⁰⁹ Люминесцентные свойства в видимом и коротковолновом ИК-спектральных диапазонах апатитов $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0)

© Я.В. Бакланова, О.А. Липина, Л.Л. Сурат, А.Ю. Чуфаров, А.П. Тютюнник, В.Г. Зубков

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: baklanovay@ihim.uran.ru

Поступила в Редакцию 2 марта 2020 г. В окончательной редакции 2 марта 2020 г.

Принята к публикации 24 марта 2020 г.

Впервые твердофазным методом синтезированы твердые растворы $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0) со структурой апатита, исследованы спектрально- люминесцентные свойства и продемонстрирована перспективность использования данных соединений в качестве люминофоров видимого и коротковолнового инфракрасного диапазонов. Люминесценция германатов $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$, возникающая под воздействием ультрафиолетового излучения, характеризуется высокой чистотой голубого цвета и близкими к коммерчески доступным люминофорам значениями координат цветности. Помимо этого, показано, что соединения $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ эффективно преобразуют лазерное излучение с длиной волны 808 nm в серию эмиссионных линий в спектральном диапазоне $1.3-2.2\,\mu$ m, обусловленных последовательными переходами ${}^{3}H_4 \rightarrow {}^{3}F_4$ и ${}^{3}F_4 \rightarrow {}^{3}H_6$ в ионах Tm^{3+} . Германат $Sr_2La_{7.6}Tm_{0.4}(GeO_4)_6O_2$ с максимальной интенсивностью эмиссии в коротковолновой инфракрасной области демонстрирует высокую термическую стабильность люминесценции в интервале $30-220^{\circ}$ С.

Ключевые слова: германат, апатит, люминесценция, тулий, коротковолновый ИК-диапазон.

DOI: 10.21883/FTT.2020.08.49610.045

1. Введение

В последние несколько десятилетий большое внимание уделяется поиску материалов с интенсивной эмиссией в коротковолновом и среднем инфракрасном (ИК) диапазоне для различных биомедицинских и инфокоммуникационных приложений [1-3]. К настоящему времени наиболее исследованными с этой точки зрения классами неорганических соединений являются теллуриты, фосфаты, алюминаты и значительно в меньшей степени силикаты и германаты, допированные различными лантаноидами [4-8]. Оптические среды, рассматриваемые для применений в ИК-диапазоне, должны обладать рядом обязательных характеристик, такими, например, как высокая химическая стабильность, прозрачность в широком диапазоне длин волн и относительно низкие значения фононной энергии. Вышеперечисленное уменьшает вероятность протекания безызлучательных процессов и, соответственно, способствует увеличению эффективности люминесценции [8]. К числу таких сред могут быть отнесены соединения со структурой апатита (пространственная группа $P6_3/m$, Z = 1) и обобщенной формулой $M_{10}(XO_4)_6Z_2$, где M — Li⁺-Cs⁺, Mg²⁺-Sr²⁺ и лантаноиды, $X - Si^{4+}$, Ge^{4+} , P^{5+} , V^{5+} ; $Z - O^{2-}$, Cl^{-} , F⁻, ОН- и др. [9,10]. Кристаллическая решетка апатитов построена на основе комбинации катионов, расположенных внутри трехшапочных тригональных призм $(M1O_9)$, тетраэдров (XO_4) и пятиугольных пирамид $(M2O_7)$. Вдоль оси с расположены гексагональные туннели, образованные атомами $(M_2)_6 Z_2$. Комбинация различных катионов и анионов позволяет создавать множество композиций со своими уникальными свойствами, нашедшими применения не только в качестве люминофоров с эмиссией в видимом спектральном диапазоне, но и в качестве биологически совместимых препаратов, твердых электролитов, катализаторов и т.д. [11-14]. В последнее время существенное внимание научного сообщества уделено исследованиям фотолюминесцентных характеристик силикатов и германатов со структурой апатита при down-конверсии возбуждающего излучения [15-20]. Работ, затрагивающих перспективы применения данных соединений для ИК-приложений, значительно меньше. Тем не менее ранее была показана возможность использования составов на основе кремниевых и германиевых апатитов, активированных Nd³⁺, Yb³⁺, Nd³⁺/Ho³⁺, Но³⁺/Ег³⁺/Тт³⁺ в качестве активных сред для твердотельных лазеров и люминофоров ближнего и коротковолнового ИК-диапазонов [21-24]. Наиболее эффективными активаторами для получения интенсивной эмиссии в интервале 1-3 µm являются ионы с развитой системой мультиплетов, такие как Dy³⁺, Ho³⁺, Er³⁺ и Tm³⁺. Использование иона тулия в качестве активатора имеет ряд преимуществ по сравнению с вышеперечисленными лантаноидами: возможность применения в качестве источника оптической накачки коммерческих лазерных диодов с длиной волны излучения 808 nm без введения в оптическую матрицу сенсибилизатора (иона Nd³⁺) и получение интенсивной эмиссии, охватывающей

