04,09

Правило Урбаха и оценка ширины запрещенной зоны в молибдатах

© Ф.Д. Федюнин¹, Д.А. Спасский²

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия

² Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова, Москва, Россия

E-mail: daspassky@gmail.com

Поступила в Редакцию 6 марта 2020 г. В окончательной редакции 6 марта 2020 г. Принята к публикации 1 апреля 2020 г.

В настоящей работе проведено исследование температурной зависимости края фундаментального поглощения молибдатов $CaMoO_4$, $SrMoO_4$, $PbMoO_4$, Pb_2MoO_5 и $MgMoO_4$. Полученные зависимости были аппроксимированы с использованием формулы Урбаха. Показано, что параметр E_0 , полученный в результате аппроксимации, может быть использован для оценки ширины запрещенной зоны молибдатов.

Ключевые слова: правило Урбаха, молибдаты, экситоны, ширина запрещенной зоны.

DOI: 10.21883/FTT.2020.08.49598.052

1. Введение

Кристаллы молибдатов являются перспективными материалами для применения в качестве криогенных сцинтилляционных детекторов [1–5]. Такие детекторы используются для регистрации редких событий, например, двойного бета распада $(2\nu\beta\beta)$, двойного безнейтринного бета распада $(0\nu\beta\beta)$ и взаимодействия вещества с темной материей. Интерес к молибдатам обуславливается тем, что изотоп молибдена ¹⁰⁰Мо является потенциальным источником двойного безнейтринного бета распада благодаря совокупности свойств, таких как высокая энергия процесса, большая изотопная распространенность 100 Мо, малое предполагаемое время полураспада [6,7]. Таким образом, существенным достоинством кристаллов молибдатов является то, что они представляют собой как источник редкого события (например, $0\nu\beta\beta$), так и его детектор, что позволяет минимизировать энергетические потери и увеличить вероятность регистрации события.

В настоящее время целый ряд молибдатов рассматривается на роль сцинтиллятора для криогенных болометров [8,9]. Однако, изученные молибдаты наряду с достоинствами, имеют также свои недостатки. Например, молибдат кальция характеризуется наиболее высоким значением сцинтилляционного выхода среди молибдатов (до 10000 phot/MeV в криогенных условиях), однако наличие у катиона изотопа 48 Са, который является источником процесса $2\nu\beta\beta$, создает неустранимый фон при регистрации процесса $0\nu\beta\beta$. Проблема наличия радиоактивных изотопов характерна и для других катионов в молибдатах, например свинца, стронция, кадмия. Молибдаты с легкими катионами (Li, Na, Mg) лишены этого недостатка, однако молибдаты лития и магния характеризуются низкими значениями светового выхода,

а монокристаллы молибдатов натрия и лития достаточно сложны в обработке [10–13]. Таким образом, проблема выбора наиболее подходящего кристалла до сих пор остается актуальной.

Экситоны играют важную роль в сцинтилляционном процессе молибдатов. Так, люминесценция молибдатов связана с излучательной рекомбинацией экситонов, автолокализованных на MoO_4^{2-} комплексах [14–17]. Как правило, сцинтилляционный выход молибдатов с собственной люминесценцией автолокализованных экситонов практически не уменьшается в результате захвата электронов и дырок на мелких ловушках, а также в результате их автолокализации [18–20]. Это является преимуществом перед традиционными сцинтилляторами с активаторной люминесценцией (например, NaI:Tl, CsI:Tl, $\text{Y}_3\text{Al}_5\text{O}_{12}$:Ce, и т.д.), сцинтилляционный выход которых существенно уменьшается при понижении температуры [21–24].

Одним из проявлений существования экситонов в кристаллах является характерная форма края фундаментального поглощения (ФП). Экситон-фононное взаимодействие определяет экспоненциальную форму края ФП, а также смещение края при изменении температуры [25]. При этом температурная зависимость края ФП может быть описана правилом Урбаха [26–29]. Насколько нам известно, ранее исследования соответствия формы края ФП правилу Урбаха были проведены только для кристаллов молибдата свинца [30,31] и магния [15].

Целью работы являлось исследование температурной зависимости края фундаментального поглощения и ее аппроксимация согласно правилу Урбаха, а также анализ возможности использования результатов аппроксимации для оценки ширины запрещенной зоны молибдатов $CaMoO_4$, $SrMoO_4$, $PbMoO_4$, Pb_2MoO_5 и $MgMoO_4$.

2. Техника эксперимента

Спектры поглощения и отражения монокристаллических плоскопараллельных пластин молибдатов были измерены с использованием спектрофотометра Perkin—Elmer Lambda-950 в температурном диапазоне 77—500 К. Образцы были помещены в оптический вакуумный криостат Cryotrade LN-120. Контроль и управление температурой осуществлялись с использованием температурного контроллера LakeShore-335.

