10,12,18

Поперечные пьезо- и пироэлектрический эффекты в 2D-наноаллотропах нитрида бора, обусловленные риплообразованием

© Р.А. Браже, Д.А. Долгов

Ульяновский государственный технический университет, Ульяновск, Россия E-mail: brazhe@ulstu.ru

Поступила в Редакцию 5 марта 2020 г.

В окончательной редакции 5 марта 2020 г. Принята к публикации 17 марта 2020 г.

> Показано, что образование рипплов (ряби) в структуре 2D-наноаллотропов нитрида бора приводит к возникновению в них поперечных пьезо- и пироэлектрического эффектов с зависящими от температуры коэффициентами. Рассчитана величина этих коэффициентов для различных 2D-наноаллотропов нитрида бора. Показано, что вследствие малой высоты рипплов поперечный пьезоэффект в рассматриваемых наноаллотропах на три порядка слабее продольного, в то время как пироэлектрический эффект вполне сравним с аналогичным эффектом во фторографанах и может найти практическое применение.

Ключевые слова: нитрид бора, 2D-наноаллотропы, пьезо- и пироэлектрический эффекты.

DOI: 10.21883/FTT.2020.08.49612.046

1. Введение

Большой интерес для использования в наноэлектронике и наноэлектромеханических системах управления информацией представляют планарные и нанотубулярные кристаллические структуры, обладающие пьезоэлектрическими и пироэлектрическими свойствами. Они могут быть созданы на основе графена путем нарушения его центросимметричности перфорированием или допированием электроположительными и электроотрицательными атомами [1-5]. Однако, в связи с технологическими трудностями серийного изготовления таких структур и большими экономическими затратами, более перспективным представляется использование в указанных целях наноаллотропов нитрида бора (BN) и других 2D-соединений типа А^ШВ^V, обладающих естественным пьезоэффектом [6-8]. Большой практический интерес представляет также использование пироэлектрических свойств гексогонального нитрида бора в составе нанокомпозитов [9].

В работе [7] были рассчитаны независимые компоненты тензора пьезомодулей, описывающих продольный пьезоэффект (в плоскости 2D-структуры) в различных 2D-наноаллотропах BN. Возникновение продольного пироэлектрического эффекта в таких наноструктурах возможно лишь при наличии градиентов температуры, что при их наномасштабных размерах практически нереализуемо.

Вместе с тем, как было показано в [5], нагревание 2D-кристаллических структур приводит к их гофрированию с образованием рипплов (от англ. ripple — рябь). Изменение температуры вызывает изменение высоты рипплов и изменение длины диполей, образованных частичной полярностью связей между атомами В и N. Это, в свою очередь, вызывает изменение поляризованности структуры в направлении, перпендикулярном к ее поверхности, т.е.приводит к поперечному пироэлектрическому эффекту.

Целью данной работы является оценка численных значений компонент тензоров пьезоэлектрических и пироэлектрических коэффициентов, описывающие соответствующие явления вследствие рипплообразования в различных 2D-наноаллотропах нитрида бора.

2. Исследуемые структуры, рипплы и методы расчета

Исследуемые структуры показаны на рис. 1, а строение возникающих при их нагревании рипплов на рис. 2. Поляризованность структуры P_3 при некотором конечном значении температуры T

$$P_3(t) = \frac{Zeh}{S} \frac{\partial u_3}{\partial x_3} = c_{333} \frac{\partial u_3}{\partial x_3},\tag{1}$$

где Z — число диполей в элементарной ячейке, S — ее площадь, e — элементарный заряд, h — высота рипплов, u_3 — смещение частиц среды вдоль координаты x_3 (перпендикулярно поверхности структуры), e_{333} — соответствующая компонента тензора пьезоэлектрических коэффициентов (в матричных обозначениях e_{33}).

При изменении температуры относительная деформация структуры вдоль оси *x*₃:

$$\frac{\partial u_3}{\partial x_3} = \alpha_{33} \Delta T, \tag{2}$$

где α_{33} — компонента тензора теплового расширения в данном направлении (в векторных обозначениях α_3).

Рис. 1. Атомная структура с выделенной в ней элементарной ячейкой исследуемых 2D-наноаллотропов нитрида бора: $a - (BN)_{6}$, $b - (BN)_{63(12)}$, $c - (BN)_{664}$, $d - (BN)_{44}$.

Рис. 2. Строение образующихся рипплов в 2D-наноаллотропах, изображенных на рис. 1. (Вид вдоль структуры): $a - (BN)_{6}$, $b - (BN)_{63(12)}$, $c - (BN)_{664}$, $d - (BN)_{44}$.