в... 1253

широкий ИК-диапазон от $1.3 \,\mu\text{m}$ до $2.7 \,\mu\text{m}$ (${}^{3}F_{4} \rightarrow {}^{3}H_{4}$, ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$ и ${}^{3}F_{4} \rightarrow {}^{3}H_{5}$ переходы иона Tm³⁺) [3,8]. В данной работе приведены исследования эмиссионных свойств люминофоров коротковолнового ИК-диапазона на основе $Sr_2La_8(GeO_4)_6O_2:Tm^{3+}$ со структурой апатита. Отдельное внимание уделено изучению концентрационных зависимостей интенсивности ИК-люминесценции, ее стабильности при повышенных температурах и определению механизма термического тушения. Более того, поскольку ион тулия традиционно используется для генерации свечения в "синей" области спектра с целью получения люминофоров белого цвета [15,16,25,26], в том числе и в соединениях со структурой апатита [19], нами были дополнительно обсуждены люминесцентный свойства германатов $Sr_2La_8(GeO_4)_6O_2$: Tm^{3+} в видимом спектрально диапазоне при возбуждении ультрафиолетовым излучением.

2. Методика эксперимента

Германаты Sr₂La_{8-x}Tm_x (GeO₄)₆O₂ (x = 0.1-1.0) были получены твердофазным методом. В качестве исходных реагентов использовали La₂O₃ (99.99%) и Tm₂O₃ (99.99%), предварительно отожженные при 900°C в течение 5 h, SrCO₃ (99.9%) с 5% избытком и GeO₂ (99.95%), предварительно отожженные при 650°C в течение 5 h. Смесь исходных компонентов, тщательно перетирали и отжигали при температуре 700–750°C в течение 15 h. Далее образцы последовательно отжигали при температурах 800–1200°C с шагом 100 градусов и выдержкой в течение 20 h, охлаждением и перетиранием на воздухе.

Рентгенофазовый анализ синтезированных соединений осуществляли с помощью дифрактометра STADI-Р (STOE), оснащенного линейным позиционно-чувствительным детектором. Съемка проводилась в $CuK_{\alpha 1}$ излучении в интервале углов 2θ 5–120° с шагом 0.02°. В качестве внешнего стандарта использовали поликристаллический кремний с параметром элементарной ячейки a = 5.43075(5) Å. Идентификация фаз проведена с использованием картотеки PDF2 (ICDD, 2016). Уточнение кристаллических структур соединений проведено методом полнопрофильного анализа Ритвельда с использованием программного пакета GSAS [27,28]. Профили рефлексов описывались с использованием функции псевдо-Войта с учетом угловой зависимости ширины пика. При описании фона применяли полином Чебышева. В качестве исходной модели для уточнения профиля рентгенограмм синтезированных составов использовались данные кристаллической структуры Sr₂La₈(GeO₄)₆O₂ (FIZ ICSD card № 418709).