Кристаллы были выращены методом Чохральского (CaMoO₄, SrMoO₄, PbMoO₄, MgMoO₄), а также модифицированным методом Чохральского с низким температурным градиентом (Рь2МоО5). Кристалл СаМоО4 был выращен в ФОМОС-Материалс, кристаллы SrMoO₄ и МдМоО4 — в ИОФ РАН им. А.М. Прохорова, Рb₂MoO₅ — в ИНХ СО РАН им. А.В. Николаева, РьМоО₄ — во ВНИИСИМС. Измерения были проведены для полированных плоскопараллельных пластин монокристаллов CaMoO₄ толщиной 2 mm, SrMoO₄ толщиной 1.8 mm, PbMoO₄ толщиной 1.1 mm, а также для плоскопараллельных сколов монокристаллов MgMoO4 толщиной $0.6\,\mathrm{mm}$ и Pb_2MoO_5 толщиной $0.4\,\mathrm{mm}$. Исследованные кристаллы молибдатов характеризуются разной кристаллической структурой. Кристаллы СаМоО₄, SrMoO₄ и PbMoO₄ относятся к тетрагональному структурному типу шеелита; Pb₂MoO₅ относится к структурному типу ланаркита; МдМоО4 относится к структурному типу β -MgMoO₄ [32–34].

3. Результаты

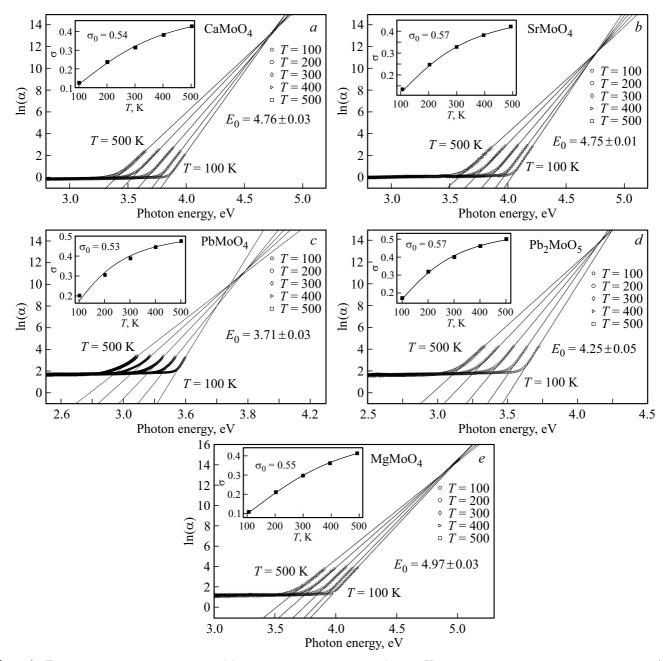
Температурные зависимости спектров поглощения молибдатов представлены на рис. 1. Резкий рост коэффициента поглощения в спектрах соответствует области края фундаментального поглощения кристаллов. При повышении температуры край ФП смещается в низкоэнергетическую область. Предположительно край ФП в молибдатах связан с созданием экситонов, а температурная зависимость края определяется изменением величины экситон-фононного взаимодействия, так что с увеличением температуры полоса экситонного поглощения уширяется. При этом поведение низкоэнергетического края полосы поглощения экситонов описывается правилом Урбаха: [25–29]:

$$\alpha(E) = \alpha_0 \exp\left(-\sigma(T) \frac{E_0 - E}{kT}\right), \tag{1}$$

где $\sigma(T)$ — эмпирический коэффициент наклона, α_0 — коэффициент поглощения при $E=E_0,\ k$ — константа Больцмана, E — энергия падающего излучения, T — температура образца.

В соответствии с правилом коэффициент поглощения вещества увеличивается экспоненциально с увеличением энергии фотона, т.е. логарифмы коэффициента поглощения, построенные как функции от энергии фотона,

Таблица 1. Параметры аппроксимации температурной зависимости края фундаментального поглощения молибдатов по правилу Урбаха


Молибдаты	ибдаты E_0 , eV		α_0 , cm ⁻¹	ħω, meV
CaMoO ₄	4.76 ± 0.03	0.54	$(806 \pm 18) \cdot 10^3$	78
$SrMoO_4$	4.75 ± 0.01	0.50	$(893 \pm 8) \cdot 10^2$	68
$PbMoO_4$	3.71 ± 0.03	0.53	$(269 \pm 8) \cdot 10^2$	52
Pb_2MoO_5	4.25 ± 0.05	0.57	$(327 \pm 15) \cdot 10^4$	59
$MgMoO_4$	4.97 ± 0.03	0.55	$(162 \pm 5) \cdot 10^4$	90