Уравнение поперечного пироэлектрического эффекта имеет вид

$$\Delta P_3 = \gamma_3 \Delta T, \tag{3}$$

где γ_3 — пироэлектрический коэффициент. С учетом (1), (2) уравнение (3) можно переписать в виде

$$\Delta P_3 = e_{33} \alpha_3 \Delta T. \tag{4}$$

Высоту рипплов *h* можно выразить через деформацию Δx_1 в плоскости атомной структуры, а саму величину Δx_1 через коэффициент теплового расширения (сжатия) α_1 в плоскости этой структуры (см. рис. 3). Поскольку

 $\Delta x_1 \ll f_0$, где f_0 — характерный период структуры при температуре T_0 , когда рипплов еще нет, то

$$h\approx\sqrt{2f_0\Delta x_1}.$$

С другой стороны,

$$\Delta x_1 = \frac{\partial u_1}{\partial x_1} f_0 = |\alpha_1| T f_0.$$

Тогда

$$h = f_0 \sqrt{2|\alpha_1|T}.$$
 (5)

Рис. 3. Связь высоты рипплов с продольными деформациями структуры.

Отметим, что α_3 и α_1 имеют разные знаки, так как "вздутие" 2D-структуры в направлении x_3 вызывается ее сжатием в продольном направлении x_1 .

Изменение высоты рипплов с температурой

$$\Delta h = \frac{\partial u_3}{\partial x_3} h = \alpha_3 \Delta T h$$

С другой стороны

$$\Delta h = \frac{\alpha_1 f_0 \Delta T}{\sqrt{2|\alpha_1|T}}.$$

Откуда

$$\alpha_3 = \frac{1}{\sqrt{2}T} \tag{6}$$

и не зависит от вида структуры.

Тогда, согласно (1)-(6),

$$e_{33}(T) = \frac{Ze}{S} f_0 \sqrt{2|\alpha_1|T},$$
(7)

$$\gamma_3(T) = \frac{\sqrt{2}}{2} \frac{e_{33}(T)}{T}.$$
(8)

Входящая в выражения (7), (8) величина α_1 может быть найдена по методике, изложенной в работе [5]. При температурах выше и ниже температуры Дебая θ_D (см. Приложение)

$$\alpha_1(T \gg \theta_D) = \frac{Nk_B}{\alpha a_{\rm BN}^2} \gamma;$$

$$\alpha_1(T \ll \theta_D) = 14.5 \left(\frac{T}{\theta_D}\right)_1^2 (T \gg \theta_D), \tag{9}$$

где N — число атомов в элементарной ячейке, k_B — постоянная Больцмана, α — константа центрального взаимодействия атомов, определяемая выражением [10,11]

$$\alpha = \frac{2}{a_{\rm BN}^2} V_2 \left[1 - \frac{10}{3} \left(\frac{V_1}{V_2} \right)^2 \right],\tag{10}$$

 $a_{\rm BN}$ — межатомное расстояние, V_2 и V_1 — соответственно ковалентная энергия σ -связи в sp^2 -наноаллотропах

$$V_2 = 3.26 \,\frac{h^2}{ma_{\rm BN}^2},\tag{11}$$

а V_1 — энергия металлизации, которую в данном случае удобно вычислить, найдя V_2 по формуле (11) и используя затем выражение (10), куда подставим α , вычисленные для рассматриваемых 2D-наноаллотропов в работе [12]. Заметим, что в выражении (10) мы для простоты пренебрегаем коэффициентом полярности σ -связи [11], что оправдано, как показано нами в [7,12], для квазиизотермических условий.

Входящая в (9) величины γ является усредненным по фононному спектру параметром Грюнайзена, который можно найти как [5,13]:

$$\gamma = \frac{2V_2}{\alpha a_{\rm BN}^2} \left[2 - \frac{10}{3} \left(\frac{V_1}{V_2} \right)^2 \right].$$
 (12)

Подставляя (12) в (9) и используя выражения (7), (8), находим зависящие от температуры значения пьезоэлектрических и пироэлектрических констант для исследуемых 2D-наноаллотропов нитрида бора.

3. Обсуждение результаты и выводы

В табл. 1 представлены необходимые для расчетов геометрические параметры исследуемых 2D-наноаллотропов нитрида бора, а в табл. 2 результаты вычислений по формулам (7)–(12). Сравнивая их с результатами вычислений пьезоэлектрического коэффициента e_{33} и пироэлектрического коэффициента γ_3 , приведенными в работе [5] для фторографаноподобных 2D-наноаллотропов такой же симметрии: (FG–GH)₆, (FG–GH)₆₃₍₁₂₎, (FG–GH)₆₆₄, (FG–GH)₄₄, можно заметить, что обусловленная рипплообразованием и характеризующая поперечный пьезоэффект пьезоконстанта e_{33} в наноаллотропах (BN)₆, (BN)₆₃₍₁₂₎, (BN)₆₆₄, и (BN)₄₄ в целом на три порядка меньше. Это связано, в первую очередь, с очень малой высотой рипплов по сравнению с длиной диполей во фторграфанах.