Спектры фотолюминесценции были получены с использованием флуоресцентного спектрофотометра Cary Eclipse (Varian), оборудованного импульсной ксеноновой лампой мощностью 75 kW (длина импульса $2\,\mu$ s; частота импульсов 80 Hz; разрешение по длинам волн 0.5 nm; ФЭУ Hamamatsu R928). Спектры люминесценции в диапазоне длин волн от 1.3 µm до 2.2 µm получены методом синхронной съемки с использованием монохроматора МДР-204 (90° геометрия; дифракционная решетка 600 lines/mm; оптический затвор, осуществляющий модуляцию с частотой 200 Hz) и PbS фотосопротивления (ЛОМО-Фотоника). В качестве внешнего источника возбуждения использовался диодный лазер мощностью 140 mW, длина волны излучения 808 nm (KLM-H808-120-5, ФТИ-Оптроник). Мощность лазерного излучения контролировали детектором 11XLP12-3S-H2 (Standa). Корректировку спектров на спектральную чувствительность детектора не проводили. Кинетические кривые затухания люминесценции, измеренные для возбужденных состояний тулия ${}^{3}H_{4}$ и ${}^{3}F_{4}$ регистрировали с использованием охлаждаемого фотоумножителя Н10330С-75 (Hamamatsu) с фотокатодом из InP/InGaAs и осциллографа TDS-3052 (Tektronix). В качестве внешнего источника излучения использовался импульсный лазер с длиной волны возбуждения 263 nm (длительность импульсов 5 ns при частоте повторения 200 Hz, 4-я гармоника DPSS Nd лазера Tech 263, Laser-export). Вышеупомянутые измерения были выполнены при комнатной температуре. Спектры люминесценции в диапазоне длин волн от 1.3 µm до 2.2 µm и кривые затухания люминесценции, измеренные для возбужденных состояний тулия, также регистрировали в интервале температур от 30°C до 220°C при использовании температурно-контролируемой ячейки GS-21525 (Specac Ltd).

3. Экспериментальные результаты и их обсуждение

Анализ данных порошковой рентгеновской дифракции составов $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0) показал, что все рефлексы на дифрактограммах твердых растворов соответствуют апатиту Sr₂La₈(GeO₄)₆O₂ (FIZ ICSD card № 418709), дополнительных рефлексов от промежуточных фаз или примесей, типичных для твердофазного синтеза, таких как германат лантана La₄Ge₄O₁₄, оксиды лантана La₂O₃ и тулия Tm₂O₃ не обнаружено. Рентгенограммы $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0) проиндицированы в гексагональной сингонии (пространственная группа $P6_3/m$, Z = 1). Структура гексагонального апатита $Sr_2La_8(GeO_4)_6O_2$ состоит из трехшапочных тригональных призм (Sr/La1)O₉, пятиугольных пирамид La2O7 и тетраэдров GeO4. Сочлененные по ребрам пирамиды La₂O₇ образуют каналы вдоль оси с, которые между собой соединены тетраэдрами GeO₄. Большие гексагональные пустоты между каналами La2O7 заняты полиэдрами (Sr/La1)O₉, соединенными гранями, причем позиции Sr/La1 заселена в равных долях атомами стронция и лантана. Кристаллические параметры твердых растворов приведены в таблице. При замещении ионов La^{3+} ($CR_{IX}(La^{3+}) = 1.356$ Å) ионами Tm^{3+}

X	<i>a</i> , Å	<i>c</i> , Å	$V, Å^3$	D_x , g/sm ³	$R_p[C, \%$	χ^2	$R(F^{2}), \%$
0.100	9.90494(12)	7.31619(11)	621.61(1)	5.711	4.5	1.03	3.87
0.125	9.90270(8)	7.31487(7)	621.22(1)	5.720	3.2	1.218	2.95
0.150	9.90064(8)	7.31146(7)	620.67(1)	5.727	3.56	1.009	3.11
0.200	9.89656(9)	7.30280(8)	619.42(1)	5.744	3.97	0.9899	3.18
0.400	9.89482(12)	7.29334(11)	618.40(1)	5.768	4.37	1.02	3.91
0.600	9.88698(12)	7.27635(10)	615.99(1)	5.806	4.49	1.056	3.74
0.800	9.88686(9)	7.27362(8)	615.74(1)	5.827	3.79	1.079	3.04
1.000	9.87831(9)	7.25658(8)	613.24(1)	5.864	3.89	1.074	3.47

Параметры кристаллических решеток твердых растворов $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0) (пространственная группа $P6_3/m$, Z = 1)

 $(CR_{IX}(Tm^{3+}) = 1.192 \text{ Å})$ [29,30] наблюдается уменьшение параметров и объема элементарной ячейки. Немонотонность изменения параметров может быть объяснена происходящим при изменении концентрации перераспределением тулия между двумя кристаллографическими позициями — центров тригональных призм (4f) и пятиугольных пирамид (6h) с симметрией C_3 и C_s , соответственно.