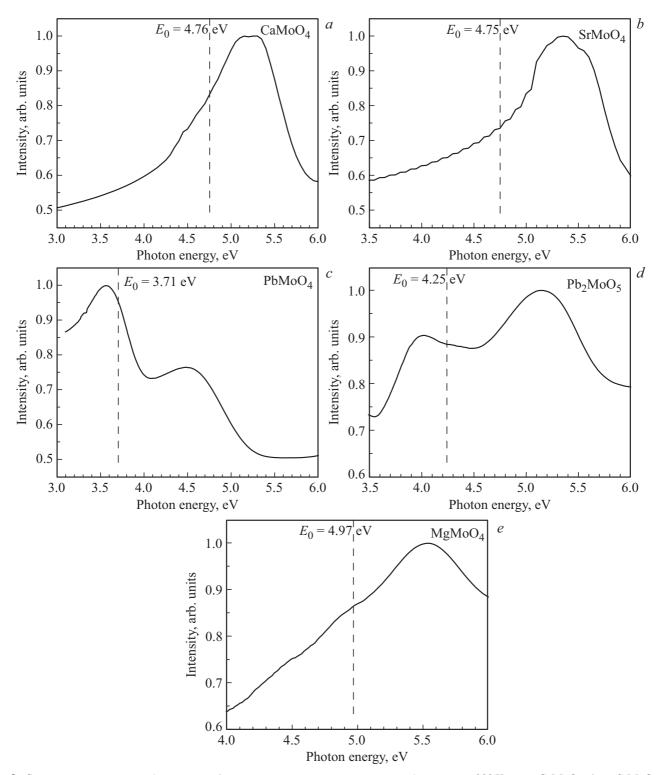
могут быть аппроксимированы прямой. Аппроксимация производилась при помощи метода наименьших квадратов. Согласно [35], данная зависимость допускает линеаризацию путем логарифмирования уравнения, что позволяет применить метод наименьших квадратов. В результате был получен набор прямых, сходящихся в некоторой области (в идеальном случае — в точке). Для определения точки пересечения усреднялись координаты всех попарных пересечений прямых. Погрешность для E_0 и $\ln(\alpha_0)$ определялась как стандартное отклонение от среднего для точек пересечения. Погрешность для параметра α_0 определялась как произведение α_0 и относительной ошибки для величины $ln(\alpha_0)$. Полученные в результате аппроксимации параметры E_0 и α_0 для пяти молибдатов приведены в табл. 1. Отметим, что аппроксимация спектров поглощения РьМоО4 с использованием (1) возможна в относительно узком диапазоне значений коэффициента поглощения. Это связано с наличием в области прозрачности кристалла пика поглощения, связанного с дефектами структуры. Отметим также, что линии аппроксимации кривых, измеренных при $T = 100 \,\mathrm{K}$ для кристаллов PbMoO₄ и Pb₂MoO₅, отклоняются от области схождения аппроксимирующих линий для других температур. Это может быть связано с искажением низкотемпературного края фундаментального поглощения полосами поглощения дефектов, которые расположены за краем фундаментального поглощения. Значения E_0 , определенные по кривым поглощения при температурах $200-500\,\mathrm{K}$, составляют 3.75 ± 0.02 и $4.16\pm0.01\,\mathrm{eV}$ для кристаллов $PbMoO_4$ и Pb_2MoO_5 соответственно.

В некоторых моделях, которые характеризуются взаимодействием экситона с одним типом оптических фононов, температурная зависимость коэффициента наклона может быть представлена как

$$\sigma(T) = \sigma_0 \frac{2kT}{\hbar\omega} \operatorname{th}\left(\frac{\hbar\omega}{2kT}\right), \tag{2}$$

где $\hbar\omega$ — энергия фононов, σ_0 — предел σ при высокой температуре [25]. Температурная зависимость $\sigma(T)$ представлена на вставках к рис. 1. Полученные в результате аппроксимации параметры $\hbar\omega$ и σ_0 приведены в табл. 1. Согласно аппроксимации значения энергии $\hbar\omega$ в молибдатах составляют 50–90 meV. Эти значения

Рис. 1. Температурные зависимости коэффициента поглощения молибдатов. На вставках представлены зависимости $\sigma(T)$. a — CaMoO₄, b — SrMoO₄, c — PbMoO₄, d — Pb₂MoO₅, e — MgMoO₄. Результаты аппроксимации представлены линиями, экспериментальные данные — точками.


соответствуют диапазону характерных для молибдатов энергий оптических фононов [36–40].

Были также измерены спектры отражения в области края $\Phi\Pi$ молибдатов. Полученные результаты представлены на рис. 2. На рисунках приведены полученные выше значения E_0 . Из представленных спектров следует, что пики отражения, соответствующие E_0 , наблюдаются для свинецсодержащих молибдатов PbMoO₄ и Pb₂MoO₅, тогда как для остальных молибдатов первые пики в спектрах отражения на $0.5-0.6\,\mathrm{eV}$ смещены в высокоэнергетическую область.

4. Обсуждение

4.1. Проявление экситонов в молибдатах

Из представленных результатов следует, что температурная зависимость края $\Phi\Pi$ всех исследованных молибдатов описывается формулой (1). Ранее аппроксимация на основе экспериментальных спектров поглощения проводилась для кристаллов $PbMoO_4$ [30,31] и $MgMoO_4$ [15]. Значение E_0 , полученное для молибдата свинца 3.71 eV, согласуется с результатами предыдущих

Рис. 2. Спектры отражения в области края фундаментального поглощения молибдатов, $T = 300 \, \mathrm{K}$: $a - \mathrm{CaMoO_4}$, $b - \mathrm{SrMoO_4}$, $c - \mathrm{PbMoO_4}$, $d - \mathrm{Pb_2MoO_5}$, $e - \mathrm{MgMoO_4}$. Вертикальными линиями отмечены значения E_0 , полученные из аппроксимации по формуле Урбаха.

