Индий-индуцированная кристаллизация тонких пленок аморфного субоксида кремния

© А.О. Замчий^{1,2}, Е.А. Баранов¹, И.Е. Меркулова^{1,2}, Н.А. Лунев¹, В.А. Володин², Е.А. Максимовский³

¹ Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск, Россия

² Новосибирский государственный университет, Новосибирск, Россия

³ Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия

E-mail: zamchiy@gmail.com

Поступило в Редакцию 23 января 2020 г. В окончательной редакции 20 марта 2020 г. Принято к публикации 20 марта 2020 г.

> Предложен новый метод получения поликристаллического кремния путем индий-индуцированной кристаллизации тонких пленок аморфного субоксида кремния со стехиометрическим коэффициентом 0.5 (*a*-SiO_{0.5}). Показано, что использование индия в процессе отжига *a*-SiO_{0.5} позволяет снизить температуру кристаллизации до 600°C, что существенно ниже температуры твердотельной кристаллизации такого материала (850°C). В результате процесса индий-индуцированной кристаллизации *a*-SiO_{0.5}, протекающего в высоком вакууме, происходит формирование свободностоящих частиц кристаллического кремния микронного размера.

> Ключевые слова: тонкие пленки, субоксид кремния, индий-индуцированная кристаллизация, поликристаллический кремний.

DOI: 10.21883/PJTF.2020.12.49520.18220

На данный момент тонкие пленки поликристаллического кремния (poly-Si) на дешевых подложках из несобственного материала, например стекла, находят широкое применение в производстве полупроводниковых приборов большой площади, таких как солнечные элементы и тонкопленочные транзисторы [1,2]. Наиболее распространенными способами получения тонких пленок poly-Si на нетугоплавких подложках из несобственного материала являются методы твердофазной кристаллизации (solid phase crystallization, SPC) [3], жидкофазной кристаллизации (liquid phase crystallization, LPC) [4] и металлоиндуцированной кристаллизации (metal-induced crystallization, MIC) [1] аморфного кремния (a-Si). Метод MIC основан на использовании различных металлов (алюминия, золота, никеля) [5], индуцирующих кристаллизацию a-Si в процессе изотермического отжига. В процессе отжига металл выступает в качестве катализатора кристаллизации, что позволяет снизить температуру и время процесса.

В настоящей работе впервые показана возможность получения *poly*-Si путем индий-индуцированной кристаллизации (indium-induced crystallization, InIC) аморфного субоксида кремния (a-SiO_x, 0 < x < 2) [6]. Индий относится к группе металлов, не образующих с кремнием силицидов, совместим с кремниевой технологией, широко используется в электронике и фотовольтаике, а также обладает низкой температурой плавления (157° C). Ранее авторами были получены пленки *poly*-Si в процессе MIC *a*-SiO_x с использованием алюминия [7,8].

Тонкие пленки *a*-SiO_x толщиной 400 nm были получены из газовой смеси SiH₄-O₂ методом плазмохимического осаждения с использованием широкоапертурного

источника с индуктивным высокочастотным возбуждением (13.56 MHz). Мощность высокочастотного излучения составляла 50 W, температура подложки — 150°C. В качестве подложек использовались боросиликатное стекло и кварц. Методом энергодисперсионной рентгеновской спектроскопии был определен стехиометрический коэффициент x = 0.5. Затем на *a*-SiO_{0.5} были нанесены пленки In толщиной около 420 nm методом термовакуумного осаждения. Далее полученные образцы были подвергнуты высоковакуумному печному отжигу (остаточный вакуум $\sim 10^{-4} \, \mathrm{Pa}$) при температурах 500-850°C в течение 5 h. Структура отожженных образцов была исследована методом комбинационного рассеяния света (КРС) с использованием прибора T64000 Horiba Jobin-Yvon в обратной геометрии рассеяния на длине волны 514.5 nm. Диаметр светового пятна зондирующего излучения составлял 5 μ m. Оптический микроскоп (OM), интегрированный с КРС-спектрометром, был использован для исследования морфологии полученного материала. Более детальное изучение морфологии образцов осуществлялось методом сканирующей электронной микроскопии (СЭМ) на приборе JEOL JSM-6700F.