Спектры люминесценции $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0) в диапазоне 430–830 nm имеют типичный профиль с четырьмя хорошо узнаваемыми линиями, обусловленными 4f-4f переходами в ионах Tm^{3+} [16,19,31] (рис. 1). Выбор схемы накачки при $\lambda_{\mathrm{ex}} = 356$ nm (переход ${}^{3}H_{6} \rightarrow {}^{31}D_{2}$ в ионах 1gTm³⁺) (вставка к рис. 1) основан на существовании многочисленных коммерческих источников, доступных на данной длине волны, что делает ее предпочтительной и более интересной с точки зрения дальнейшего практического применения серии Sr₂La_{8-x}Tm_x (GeO₄)₆O₂. Доминирующая полоса при 476 nm отнесена к переходу ${}^{4}G_{4} \rightarrow {}^{6}H_{6}$

Рис. 1. Спектры люминесценции ($\lambda_{ex} = 356 \text{ nm}$) соединений $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0). Вставки: слева — спектры возбуждения люминесценции ($\lambda_{em} = 476 \text{ nm}$) соединений $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0); справа — концентрационные зависимости интенсивности линии с максимумом при 476 nm от содержания тулия в $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0).

Рис. 2. Схема межуровневых переходов, возбуждения и излучения для ионов Tm^{3+} в соединениях $\text{Sr}_2\text{La}_{8-x}\text{Tm}_x(\text{GeO}_4)_6\text{O}_2$ (x = 0.1-1.0). Пунктирными линиями изображены процессы кросс-релаксации; непрерывными линиями — излучательные процессы и процессы поглощения энергии основным состоянием.

в ионах Tm³⁺. Менее интенсивные линии с максимумом 453 nm и в диапазонах длин волн 625-675 nm и 760-830 nm относятся к переходам ${}^{1}D_{2} \rightarrow {}^{3}F_{4}$, ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ и ${}^{3}H_{4} \rightarrow {}^{3}H_{6}$, соответственно. Максимум фотолюминесценции в серии Sr₂La_{8-x}Tm_x (GeO₄)₆O₂ наблюдается при x = 0.15. При больших концентрациях тулия интенсивность излучения резко уменьшается вследствие концентрационного тушения (вставка к рис. 1). Схематическое представление процессов возбуждения и релаксации ионов Tm³⁺, возникающих в апатитах Sr₂La_{8-x}Tm_x(GeO₄)₆O₂ (x = 0.1-1.0) при возбуждении длинами волн 356 nm и 808 nm, показаны на рис. 2.

Координаты цветности, коррелированная цветовая температура и чистота цвета в сравнении с Международным стандартом СІЕ 1931 года, применяющиеся в качестве характеристик твердотельных осветительных приборов, рассчитаны по спектрам люминесценции соединений Sr₂La_{8-x}Tm_x (GeO₄)₆O₂ при возбуждении длиной волны 356 nm. Координаты цветности (x, y) и чистота цвета для германата Sr₂La₈ (GeO₄)₆O₂: Tm³⁺ с *x* равным 0.15 составляют (0.14, 0.12) и 90%, соответственно, и близки к значениям для коммерчески доступных люминофоров голубого свечения [15]. Коррелированная цветовая температура для германата Sr₂La_{7.85}Tm_{0.15} (GeO₄)₆O₂, рассчитанная с использованием метода, предложенного Mc Camy [32] составляет 4596 К.

Спектры люминесценции твердых растворов $Sr_2La_{8-x}Tm_x$ (GeO₄)₆O₂ (x = 0.1-1.0), измеренные при возбуждении излучением лазерного диода с длиной волны 808 nm, представлены на рис. 3, а. Спектры содержат две широкие эмиссионные полосы с максимумами при 1.45 µm и 1.82 µm, соответствующие последовательным переходам ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ и ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ в ионах Tm^{3+} . Максимум интенсивности люминесценции в германатах $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0) наблюдается для состава с x = 0.4, т.е. 0.95 at.%, при более высоких концентрациях Tm³⁺ интегральная интенсивность всех ИК-полос резко уменьшается (рис. 3, b). Образец с наибольшим содержанием активатора, x = 1.0 (2.4 at.%), демонстрирует примерно в 7 раз меньшую эмиссию по сравнению с максимальным по интенсивности составом.

