УДЛ 621.315.592

Релаксация темнового тока в монокристаллах $MnGa_2Se_4$

© О.В. Тагиев^{+*¶}, С.Г. Асадуллаева⁺, И.Б. Бахтиярлы[‡], К.О. Тагиев[‡]

⁺ Институт физики Национальной академии наук Азербайджана,

* Филиал Московского государственного университета им. М.В. Ломоносова в г. Баку,

Az-1143 Баку, Азербайджан

[‡] Институт химии Национальной академии наук Азербайджана,

Az-1143 Баку, Азербайджан

(Получена 16 апреля 2012 г. Принята к печати 21 мая 2012 г.)

Представлены результаты исследования изотермических токов, накопления заряда в сэндвич-структурах In–MnGa₂Se₄–In. Полученные данные проанализированы на основе теории изотермических токов и эстафетного механизма переноса заряда. Показано, что релаксация темнового тока в монокристаллах MnGa₂Se₄ связана с накоплением заряда на глубоких уровнях за счет инжекции из катода. Определены следующие параметры: емкость контакта $C_k = 2 \cdot 10^{-13} \, \Phi$, толщина слоя сосредоточения заряда $d_k = 4 \cdot 10^{-6} \, \text{см}$, дрейфовая подвижность носителей тока $\mu_3 = 3 \cdot 10^{-8} \, \text{см}^2/\text{B} \cdot \text{с в монокристаллах MnGa₂Se₄.$

Среди тройных алмазоподобных соединений особое место занимают полумагнитные полупроводники типа $A^{II}B_2^{III}C_4^{VI}$ (A — Mn, Fe, Co, Ni; B — Ga, In; C — S, Se, Te). Эти соединения привлекают внимание исследователей в связи с возможностью их использования в функциональной электронике для создания приборов, управляемых магнитным полем. Одно из этих соединений, MnGa₂Se₄, кристаллизуется в пространственной группе S_4^2 . С учетом перспективности использования MnGa₂Se₄ в функциональной твердотельной электронике актуальным является всестороннее исследование его электрических, люминесцентных, оптических свойств.

Результаты измерений изотермических токов в монокристаллах MnGa₂Se₄ объяснены на основе теорий диэлектрической релаксации [1,2] и эстафетного механизма в изоляторах и высокоомных полупроводниках [3,4].

В данной работе для определения параметров ловушечных уровней используются результаты исследования релаксации темнового тока.

Монокристаллы MnGa₂Se₄ были получены методом химических транспортных реакций. Эти кристаллы являются полупроводниками с удельным сопротивлением 10^{10} Ом · см при комнатной температуре. При приложении постоянного напряжения к структуре In–MnGa₂Se₄–In ток *I* во внешней цепи сначала резко возрастает, а затем спадает со временем *t*, и по истечении некоторого времени устанавливается стационарное значение.

Кривые релаксации тока *I* для образцов структуры In–MnGa₂Se₄–In с толщиной активной области 100 мкм представлены на рис. 1. Сразу после включения напряжения наблюдается рост тока, а затем его спад. При включении внешнего электрического поля и замыкании цепи в ней проходит ток деполяризации, направлении которого противоположно направлению тока, соответствующего электрическому полю. Из рис. 1 видно, что при высоких температурах отношение значений тока, соответствующих неравновесному и равновесному состояниям, уменьшается и при этом уменьшается время спада тока к стационарному значению.

Наблюдаемый в структурах In-MnGa₂Se₄-In спад тока сопровождается накоплением заряда. Измерения, проведенные на большом количестве образцов с различными толщиной и площадью контактов, показали, что образующийся заряд пропорционален площади кон-

Рис. 1. Релаксация темнового тока в системе In-MnGa₂Se₄-In при U = 400 В и температурах *T*, K: I = 219, 2 = 240, 3 = 262, 4 = 270, 5 = 280, 6 = 309, 7 = 352.

Az-1143 Баку, Азербайджан

[¶] E-mail: oktay58@mail.ru

тактов и не зависит от толщины образца. Эта закономерность говорит о том, что заряд накапливается в приконтактной области, а не в объеме.