Согласно данным, полученным при помощи СЭМ, исходная пленка In, напыленная на слои a-SiO_{0.5}, несплошная, имеет островковую структуру и состоит из отдельных частиц неправильной формы двух размерных фракций. Средний размер крупной фракции составляет около 1 μ m, мелкой — около 100 nm. Изображения образцов, отожженных при температурах 550, 600 и 850°С, полученные при помощи ОМ, показаны на рис. 1, a-c. Отжиг образца при температуре 550°С приводит к температурному деветтингу пленки In, а также к уве-

Рис. 1. Изображения поверхности образцов, отожженных при температурах 550 (*a*), 600 (*b*) и 850°С (*c*), полученные при помощи ОМ. *d* — изображение области *3*, отмеченной на части *b*, полученное при помощи СЭМ.

личению среднего размера частиц металла по сравнению с исходным в результате процесса коалесценции (рис. 1, a). Отжиг при 600°С приводит к существенному уменьшению как среднего размера, так и поверхностной концентрации частиц In (рис. 1, b) по сравнению с наблюдаемыми при более низкой температуре отжига, что вызвано испарением металла с поверхности образца [9]. Также на рис. 1, *b* можно отметить три характерных морфологии материала, формирующегося в результате отжига при 600°С. Во-первых, не покрытая частицами In пленка субоксида кремния (область 1). Во-вторых, частицы In на поверхности пленки субоксида кремния (область 2). Области с описанной морфологией характерны также для материала, отожженного при 550°С (рис. 1, a). В-третьих, в процессе отжига при 600°C происходит формирование темных областей микронного размера (область 3 на рис. 1, b), которые, вероятнее всего, образуются на месте испарившегося In. Указанная морфология отсутствует в образцах, отожженных при

50 µm

более низких температурах. Увеличение температуры процесса до 850° С приводит к полному испарению In с поверхности образца (рис. 1, *c*). Для данных условий отжига в образце различима морфология двух видов: пленка субоксида кремния (область 4), а также темные области (область 5), концентрация которых существенно выше, чем в образцах с более низкими температурами процесса отжига. Более детальное исследование морфологии области 3, выполненное при помощи СЭМ (рис. 1, *d*), показало формирование структур микронного размера, возвышающихся над поверхностью образца и находящихся при этом во впадинах.

5 µm

Структурные свойства областей 1-5 были исследованы методом спектроскопии КРС (рис. 2). Анализ полученных спектров показал, что область 1 представляет собой аморфный материал, содержащий значительное количество кремниевых связей (спектр 1 на рис. 2), о чем свидетельствует наличие оптической моды поперечных колебаний (ТО-мода) с центром на

Рис. 2. Спектры КРС образцов, отожженных при температурах 600 и 850° С, полученные для областей, отмеченных светлыми квадратами на рис. 1, *b*, *c*. Номера спектров соответствуют номерам областей исследования. Интенсивность спектра 5 уменьшена в 2 раза по сравнению с интенсивностями других спектров.

 $\sim 480\,{
m cm^{-1}}$ [6]. Область 2 соответствует кристаллическому In_2O_3 (ТО-мода с центром на ~ 365 cm⁻¹) [10]. При этом пятно зондирующего пучка частично попадало на область 1 (спектр 2). Симметричный узкий пик с центром на $\sim 520 \,\mathrm{cm}^{-1}$ на спектрах 3, 5 свидетельствует о формировании poly-Si в соответствующих областях на поверхности образцов [7]. При этом сигнал, соответствующий аморфному кремниевому материалу, в спектрах отсутствует. Следует отметить, что с ростом температуры интенсивность сигнала КРС возрастает, что указывает на увеличение количества формирующегося материала poly-Si. Увеличение температуры отжига до 850°С приводит к формированию нанокристаллического кремния (nc-Si) в области 4 в процессе SPC [11,12], о чем свидетельствует появление в спектре 4 пика с центром на $\sim 513 \,\mathrm{cm}^{-1}$. Полученная согласно положению пика величина среднего размера кристаллита составляет $\sim 4 \, \text{nm} \, [12]$.