Критическое расстояние (R_c) переноса энергии между соседними ионами лантаноидов можно оценить по уравнению, предложенному Blasse [33]. Учитывая, что объем элементарной ячейки для соединения с критической концентрацией (x = 0.4) равен 618.40 Å³, критическое расстояние R_c составляет 14.3 Å. Обменное взаимодействие является преобладающим при малом расстоянии между ионами, не превышающем 5 Å [33–35] и, следовательно, мультипольное взаимодействие является основным механизмом концентрационного тушения в германатах Sr₂La_{8-x}Tm_x (GeO₄)₆O₂.

Тип взаимодействия ионов в процессе концентрационного тушения может быть определен согласно теоретическому описанию взаимосвязи между интенсивностью люминесценции и концентрацией допанта [36]: $I/x = k[1 + \beta(x)^{\theta/3}]^{-1}$, где I/x — интенсивность эмиссии (I) при концентрации активатора (x), k и β постоянные, θ — постоянная мультипольного взаимодействия, равная 6, 8 или 10 для диполь-дипольного, диполь-квадрупольного и квадруполь-квадрупольного взаимодействия, соответственно. Наклон линейной аппроксимации на кривой зависимости lg(I/x) от lg(x) позволяет рассчитать значение $\theta/3$. Полученное значение θ составляет 9.42 (рис. 3, *c*) и близко к 10. Таким образом, доминирующим взаимодействием ионов Tm^{3+} в германатах $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ в процессе концентрационного тушения является квадрупольквадрупольное взаимодействие.

В зависимости от концентрации тулия интенсивность линии с максимумом при $1.82\,\mu$ m существенно меняется (рис. 3, *b*), и соотношение эмиссионных линий в спектральных диапазонах 1.35-1.56 nm и $1.56-2.10\,\mu$ m при максимальной концентрации (x = 1.0) превышает в более чем 3 раза значения, полученные для минимальной концентрации тулия (x = 0.1). Изменение соотношения между интегральными интенсивностями данных ИК-линий с ростом содержания ионов Tm³⁺ обычно объясняется увеличением вероятности протекания кроссрелаксационного процесса, способствующего заполнению ³F₄ состояния, который также находит отражение

Рис. 3. Спектры люминесценции ($\lambda_{ex} = 808 \text{ nm}$) соединений Sr₂La_{8-x}Tm_x(GeO₄)₆O₂ (x = 0.1-1.0) (a), концентрационные зависимости интегральной интенсивности (сплошная линия) и интенсивности линии с максимумами при 1.45 μ m (штриховая линия) и 1.82 μ m (штрихпунктирная линия) от содержания тулия в Sr₂La_{8-x}Tm_x(GeO₄)₆O₂ (b), зависимость lg(I/x) от lg(x) для Sr₂La_{8-x}Tm_x(GeO₄)₆O₂ (x = 0.4-1.0) (c).

в изменении величин времени жизни в зависимости от концентрации тулия [4,8]. Кроме того, отметим, что и профиль линии с максимумом при 1.82 µm, отнесенной к сверхчувствительному переходу ${}^3F_4 \rightarrow {}_3H_6$ изменяется при увеличении концентрации Tm³⁺ вследствие перераспределения компонент на коротковолновом и длинноволновом крыльях полосы (рис. 4). Так, наблюдаемые при малых концентрациях две ярко выраженные компоненты с максимумами при 1.64 µm и 1.75 µm становятся менее интенсивными при увеличении концентрации тулия, в то время как интенсивность компоненты с максимумом при 1.89 µm существенно увеличивается. Рассматриваемые изменения профиля линии люминесценции и соотношения компонент вероятно связаны с перераспределением ионов тулия между 4f и 6h позициями в $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ и формированием двух типов оптических центров. По всей видимости, в крайних составах серии наблюдается преобладание линий от одного из оптических центров тулия, обусловленного его наиболее эффективным возбуждением.