исследований — $3.57\,\mathrm{eV}$ [30] и $3.52\,\mathrm{eV}$ [31], несмотря на наличие полос поглощения в области прозрачности исследованного нами образца PbMoO₄. Значения E_0 для MgMoO₄ — $4.49\,\mathrm{eV}$ ($T=300\,\mathrm{K}$) и $4.57\,\mathrm{eV}$

 $(T=10\,\mathrm{K})$ заметно меньше, чем полученные в настоящей работе — 4.97 eV. Однако, в работе [15] значения E_0 для MgMoO4 были получены без определения точки пересечения аппроксимирующих кривых.

Метод, использованный	3 начение E_g , eV						
использованный для оценки	CaMoO ₄	SrMoO ₄	MgMoO ₄	PbMoO ₄	Pb ₂ MoO ₅		
Построение Таука для спектров оптического поглощения или отражения	4.16* [50] 4.5 [51] 3.30* [52] 3.725* [53] 3.68 [54] 5.07* [55]	3.51* [52] 3.72* [55] 3.98* [57] 4.182* [58] 3.7* [59] 3.9* [60] 3.92 [61] 3.98* [62] 4.16* [63]	5.15 [65] 3.23 [66]	3.20* [67] 3.14-3.19 [68] 3.21-3.24* [69] 3.12* [70] 3.85 [71] 4.03 [71]			
По данным расчетов зонной структуры	3.41 [17]	3.687 [63] 4.46 [64]	_	2.838 [72] 2.59 [17] 3.4 [42]	2.41 [41] 2.64 [42]		
По положению первого пика отражения	5.1 [56]	5.3 [56]	5.2 [15]	-	_		
Расчеты зонной структуры, исправленные с учетом спектров отражения [49]	4.4	4.7	_	3.3	-		

Таблица 2. Литературные данные по значениям E_g молибдатов, полученных разными методами

Примечание. * — результаты были получены для нанопорошков.

Согласно [25] значение E_0 определяет положение низкоэнергетического экситонного пика. Пики отражения с максимумами, близкими к полученным значениям E_0 , наблюдаются только у свинецсодержащих молибдатов РьМоО₄ и Рь₂МоО₅. Отличительной особенностью РьМоО₄ является участие электронных состояний катиона в формировании дна зоны проводимости и потолка валентной зоны [30]. Также, согласно расчетам зонной структуры Рь2МоО5, электронные состояния 6s Рь принимают участие в формировании потолка валентной зоны, тогда как состояния 6p Pb — в формировании дна зоны проводимости [41,42]. Это позволяет предположить, что пики отражения, соответствующие значениям E_0 для $PbMoO_4$ и Pb_2MoO_5 , представляют собой катионные экситоны, создающиеся при квазиатомарном переходе ${}^{1}S_{0}6s^{2} \rightarrow {}^{3}P_{1}6s6p$ на ионе свинца Pb^{2+} . Катионные экситоны на Pb²⁺ также ранее наблюдались в спектрах отражения ряда других свинецсодержащих кристаллов, таких как $PbWO_4$, $PbCO_3$, $PbSO_4$, PbF_2 , $PbCl_2$ [43–46]. Отметим, что значения E_0 соответствуют не точному положению максимумов первых пиков отражения PbMoO₄ и Pb₂MoO₅, а их высокоэнергетическим спадам. Однако значение E_0 должно соответствовать максимуму экситонного пика при $T \to 0$, с увеличением температуры экситонный пик смещается в область высоких температур, что объясняет наблюдаемое расхождение.

Для других молибдатов первый пик отражения существенно (на $0.5-0.6\,\mathrm{eV}$) смещен в высокоэнергетическую область относительно E_0 . Это связывается с тем, что экситонные пики не проявляются в спектрах

отражения $CaMoO_4$, $SrMoO_4$ и $MgMoO_4$, а первые пики отражения связаны с межзонными электронными переходами из валентной зоны в зону проводимости.

Согласно [25], значение параметра σ_0 обратно пропорционально силе экситон-фононной связи. Параметр σ_0 является критерием автолокализации экситонов: при $\sigma_0 < 1$ экситоны в кристалле автолокализуются, при $\sigma_0 > 1$ экситоны в кристалле существуют в свободном состоянии. Полученные значения σ_0 заметно меньше единицы, что указывает на сильную экситон-фононную связь в молибдатах. Свечение автолокализованных экситонов представляет собой широкую полосу люминесценции с большим стоксовым сдвигом. Известно, что собственное свечение молибдатов характеризуется широкой полосой и стоксовым сдвигом и связывается с излучательной релаксацией автолокализованных экситонов [14-17]. Таким образом, вывод о сильной экситонфононной связи, который можно сделать по результатам аппроксимации, согласуется с наблюдаемым свечением автолокализованных экситонов в молибдатах.