Полученные экспериментальные результаты объяснены на основе эстафетного механизма переноса инжектированного в кристалл заряда [3,4], когда основной ток протекает не за счет электронов, переносимых через зону проводимости, а за счет электронов, захваченных на центры, имеющие локальные уровни в запрещенной зоне. В результате ток в системе ограничен не только пространственным зарядом в объеме диэлектрика, но и барьером на электроде.

Согласно теории [3], если принять во внимание переход структуры In–MnGa₂Se₄–In из нестационарного состояния в стационарное и построить зависимость произведения тока на время *It*, т. е. заряда *Q* от lg *t*, то на этой зависимости получается максимум с соответствующим временем t_{max} (рис. 2). Из релаксации темнового тока можно определить глубину залегания ловушек [5,6]. Самым чувствительным способом определения энергии уровней ловушек является графическое построение зависимостей в виде It = f(lgt). Такая характеристика имеет максимум, который проявляется при $t = t_{max}$ и связан с глубиной залегания E_t уравнением

$$E_t = kT \ln v t_{\max},\tag{1}$$

где k — постоянная Больцмана, T — абсолютная температура, ν — частотный фактор ($\nu \sim 10^{13} \, {\rm c}^{-1}$). Отсюда

Рис. 2. Зависимости накопленного заряда (Q) от времени $(\lg t)$ в MnGa₂Se₄ при U = 400 В, T, K: I = 219, 2 = 240, 3 = 262, 4 = 270, 5 = 280, 6 = 309.

Рис. 3. Зависимости величины накопленного заряда от времени в MnGa₂Se₄ при *U* = 200 В, *T*, K: *1* — 239, *2* — 230, *3* — 225, *4* — 221.

Рис. 4. Зависимость накопленного заряда от приложенного напряжения в монокристаллах MnGa₂Se₄.

найдена энергия активации ловушек в монокристаллах $MnGa_2Se_4$: $E_t = 0.9 - 1.1$ эВ.

Заряд, накапливающийся вблизи электрода, описывается выражением [3]

$$Q = UC_k \, \frac{t}{\tau + t},\tag{2}$$

где t — время, $\tau = L^3/\mu d_k U$ — постоянная зарядки контакта, L — толщина образца, d_k — толщина слоя сосредоточения заряда у анода, U — приложенное напряжение, $C_k = \varepsilon \varepsilon_0 S/d_k$ — электрическая емкость контакта, ε — диэлектрическая проницаемость полупроводника, ε_0 — электрическая постоянная, S — площадь контакта, μ — подвижность заряда, переносимого через запрещенную зону.

Как следует из (2), при $t \ll \tau$ и с учетом выражения для τ получаем $Q = (\mu_3 \varepsilon S U^2 / d_k^3)t$, т.е. заряд линейно увеличивается со временем и пропорционален квадрату напряжения, а при $t \gg \tau$ насыщается и стремится к величине UC_k . Эти выводы теории [3] хорошо под-

Рис. 5. Зависимости величины заряда (Q), накопленного в монокристаллах MnGa₂Se₄ от $I^{1/2}$ при T = 239 (I), 230 (2), 225 K (3).

тверждаются результатами, полученными для сэндвичструктур In–MnGa₂Se₄–In (рис. 3). Видно, что чем ниже температура, тем раньше зависимость Q(t) насыщается. С ростом температуры накопленный заряд увеличивается. При малых временах зависимость Q(t) носит примерно линейный характер. С ростом температуры от 221 до 239 К в области насыщения заряд изменяется в интервале $(4-12) \cdot 10^{-12}$ Кл.

Если исходить из выражения для C_k , можно заключить, что зависимость Q(t) от температуры в области насыщения Q(t) связана с изменением контактной емкости. Контактная емкость при данном приложенном напряжении и известной площади контакта может изменяться за счет изменения толщины d_k слоя сосредоточения заряда.