Кинетические кривые затухания люминесценции, измеренные для возбужденных уровней ${}^{3}H_{4}$ и ${}^{3}F_{4}$ ионов Tm³⁺ допированных Sr₂La_{8-x}Tm_x (GeO₄)₆O₂ (x = 0.1-1.0) имеют двухэкспоненциальный вид распада (рис. 5) и были аппроксимированы суммой двух экспоненциальных функций. Двухэкспоненциальный профиль кривых затухания люминесценции может быть связан с существованием в кристаллической решетке Sr₂La_{8-x}Tm_x (GeO₄)₆O₂ двух позиций с различным локальным окружением, занятых ионами-активаторами, а также с возникновением кросс-релаксационного процесса. Полученные значения величин времени жизни ${}^{3}H_{4}$ и ${}^{3}F_{4}$ состояний иона Tm³⁺ изменяются в диапазонах 14–188 μ s и 89–575 μ s, соответственно, и являются

Рис. 4. Нормированные по амплитуде спектры люминесценции ($\lambda_{ex} = 808 \text{ nm}$) соединений Sr₂La_{8-x}Tm_x (GeO₄)₆O₂ (x = 0.1-1.0) в диапазоне 1570–2100 nm.

типичными для соединений, допированных Tm³⁺ [4,6,8]. С увеличением содержания допанта наблюдается закономерная тенденция к уменьшению времени жизни, вы-

званная процессом концентрационного тушения. Более того эффективное протекания безызлучательного кроссрелаксационного процесса ${}^{3}H_{4} + {}^{3}H_{6} \rightarrow {}^{3}F_{4} + {}^{3}F_{4}$ между ионами Tm³⁺ подтверждается неравномерным уменьшением значений времени жизни для возбужденных состояний ${}^{3}H_{4}$ и ${}^{3}F_{4}$.

Температура тушения люминесценции является одним из важнейших технологических параметров для люминофоров, которая определяет возможности применения материалов в большинстве оптических устройств, в частности, содержащих мощные источники возбуждения. Спектры люминесценции германата Sr₂La_{7.6}Tm_{0.4}(GeO₄)₆O₂ с максимальной интенсивностью эмиссии в коротковолновой ИК-области, измеренные в широком температурном интервале приведены на рис. 6, а. Постепенный нагрев образца до 220°С сопровождается равномерным увеличением интенсивности всех эмиссионных полос, и температурное тушение люминесценции, традиционно приписываемое увеличению скорости безызлучательной релаксации, не наблюдается (рис. 6, b). Обычно рост интенсивности при повышенных температурах связывают с процессами переноса энергии между ионами, который наблюдается, например, в апатите NaLa₉(GeO₄)₆O₂, содопированном Tm³⁺ и Dy³⁺ [19], или с термически активированной безызлучательной релаксацией более высоких уровней энергии, как в случае легированных Tm³⁺ теллуритных стекол [4]. Однако оба этих процесса приводят к неравномерному усилению одной линии

Рис. 5. Кривые затухания люминесценции германатов $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.15-1.0), измеренные для возбужденных уровней ${}^{3}H_4$ (a) и ${}^{3}F_4$ (b) иона Tm^{3+} .

Puc. 6. Спектры люминесценции ($\lambda_{ex} = 808 \text{ nm}$) соединения Sr₂La_{7.6}Tm_{0.4}(GeO₄)₆O₂, зарегистрированные в интервале температур от 30°C до 220°C (*a*), температурные зависимости интегральной интенсивности (сплошная линия) и интенсивностей линий с максимумами при 1.45 µm (штриховая линия) и 1.82 µm (штрихпунктирная линия) (*a*) и температурные зависимости величин времени жизни уровней ³H₄ (штриховая линия) и ³F₄ (штрихпунктирная линия) иона Tm³⁺ (*c*).