4.2. Оценка ширины запрещенной зоны молибдатов

Значение ширины запрещенной зоны кристалла E_g соответствует началу электронных переходов из валентной зоны в зону проводимости. E_g является фундаментальным параметром соединения, который, в частности, используется для оценки его сцинтилляционного выхода [47]. Значения E_0 , полученные в настоящей работе, могут быть использованы для оценки E_g молибдатов. Отметим, что значения E_0 будут незначительно отличаться

от E_g на величину энергии связи экситонов. Так, для молибдата цинка энергия связи экситонов была оценена как $60 \, \mathrm{meV} \, [48]$.

Такой метод позволяет получить достаточно точную оценку E_g по сравнению с рядом других методов оценки, использовавшихся ранее. В табл. 2 приведены литературные данные по значениям E_{g} молибдатов. Как видно из таблицы, полученные значения E_{g} существенно отличаются друг от друга. Например, для молибдата кальция были получены значения от 3.41 до 5.1 eV. Такой разброс значений связан с особенностями использованных методов оценки. Для экспериментального определения E_{g} в большинстве случаев использовалось так называемое построение Таука — зависимость $(\alpha h v)^{1/r}$ от h v, где α — коэффициент поглощения, а r — коэффициент, зависящий от особенностей зонной структуры кристалла [73]. Ширина запрещенной зоны определяется по пересечению экстраполяции линейного участка роста $(\alpha h v)^{1/r}$ с осью абсцисс. Отметим, что метод Таука основан на упрощенном описании межзонного поглощения для случая полупроводников с параболическими ветвями зоны проводимости и валентной зоны и, строго говоря, не может применяться при наличии экситонных эффектов. Несмотря на это, его часто используют вне пределов применимости как "инженерный" подход к оценке оптической ширины запрещенной зоны, то есть энергетического значения, при котором кристалл перестает быть прозрачным. Оптическая ширина запрещенной зоны зависит как от качества образцов, так и от параметров измерений (например, от толщины образца), что определяет наблюдаемый разброс полученных значений E_{g} . Значения E_{g} , полученные с использованием такого построения, не учитывают создание экситонов в области края $\Phi\Pi$ и дают значения меньшие, чем E_0 .

В работе [56] оценка E_g для CaMoO4 и SrMoO4 была проведена по положению максимума первого пика в спектре отражения в области ФП. Как следует из результатов настоящей работы, первые пики отражения в этих молибдатах связаны с межзонными электронными переходами. Однако значение E_g соответствует началу межзонных переходов, в то время как при относительно слабых экситонных эффектах первый максимум поглощения (отражения) будет соответствовать переходам между первыми пиками плотностей электронных состояний в области потолка валентной зоны и дна зоны проводимости. Таким образом, положение первого пика отражения превышает реальное значение E_g .

Оценки, проведенные на основании теоретических расчетов зонной структуры, как правило, дают заниженные значения. Это связано с особенностями расчетов в рамках теории функционала плотности, которая обычно используется для этих целей [74].

В работе [49] E_g определялась на основе совместного анализа результатов теоретических расчетов зонной структуры и экспериментальных спектров отражения. Корректировка рассчитанной E_g проводилась путем смещения состояний зоны проводимости так, чтобы положе-

ние пиков отражения расчетного спектра соответствовало экспериментальным. Сравнение значений E_0 с E_g , полученными в [49], показывает достаточно хорошее согласие для кристалла SrMoO₄ (4.75 и 4.7 eV), тогда как для PbMoO₄ (3.71 и 3.3 eV) и CaMoO₄ (4.76 и 4.4 eV) значение E_0 заметно превышает рассчитанные E_g . Мы полагаем, что значение E_g для PbMoO₄, полученное в [49], было недооценено. В этой работе первый пик отражения при 3.6 eV был принят соответствующим межзонным электронным переходам. Однако результаты, представленные в настоящей работе, свидетельствуют в пользу его экситонной природы. Определение причины отличия значений для CaMoO₄ требует проведения дополнительных исследований.

Заключение

Показано, что температурная зависимость края фундаментального поглощения молибдатов может быть аппроксимирована с использованием формулы Урбаха. Были определены значения энергии создания экситонов E_0 и параметра σ_0 . Для всех молибдатов $\sigma_0 < 1$, что свидетельствует о сильной экситон-фононной связи и является критерием автолокализации экситонов. На основе анализа литературных данных сделан вывод, что значение E_0 может быть использовано для оценки ширины запрещенной зоны $E_{\mathfrak{g}}$ молибдатов. Среди молибдатов выделяются кристаллы, содержащие свинец — РьМоО4 и Pb₂MoO₅. Эти молибдаты характеризуются наименьшими среди исследованных молибдатов значениями E_{g} , а также наличием в спектрах отражения пиков, близких по энергии к E_0 . Эти пики связываются с катионными экситонами, и их появление обусловлено участием энергетических уровней Pb^{2+} в формировании дна зоны проводимости и потолка валентной зоны.

