучена крайне слабо как с точки зрения эксперимента, так и теории. Особенно ощущается отсутствие данных по зависимости электронного состояния адслоя от типа проводимости полупроводника (см. обсуждение данного вопроса в [17]). Именно поэтому в настоящей работе мы ограничились простыми качественными оценками.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

[1] О.М. Браун, В.К. Медведев. УФН 157, 631 (1989).

- [2] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Изд-во СПбГЭТУ "ЛЭТИ", СПб (2013). 235 с. twirpx.com/file/1596114/.
- [3] С.Ю. Давыдов. А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию нано-систем. Изд-во "Лань", СПб (2014).
- [4] J.P. Muscat, D.M. Newns. J. Phys. C 7, 2630 (1974).
- [5] Ч. Киттель. Квантовая теория твердых тел. Наука, М. (1967). Гл. 18.
- [6] Т. Мория Спиновые флуктуации в магнетиках с коллективизированными электронами. Мир, М. (1988). Гл. 6.
- [7] S.G Davison., K.W. Sulston. Green-Function Theory of Chemisorption. Berlin-Heidelberg, Springer (2006).
- [8] C.E. Carrol, J.W. May. Surf. Sci. 29, 60 (1972).
- [9] С.Ю. Давыдов. ФТП 51, 226 (2017).
- [10] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 8, 1508 (2007).
- [11] С.Ю. Давыдов. ФТТ 58, 779 (2016).
- [12] С.Ю. Давыдов. ЖТФ 84, 155 (2014).
- [13] С.В. Вонсовский, Ю.А. Изюмов, Э.З. Курмаев. Сверхпроводимость переходных металлов, их сплавов и соединений. Наука, М. (1977). Гл. V.
- [14] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, 109 (2008).
- [15] С.Ю. Давыдов. ЖТФ 86, 145 (2016).
- [16] Л.А. Большов, А.П. Напартович, А.Г. Наумовец, А.Г. Федорус. УФН 122, 125 (1977).
- [17] С.Ю. Давыдов, В.О. Посредник. ЖТФ 87, 635 (2017).

Редактор Т.Н. Василевская