при сохранении или уменьшении интенсивности другой линии с увеличением температуры. Равномерный рост интегральных интенсивностей всех линий может быть объяснен изменением поглощения возбуждающего излучения в зависимости от температуры вследствие перераспределения по различным компонентам кристаллического поля основного состояния [37]. В случае германатов $Sr_2La_8(GeO_4)_6O_2$: Tm³⁺ можно ожидать расщепление состояния ${}^{3}H_{6}$ на штарковские уровни, предполагаемые для C₃ и C_s симметрий, соответствующие двум кристаллическим центрам 4f и 6h, занятым ионами Tm³⁺. С повышением температуры происходит заселение более высоких штарковских уровней состояния ${}^{3}H_{6}$ и смещение максимума поглощения в сторону более низких энергий. Наиболее точное определение температуры тушения люминесценции соединений возможно только при учете температурной зависимости времени затухания люминесценции, представленной на рис. 6, с. Для оптимального по концентрации состава $Sr_2La_{7.6}Tm_{0.4}(GeO_4)_6O_2$ значения времени жизни возбужденных уровней ${}^{3}H_{4}$ и ${}^{3}F_{4}$ иона Tm^{3+} не изменяется во всем зарегистрированном температурном интервале, и подтверждает отсутствие температурного тушения люминесценции до 220°С. Следовательно, тушение люминесценции для германатов допированных Tm³⁺ наблюдается при температуре, превышающей требуемые для современных люминофоров рабочие значения. Таким образом, превосходная термическая стабильность и интенсивность эмиссии позволяет рассматривать апатит Sr₂La₈(GeO₄)₆O₂:Tm³⁺ в качестве перспективного люминофора коротковолнового ИК-диапазона.

4. Заключение

Германаты $Sr_2La_{8-x}Tm_x(GeO_4)_6O_2$ (x = 0.1-1.0) со структурой апатита получены с использованием твердофазного метода. Согласно рентгеноструктурному анализу, соединения кристаллизуются в гексагональной системе (пространственная группа $P6_3/m$, Z = 1). Установлены основные закономерности изменения люминесцентных свойств твердых растворов Sr₂La₈(GeO₄)₆O₂:Tm³⁺ в видимом и коротковолновом инфракрасном диапазоне при возбуждении длинами волн 356 nm и 808 nm. На спектрах фотолюминесценции германатов в диапазоне длин волн 430-850 nm доминирующая линия с максимумом при 476 nm обусловлена переходом ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ в ионах Tm³⁺. Координаты цветности и коррелированная цветовая температура германата Sr₂La_{7.85}Tm_{0.15}(GeO₄)₆O₂, проявляющего наиболее интенсивное излучение в видимом диапазоне, близки к значениям для коммерчески доступных люминофоров голубого свечения. Спектры люминесценции германатов в ИК-спектральном диапазоне состоят из двух широких полос с максимумами при 1.45 µm и 1.82 µm, которые соответствуют каскадным переходам ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ и ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ в ионах Tm³⁺. С увеличением концентрациях тулия в германатах наблюдается усиление 1.82 µm полосы вследствие эффективного протекания безызлучательного кросс-релаксационного процесса. Для германата Sr₂La_{7.6}Tm_{0.4}(GeO₄)₆O₂ с максимальной интенсивностью эмиссии в коротковолновой ИК-области температурное тушение люминесценции в интервале 30-220°С не наблюдается. Полученные результаты указывают на широкие возможности использования германиевых соединений со структурой апатита в качестве потенциальных люминесцентных материалов видимого и коротковолнового ИК-спектральных диапазонов.

Финансирование работы

Работа выполнена в рамках проекта Российского научного фонда № 16-13-10111.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F.K. Tittel, D. Richter, A. Fried. In: Solid-State MidInfrared Laser Sources / Ed. I.T. Sorokina, K.L. Vodopyanov. Springer-Verlag Berlin Heidelberg Ltd, Berlin (2003). P. 458.
- [2] B. Jean, T. Bende, A. Fried. In: Solid-State MidInfrared Laser Sources / Ed. I.T. Sorokina, K.L. Vodopyanov. SpringerVerlag Berlin Heidelberg Ltd, Berlin. (2003). P. 530.
- [3] S.D. Jackson. Nature Photonics 6, 423 (2012).
- [4] S. Tanabe. Proc. SPIE **85**, 4282 (2001).
- [5] J.Q. Hong, L.H. Zhang, M. Xu, Y. Hang. Opt. Mater. Express 6, 1444 (2016).

[6] R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, X. Zhang. Photon. Res. 4, 214 (2016).