Благодарности

Авторы благодарны О.А. Бузанову за предоставление кристалла $CaMoO_4$, Л.И. Ивлевой за предоставление кристаллов $MgMoO_4$, $SrMoO_4$, Б.И. Заднепровскому за предоставление кристалла $PbMoO_4$ и В.Н. Шлегелю за предоставление кристалла Pb_2MoO_5 .

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- P. Belli, A. Incicchitti, F. Cappella. Int. J. Mod. Phys. A 29, 1443011 (2014).
- [2] E. Armengaud, C. Augier, A.S. Barabash, J.W. Beeman, T.B. Bekker, F. Bellini, A. Benoît, L. Bergé, T. Bergmann, J. Billard, R.S. Boiko, A. Broniatowski, V. Brudanin, P. Camus, S. Capelli, L. Cardani, N. Casali, A. Cazes, M. Chapellier, F. Charlieux, D.M. Chernyak, M. de Combarieu, N. Coron,

- F.A. Danevich, I. Dafinei, M. De Jesus, L. Devoyon, S. DiDomizio, L. Dumoulin, K. Eitel, C. Enss, F. Ferroni, A. Fleischmann, N. Foerster, J. Gascon, L. Gastaldo, L. Gironi, A. Giuliani, V.D. Grigorieva, M. Gros, L. Hehn, S. Hervé, V. Humbert, N.V. Ivannikova, I.M. Ivanov, Y. Jin, A. Juillard, M. Kleifges, V.V. Kobychev, S.I. Konovalov, F. Koskas, V. Kozlov, H. Kraus, V.A. Kudryavtsev, M. Laubenstein, H. Le Sueur, M. Loidl, P. Magnier, E.P. Makarov, M. Mancuso, P. de Marcillac, S. Marnieros, C. Marrache-Kikuchi, S. Nagorny, X-F. Navick, M.O. Nikolaichuk, C. Nones, V. Novati, E. Olivieri, L. Pagnanini, P. Pari, L. Pattavina, M. Pavan, B. Paul, Y. Penichot, G. Pessina, G. Piperno, S. Pirro, O. Plantevin, D.V. Poda, E. Queguiner, T. Redon, M. Rodrigues, S. Rozov, C. Rusconi, V. Sanglard, K. Schäffner, S. Scorza, V.N. Shlegel, B. Siebenborn, O. Strazzer, D. Tcherniakhovski, C. Tomei, V.I. Tretyak, V.I. Umatov, L. Vagneron, Ya.V. Vasiliev, M. Velázquez, M. Vignati, M. Weber, E. Yakushev, A.S. Zolotarova. Eur. Phys. J. C 77, 785 (2017).
- [3] S. Belogurov, V. Kornoukhov, A. Annenkov, A. Borisevich, A. Fedorov, M. Korzhik, V. Ligoun, O. Missevitch, S.K. Kim, S.C. Kim, S.Y. Kim, J.W. Kwak, H.S. Lee, J. Lee, S.S. Myung, M.J. Lee, Y.D. Kim, J.Y. Lee, J.I. Lee, H.J. Kim, Y.J. Kwon, M.J. Hwang, J.J. Zhu. IEEE T Nukl. Sci. 52, 1131 (2005).
- [4] F.A. Danevich. IEEE T Nukl. Sci. 59, 2207 (2012).
- [5] M. Tenconi. Phys. Proc. 61, 782 (2015).
- [6] J.D. Vergados, H. Ejiri, F Simkovic. Rep. Prog. Phys. 75, 106301 (2012).
- [7] E. Fiorini. Nucl. Phys. B 110, 233 (2002).
- [8] D.A. Spassky, V.V. Alenkov, O.A. Buzanov, V.N. Kornoukhov. Springer Proc. Phys. 200, 242 (2017).
- [9] H. Kim, I.R. Pandey, A. Khan, J. Son, M.H. Lee, Y. Kim. Cryst. Res. Technol. 54, 1900079 (2019).
- [10] V.B. Mikhailik, H. Kraus. Phys. Status Solidi B 7, 1583 (2010).
- [11] H.L. Kim, J.A. Jeon, I. Kim, S.R. Kim, H.J. Kim, Y.H. Kim, D.H. Kwon, M.K. Lee, J.H. So. Nucl. Instrum. Meth. A 954, 162107 (2019).
- [12] T.B. Bekker, N. Coron, F.A. Danevich, V.Ya. Degoda, A. Giuliani, V.D. Grigorieva, N.V. Ivannikova, M. Mancuso, P. de Marcillac, I.M. Moroz, C. Nones, E. Olivier, G. Pessina, D.V. Poda, V.N. Shlegel, V.I. Tretyak, M. Velazquez. Astropart. Phys. 72, 38 (2016).
- [13] V.D. Grigorieva, V.N. Shlegel, N.V. Ivannikova, T.B. Bekker, A.P. Yelisseyev, A.B. Kuznetsov. J. Cryst. Growth 507, 31 (2019).
- [14] Е.Г. Реут. Изв. АН СССР. Сер. физ. 49, 2032 (1985).
- [15] Д.А. Спасский, В.Н. Колобанов, В.В. Михайлин, Л.Ю. Березовская, Л.И. Ивлева, И.С. Воронина. Оптика и спектроскопия 106, 622 (2009).
- [16] V.B. Mikhailik, H. Kraus, M. Itoh, D. Iri, M. Uchida. J. Phys.: Condens. Matter 17, 7209 (2005).
- [17] Y. Zhang, N.A.W. Holzwarth, R.T. Williams. Phys. Rev. B **57**, 12738 (1998).
- [18] D.A. Spassky, V. Nagirnyi, V.V. Mikhailin, A.E. Savon, A.N. Belsky, V.V. Laguta, M. Buryi, E.N. Galashov, V.N. Shlegel, I.S. Voronina, B.I. Zadneprovski. Opt. Mater. 35, 2465 (2013).
- [19] V.B. Mikhailik, Yu. Elyashevskyi, H. Kraus, H.J. Kim, V. Kapustianyk, M. Panasyuk. Nucl. Instrum. Meth. A 792, 1 (2015).