В то же время пироэлектрические коэффициенты γ_3 для 2D-наноаллотропов нитрида бора близки по вели-

Таблица 1. Геометрические параметры исследуемых 2D-наноаллотропов нитрида бора

Параметр	$(BN)_6$	$(BN)_{63(12)}$	(BN) ₆₆₄	(BN) ₄₄
Ζ	1	3	6	4
$a_{\rm BN},$ Å	1.45	1.6	1.44	1.38
f_0	$\frac{\sqrt{3}}{2} a_{\rm BN}$	$\sqrt{3}a_{\rm BN}$	$\frac{\sqrt{3}}{2} a_{\rm BN}$	$\frac{\sqrt{2}}{2} a_{\rm BN}$
S	$\frac{3\sqrt{3}}{2}a_{\rm BN}^2$	$\frac{(2+\sqrt{3})^2}{2} a_{\rm BN}^2$	$\frac{(3+\sqrt{3})^2}{2} a_{\rm BN}^2$	$(1+\sqrt{2})^2 a_{\rm BN}^2$

Параметр	$(BN)_6$	$(BN)_{63(12)}$	(BN) ₆₆₄	(BN) ₄₄
α, N/m	142	20.1	96.0	142
V_2 , eV	11.7	6.9	11.8	12.9
V_1 , eV	2.9	3.3	4.4	4.2
γ	2.3	5.2	2.9	2.5
$\alpha_1(T \gg \theta_D), 10^{-4}, \mathrm{K}^{-1}$	0.21	8.4	2.4	1.0
$\alpha_1(T = 300 \mathrm{K}), 10^{-4}, \mathrm{K}^{-1}$	0.16	129	15.6	3.77
$e_{33}(T = 300 \mathrm{K}), 10^{-13} \mathrm{C/m}$	1.19	69.6	17.4	17.7
$v_{2}(T = 300 \mathrm{K}), 10^{-15} \mathrm{C/m} \cdot \mathrm{K}$	0.28	16.5	4.11	4.18

Таблица 2. Расчетные значения пьезоэлектрических и пироэлектрических коэффициентов 2D-наноаллотропов нитрида бора при *T* = 300 K

Константы центрального взаимодействия а взяты из работы [10].

чине к пироэлектрическим коэффициентам соответствующих фторографанов. Это обусловлено тем, что, согласно (7), (8), e_{33} прямо пропорционально квадратному корню из температуры, а γ_3 обратно пропорционально ему же. Комнатная температура мала, чтобы создать такие же по величине дипольные моменты в элементарных ячейках 2D-нитридов бора, что и в ячейках фторографанов, но достаточна, чтобы привести к соизмеримому по величине пьезоэлектрическому эффекту в обоих классах наноаллотропов.

Заметим также, что для продольного пьезоэффекта в рассматриваемых наноструктурах величина пьезоэлектрического коэффициента $e_{22} = d_{22}c_{11}$, где d_{22} — соответствующая компонента тензора пьезомодулей в матричной форме, а c_{11} — компонента тензора упругих жесткостей, на три порядка выше, чем e_{33} . Например, для (BN)6: $e_{22} = 0.56 \cdot 10^{-12}$ C/N · 405 N/m = $2.27 \cdot 10^{-10}$ C/m [7].

Что касается продольного пироэлектрического эффекта, то, как отмечалось в п. 1, в рассматриваемых 2D-наноаллотропах нитрида бора он возможен лишь при наличии градиентов температуры в плоскости структуры.

Таким образом, для практического использования в различного рода датчиках для наноэлектромеханических систем управления у исследованных 2D-наноаллотропов нитрида бора могут представлять интерес их пироэлектрические свойства. При этом следует принимать во внимание их зависимость от температуры.

В заключении отметим, что приведенные в табл. 2 результаты для пьезоэлектрических коэффициентов e_{33} носят оценочный характер, так как получены в предположении $T \ll \theta_D$, хотя в действительности имеет место случай $T \approx \theta_D$ При строгом подходе к задаче нужно учитывать также сложный характер элементарных ячеек рассматриваемых 2D-наноаллотропов, содержащих N = 2Z атомов. В результате их фононный спектр будет содержать 2N ветвей, из которых 2 будут акустическими, а остальные 2(N - 1) — оптическими. Детальный расчет температурной зависимостей теплоемкостей таких 2D-наноаллотропов, представляет самостоятельный

интерес. Возникающие при этом сложности не оправдывают включение подобных расчетов в данную работу, так как не повлияют существенным образом на порядок величины полученных результатов.