1259

- [7] M.C. Falconi, D. Laneve, F. Prudenzano. Fibers. 5, 23 (2017).
- [8] H. Cankaya, A. Tolga Gorgulu, A. Kurt, A. Speghini,
- M. Bettinelli, A. Sennaroglu. Appl. Sci. 8, 333 (2018).
- [9] T.J. White, D. ZhiLi. Acta Cryst. B 59, 1 (2003).
- [10] M. Wierzbicka-Wieczorek, M. Göckeritz, U. Kolitsch, C. Lenz, G. Giester. Eur. J. Inorg. Chem. 6, 948 (2015).
- [11] P.R. Slater, J.E.H. Sansom, J.R. Tolchard. Chem. Rec. 4, 373 (2004).
- [12] Y. Higuchi, M. Sugawara, K. Onishi, M. Sakamoto, S. Nakayama. Ceram. Int. 36, 955 (2010).
- [13] C. Piccirillo, P.M.L. Castro, J. Environ. Manage 193, 79 (2017).
- [14] I.A. Neacsu, A.E. Stoica, B.S. Vasile, E. Andronescu. Nanomater. 9, 239 (2019).
- [15] G.S.R. Raju, J.Y. Park, H.C. Jung, E. Pavitra, B.K. Moon, J.H. Jeong, J.S. Yu, J.H. Kim, H. Choi. J. Alloys Compd. 509, 7537 (2011).
- [16] M. Que, Z. Ci, Y. Wang, G. Zhu, Y. Shi, S. Xin, J. Lumin. 144, 64 (2013).
- [17] D. Kim, D. Park, N. Oh, J. Kim, E.D. Jeong, S.-J. Kim, S. Kim, J.-C. Park. Inorg. Chem. 54, 1325 (2014).
- [18] Y.I. Jeon, L.K. Bharat, J.S. Yu. J. Lumin. 166, 93, (2015).
- [19] Y. Cao, X. Ding, Y. Wang. J. Am. Ceram. Soc. 99, 3696 (2016).
- [20] N. Liu, L. Mei, L. Liao, J. Fu, D. Yang. Sci. Rep. 9, 15509 (2019).
- [21] K.B. Steinbruegge, T. Henningsen, R.H. Hopkins, R. Mazelsky, N.T. Melamed, E.P. Riedel, G.W.R. May. Appl. Opt. 11, 999 (1972).
- [22] P. Raybaut, F. Druon, F. Balembois, P.G.R. Gaume, B. Viana, D. Vivien. Opt. Lett. 28, 2195 (2003).
- [23] H.K. Juwhari, M.H. Kailani, B.I. Lahlouh, S.A. Abedrabbo, K.A. Saleh, W.B. White. Mater. Lett. 87, 80 (2012).
- [24] Y.V. Baklanova, O.A. Lipina, A.N. Enyashin, L.L. Surat, A.P. Tyutyunnik, N.V. Tarakina, A. Dominic Fortes, A.Yu. Chufarov, E.V. Gorbatova, V.G. Zubkov. Dalton Trans. 47, 14041 (2018).
- [25] L. Wu, Y. Zhang, M. Gui, P. Lu, L. Zhao, S. Tian, Y. Kong, J. Xu. Mater. Chem. 22, 6463 (2012).
- [26] C. Wang, J. Jiang, S. Xin, Y. Shi, G. Zhu. J. Lumin. 214, 116521 (2019).
- [27] B.H. Toby. J. Appl. Crystallogr. 34, 210 (2001).
- [28] A.C. Larson, R.B. Von Dreele. General Structure Analysis System (GSAS). Los Alamos, NM (2004). Los Alamos National Laboratory Report LAUR 86–748.
- [29] R.D. Shannon, C.T. Prewitt. Acta Crystallogr. B 25, 925 (1969).
- [30] Y.Q. Jia. J. Solid State Chem. 95, 184 (1991).
- [31] M. Stefanski, K. Grzeszkiewicz, M. Ptak, D. Hreniak, W. Strek. J. Chem. Phys. 150, 094706 (2019).
- [32] S. McCamy. Color Res. Appl. 17, 142 (1992).
- [33] G. Blasse. Phys. Lett. A 28, 444 (1968).
- [34] D.L. Dexter. J. Chem. Phys. 21, 836 (1953).
- [35] D.L. Dexter, L. Shulman. J. Chem. Phys. 22, 1063 (1954).
- [36] L.G. Van Uitert. J. Electrochem. Soc. 114, 1048 (1967).
- [37] V. Bachmann, C. Ronda, A. Meijerink. Chem. Mater. 21, 2077 (2009).

Редактор К.В. Емцев