- [20] V.B. Mikhailik, H. Kraus. Phys. Status Solidi B 247, 1583 (2010).
- [21] E. Zych, C. Brecher, J. Glodo. J. Phys.: Condens. Matter 12, 1947 (2000).
- [22] S. Gridin, A. Belsky, C. Dujardin, A. Gektin, N. Shiran, A. Vasil'ev. Phys. Chem. C 119, 20578 (2015).
- [23] C. Sailer, B. Lubsandorzhiev, C. Strandhagen, J. Jochum. Eur. Phys. J. 72, 2061 (2012).
- [24] L. Swiderski, M. Moszyński, W. Czarnacki, K. Brylew, M. Grodzicka-Kobylka, Z. Mianowska, T. Sworobowicz, A. Syntfeld-Kazuch, T. Szczesniak, W. Klamra, R.T. Williams, S. Gridin, X. Lu, M.R. Mayhugh, A. Gektin, S. Vasyukov, C. Piemonte, F. Acerbi, A. Ferri, A. Gola, T. Zawistowski. Nucl. Instrum. Meth. 916, 32 (2019).
- [25] K.S. Song, R.T. Williams. Self-Trapped Excitons. 2nd ed. Springer Ser. Solid-State Sci. V. 105. Springer-Verlag, Berlin (1996). 404 p.
- [26] I. Studenyak, M. Kranjčec, M. Kurik. Int. J. Opt. Appl. 4, 3, 76 (2014).
- [27] F. Urbach. Phys. Rev. 92, 1324 (1953).
- [28] Y. Toyozawa. Tech. Rep. ISSP A 1, 119, 1 (1964).
- [29] M. Schreiber, Yu. Toyozawa. J. Phys. Soc. Jpn, 51, 1544 (1982).
- [30] M. Fujita, M. Itoh. Phys. Status Solidi B 247, 2240 (2010).
- [31] W. Van Loo. Phys. Status Solidi A 27, 565 (1975).
- [32] E. Gurmen, E. Daniels, J.S King. J. Chem. Phys. 55, 1093 (1971).
- [33] В.В. Бабакин, Р.Ф. Клевцова, Л.А. Гапоненко. Кристаллография 27, 38 (1982).
- [34] S. Miyazawa, H. Iwasaki. J. Cryst. Growth 8, 359 (1971).
- [35] И.В. Митин, В.С. Русаков. Анализ и обработка экспериментальных данных. Изд-во НЭВЦ ФИПТ, М. (1998). 48 с.
- [36] K. Kesavasamy, N. Krishnamurthy. Can. J. Phys. 60, 1447 (1982).
- [37] T. Sinagawa, J. Suda, T. Sato, H. Saito. J. Phys. Soc. Jpn. 69, 464 (2000).
- [38] T. Thongtem, A. Phuruangrat, S. Thongtem. Mater. Lett. 62, 454 (2008).
- [39] Y. Liang, P. Liu, H. B. Li, G. W. Yang. Cryst. Growth Des. 12, 4487 (2012).
- [40] P.J. Miller. Spectrochim. Acta 27A, 957 (1971).
- [41] O.Y. Khyzhun, V.L. Bekenev, V.V. Atuchin, L.D. Pokrovsky, V.N. Shlegel, N.V. Ivannikova. Mater. Des. 105, 315 (2016).
- [42] S. Nedilko, V. Chornii, Yu. Hizhnyi, M. Trubitsyn, I. Volñyanskaya. Opt. Mater. 36, 1754 (2014).
- [43] M. Fujita, H. Nakagawa, K. Fukui, H. Matsumoto, T. Miyana-ga, M. Watanabe. J. Phys. Soc. Jpn. 60, 4393 (1991).
- [44] M. Fujita, M. Itoh, H. Nakagawa, M. Kitaura, D. Alov. J. Phys. Soc. Jpn. 67, 3320 (1998).
- [45] I.A. Kamenskikh, M. Kirm, V.N. Kolobanov, V.V. Mikhailin, P.A. Orekhanov, I.N. Shpinkov, D.A. Spassky, A. N. Vasil'ev, B.I. Zadneprovsky, G. Zimmerer. IEEE T NUCL SCI 48, 2324 (2001).
- [46] I.A. Kamenskikh, M. Kirm, V.N. Kolobanov, V.V. Mikhailin, P.A. Orekhanov, I.N. Shpinkov, D.A. Spassky A.N. Vasil'ev, G. Zimmerer. Radiat. Eff. Defect. S 154, 307 (2001).
- [47] M. Nikl. Meas. Sci. Technol. 17, R37 (2006).
- [48] D.A. Spassky, A.N. Vasil'ev, I.A. Kamenskikh, V.V. Mikhailin, A.E. Savon, Yu.A. Hizhnyi, S.G. Nedilko, P.A. Lykov. J. Phys.: Condens. Matter 23, 365501 (2011).
- [49] D.A. Spassky, N.S. Kozlova, V. Nagirnyi, A.E. Savon, Yu.A. Hizhnyi, S.G. Nedilko. J. Lumin. 186, 229 (2017).