Приложение

Температура Дебая 2D-наноаллотропов может быть вычислена по формуле [14]

$$\theta_D = \frac{\hbar}{k_B} \sqrt{8\pi \frac{n_2}{N\left(\frac{1}{\nu_L^2} + \frac{1}{\nu_T^2}\right)}},\tag{II1}$$

где $n_2 = N/S$ — поверхностная плотность атомов, которая может быть найдена как

$$n_2 = 2 \frac{\rho_2 N_A}{\mu_{\rm B} + \mu_{\rm N}},\tag{\Pi2}$$

где ρ_2 — двумерная плотность материала наноаллотропа, N_A — число Авогадро, μ_B , μ_N — соответственно молярные массы бора и азота, а N — общее число атомов в элементарной ячейке. Скорости продольных и поперечных упругих волн ν_L и ν_T соответственно для исследуемых наноаллотропов находятся из следующих выражений [15]:

$$\nu_L = \sqrt{c_{11}/\rho_2}, \quad \nu_T = \sqrt{(c_{11} - c_{12})/(2\rho_2)}$$
 (II3)

для (BN)₆, (BN)₆₃₍₁₂₎, (BN)₆₆₄ и

$$v_L = \sqrt{c_{11}/\rho_2}, \quad v_{T \max} = \sqrt{(c_{33})/(\rho_2)}$$
 (II4)

для (BN)₄₄.

Подставляя (П2–П4) в (П1), получаем для температуры Дебая в соответствующих наноаллотропов следующие выражения:

$$\theta_D = \frac{4\hbar}{k_B} \sqrt{\frac{\pi N_A}{N(\mu_{\rm B} + \mu_{\rm N})}} \frac{c_{11}(c_{11} - c_{12})}{3c_{11} - c_{12}},\tag{\Pi5}$$

$$\theta_D = \frac{4\hbar}{k_B} \sqrt{\frac{\pi N_A}{N(\mu_B + \mu_N)}} \frac{c_{11}c_{33}}{c_{11} + c_{33}}.$$
 (II6)

Параметр	$(BN)_6$	$(BN)_{63(12)}$	(BN) ₆₆₄	(BN) ₄₄
<i>c</i> ₁₁ , N/m	405	58.0	277	250
<i>c</i> ₁₂ , N/m	280	39.3	188	177
<i>c</i> ₃₃ , N/m	—	-	-	53.4
θ_D, K	1300	291	447	589

Таблица 3. Значения температуры Дебая для 2D-наноаллотропов нитрида бора

Значения c₁₁, c₁₂, c₃₃ взяты из работы [10].

Используя значение упругих жесткостей для исследуемых наноаллотропов из работы [12] и выражения (П5), (П6) можно рассчитать соответствующие для этих наноаллотропов значения температуры Дебая (см. табл. 3).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Chandratre, P. Sharma, Appl. Phys. Lett. 100, 023114 (2012).
- [2] M.T. Ong, E.J. Reed. FCS Nano 6, 1387 (2012).
- [3] Р.А. Браже, А.И. Кочаев, А.А. Советкин. ФТТ 55, 1809 (2013).
- [4] Р.А. Браже, А.И. Кочаев, А.А. Советкин. ФТТ 55, 1979 (2013).
- [5] Р.А. Браже, Д.Е. Дулов. ФТТ 56, 2490 (2014).
- [6] M. Droth, G. Burkard, V.M. Pereira. Phys. Rev. B 94, 075404 (2016).
- [7] Р.А. Браже, Д.А. Долгов. ФТТ **61**, (2019).
- [8] P. Ares, T. Cea, M. Holwill, Y.B. Wang, R. Roldan, F. Guinea, D.V. Andreeva, L. Fumagalli, K.S. Novoselov, C. Woods. Adv. Matter. 32, (2020).
- [9] Q. Wang, C.R. Bowen, R. Lewis, J. Chen, W. Lei, H. Zhang, M.-Y. Li, S. Jiang. Nano Energy 60, (2019).
- [10] С.Ю. Давыдов. ФТТ 52, (2010).
- [11] С.Ю. Давыдов. ФТП 47, (2013).
- [12] Р.А. Браже, Д.А. Долгов. Изв. вузов. Электроника **25**, (2020).
- [13] С.Ю. Давыдов. Письма в ЖТФ 37, (2011).
- [14] Р.А. Браже, В.С. Нефедов. ФТТ 54, (2012).
- [15] Р.А. Браже, А.И. Кочаев, Р.М. Мефтахутдинов. ФТТ 53, (2011).

Редактор К.В. Емцев