В соответствии с выражением для Q в случае $t \ll \tau$ построена зависимость Q(U), которая представлена на рис. 4. Видно, что между зарядом и напряжением существует линейная зависимость. Эта зависимость состоит из двух линейных участков. Наклоны этих участков равны 2 и 1.5.

В [3] также получено выражение, связывающее заряд *Q* и общий ток *I*, протекающий через систему металл–диэлектрик–металл:

$$Q = UC_k - \sqrt{\frac{C_k LI}{d_k \mu_3}}.$$
(3)

На рис. 5 при различных температурах представлена зависимость накопленного в структуре In-MnGa₂Se₄-In заряда Q от квадратного корня общего тока. Рис. 5 показывает, что с ростом \sqrt{I} тока заряд Q линейно уменьшается, причем наклон зависимости $Q = f(\sqrt{I})$ растет. Эти изменения хорошо согласуются с формулой (3). Экстраполяцией прямых $Q = f(\sqrt{I})$ до пересечения с осью заряда и осью тока найдены величины $Q_0 = 50 \cdot 10^{-13}$ Кл и $I_0 = 1.15 \cdot 10^{-12}$ Å. На основании этих данных оценены емкость контакта $C_k = 2 \cdot 10^{-13}$ Ф, толщина слоя сосредоточения заряда $d_k = 4 \cdot 10^{-6}$ см, эффективная подвижность носителей тока $\mu_3 = 3 \cdot 10^{-8}$ см²/В · с в монокристаллах MnGa₂Se₄.

Полученные данные проанализированы на основе теории изотермических токов и эстафетного механизма

переноса заряда. Показано, что применение метода релаксации темнового тока для изучения локализованных состояний в запрещенной зоне высокоомных полупроводников выявляет структуру ловушечных уровней и дает возможность получить информацию о параметрах захвата в монокристаллах MnGa₂Se₄.

Данная работа выполнена при финансовой поддержке Фонда развития науки при президенте Азербайджанской Республики (грант № EIF-2011-1(3)-82/01/1).

Список литературы

- [1] А.Я. Вуль, А.Я. Шик. ФТП, 8 (10), 1952 (1974).
- [2] В.И. Архипов, Ю.А. Попов, А.И. Руденко. ФТП, 17 (10), 1817 (1989).
- [3] Б.Л. Тиман. ФТП, 7 (2), 225 (1973).
- [4] Б.Л. Тиман, А.П. Карпова. ФТП, 7 (2), 230 (1973).
- [5] Р.А. Сурис, Б.И. Фукс. ФТП, 14 (8), 1507 (1980).
- [6] J.G. Simmons, G.W. Taylor. Phys. Rev. B, 5 (4), 1619 (1972).

Редактор Л.В. Шаронова

Relaxation of dark current in MnGa₂Se₄ single crystals

O.V. Tagiev^{+*}, S.G. Asadullayeva⁺, I.B. Bachtiyarly[‡], K.O. Tagiev^{‡*},

⁺ Institute of Physics,
Azerbaijan National Academy of Sciences,
Az-1143 Baku, Azerbaijan
* Branche of Moscow State Iniversity
named after M.V. Lomonosov in Baku,
Az-1143 Baku, Azerbaijan
[‡] Institute of Chemistry,
Azerbaijan National Academy of Sciences,
Az-1143 Baku, Azerbaijan

Abstract The result of investigation of isothermal current and charge accumulation in MnGa₂Se₄ single crystals are presented in this work. The data obtained are analysed on the basis of the theory of isothermal currents and relay-race charge transport mechanism. It is shown that relaxation of dark current in MnGa₂Se₄ single crystals is associated with charge accumulation on deep levels as a result of injection from cathode. On the base of analysis the following parameters have been calculated: contact capacitance $C_k = 2 \cdot 10^{-13}$ F, the thickness of the charge accumulation layer $d_k = 4 \cdot 10^{-6}$ cm, the drift mobility of charge carries $\mu_3 = 3 \cdot 10^{-8}$ cm²/V · c MnGa₂Se₄ in single crystals.