- [50] В.В. Баковец, И.В. Юшина, О.В. Антонова, Е.С. Золотова. Оптика и спектроскопия 123, 372 (2017).
- [51] V. Panchal, N. Garg, H.K. Poswal, D. Errandonea, P. Rodríguez-Hernández, A. Muñoz, E. Cavalli. Phys. Rev. Mater. 1, 043605 (2017).
- [52] S.D. Ramarao, S. Roopas Kiran, V.R.K. Murthy. Mater. Res. Bull. 56, 71 (2014).
- [53] S. Vidya, S. Solomon, J.K. Thomas. Phys. Status Solidi A 209, 1067 (2012).
- [54] E. Sinha, P. Yadav. Ferroelectrics 517, 193 (2017).
- [55] T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruan-grat, S. Thongtem. J. Alloy. Compd. 506, 475 (2010).
- [56] D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva, I. Voronina. Phys. Status Solidi C 2, 65 (2005).
- [57] J. Luo, X. Bai, Q. Li, X. Yu, C. Li, Z. Wang, W. Wu, Y. Liang, Z. Zhao, H. Liu. Nano Energy 66, 104187 (2019).
- [58] M.M.S. Silva, M.S. Sena, A.L. Lopes-Moriyama, C.P. Souza, A.G. Santos. Ceram. Int. 44, 16606 (2018).
- [59] S. Vidya, A. John, S. Solomon, J.K. Thomas. Adv. Mater. Res. 1, 191 (2012).
- [60] Z.F. Yao, G.H. Zheng, Z.X. Dai, L.Y. Zhang. Appl. Organomet. Chem. **32**, e4412 (2018).
- [61] S. Wannapop, T. Thongtem, S. Thongtem. J. Nanomater. 2013, 474576 (2013).
- [62] J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, E. Longo. Chem. Eng. J. 140, 632 (2008).
- [63] L. Li, Y. Pan, W. Chang, Z. Feng, P. Chen, C. Li, Z. Zeng, X. Zhou. Mater. Res. Bull. 93, 144 (2017).
- [64] J. Yin, Q. Zhang, T. Liu, X. Guo, M. Song, X. Wang, H. Zhang. Curr. Appl. Phys. 9, 1237 (2009).
- [65] S. Wannapop, T. Thongtem, S. Thongtem. J. Phys. Chem. Solids 74, 677 (2013).
- [66] C.S. Xavier, A.P. de Moura, E.Longo, J.A. Varela, M.A. Za-ghete. Adv. Mat. Res. 975, 243 (2014).
- [67] S. Vidya, J.K. Thomas. IOP. Conf. Ser-Mat Sci. 73, 012120 (2015).
- [68] J.C. Sczancoski, M.D.R. Bomio, L.S. Cavalcante, M.R. Joya, P.S. Pizani, J.A. Varela, E. Longo, M. Siu Li, J.A. Andres. J. Phys. Chem. C 113, 5812 (2009).
- [69] G.M. Gurgel, L.X. Lovisa, L.M. Pereira, F.V. Motta, M.S. Li, E. Longo, C.A. Paskocimas, M.R.D. Bomio. J. Alloy Compd. 700, 130 (2017).
- [70] T.K. Thirumalaisamy, R.J. Saravanan. J. Mater Sci.: Mater Electron 22, 1637 (2011).
- [71] R. Jia, Y. Zhang. Chin. Opt. Lett. 8, 1152 (2010).
- [72] Q.J. Liu, Z.T. Liu, L.P. Feng, H. Tian. ISRN Condens. Matter Phys. 2011, 290741 (2011).
- [73] D.L. Wood, J. Tauc. Phys. Rev. B 5, 3144 (1972).
- [74] T. Ziegler. Chem. Rev. 91, 651 (1991).

Редактор Т.Н. Василевская