При температурах выше точки эвтектики системы кремний-индий (157°С) происходит формирование эвтектического сплава путем взаимной диффузии атомов через линию контакта In и *a*-SiO_{0.5}. В результате обогащения такого сплава кремнием происходит пересыщение, которое приводит к формированию структур кристаллического кремния [13]. По-видимому, поток атомов кремния в частицу In выше, что в совокупности с испарением In в условиях высоковакуумного отжига приводит к формированию свободностоящих частиц кристаллического кремния, располагающихся во впадинах. Следует отметить, что получение и изучение свойств подобных кремниевых структур представляется весьма привлекательной задачей. В частности, такие структуры легко могут быть нагреты вплоть до температуры плавления при помощи зондирующего излучения стандартного КРС-спектрометра [14].

В работе предложен новый метод получения *poly*-Si методом индий-индуцированной кристаллизации тонких пленок *a*-SiO_{0.5}. Показано, что процесс InIC *a*-SiO_{0.5} протекает при более низких температурах (600° C), чем процесс твердотельной кристаллизации аморфного субоксида кремния, нижней температурной границей которого является значение 850° C, что позволяет использовать низкотемпературные подложки. В результате процесса InIC *a*-SiO_{0.5}, протекающего в высоком вакууме, происходит формирование свободностоящих частиц кристаллического кремния микронного размера.

Благодарности

Авторы выражают благодарность ЦКП "ВТАН" НГУ за предоставление оборудования для регистрации спектров КРС.

Финансирование работы

Исследование выполнено при финансовой поддержке гранта Президента РФ (МК-638.2019.8) (напыление In, высоковакуумный печной отжиг образцов) и в рамках государственного задания ИТ СО РАН (синтез и характеризация пленок a-SiO_x).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Maity G., Singhal R., Dubey S., Ojha S., Kulriya P.K., Dhar S., Som T., Kanjilal D., Patel S.P. // J. Non-Cryst. Solids. 2019. V. 523. P. 119628. doi.org/10.1016/j.jnoncrysol.2019.119628
- [2] Nguyen T.T., Hiraiwa M., Koganezawa T., Yasuno S., Kuroki S.-I. // Jpn. J. Appl. Phys. 2018. V. 57. P. 031302. doi.org/10.7567/JJAP.57.031302
- Kumar A., Widenborg P.I., Dalapati G.K., Ke C., Subramanian G.S., Aberle A. // Cryst. Growth Design. 2015.
 V. 15. P. 1067–1072. doi.org/10.1021/cg5011659
- [4] Haschke J., Amkreutz D., Rech B. // Jpn. J. Appl. Phys. 2016.
 V. 55. P. 04EA04. doi.org/10.7567/JJAP.55.04EA04
- [5] Wang Z., Jeurgens L.P.H., Mittemeijer E.J. Metal-induced crystallization: fundamentals and applications. 1st ed. Boca Raton: CRC Press Taylor & Francis Group, 2015. 308 p. doi.org/10.1201/b18032

- [6] Баранов Е.А., Замчий А.О., Хмель С.Я. // Письма в ЖТФ. 2015. Т. 41. В. 20. С. 89–95. [Пер. версия: 10.1134/S1063785015100181].
- [7] Zamchiy A.O., Baranov E.A., Khmel S.Ya., Volodin V.A., Vdovin V.I., Gutakovskii A.K. // Appl. Phys. A. 2018. V. 124.
 P. 646. doi.org/10.1007/s00339-018-2070-y
- [8] Zamchiy A.O., Baranov E.A., Maximovskiy E.A., Volodin V.A., Vdovin V.I., Gutakovskii A.K., Korolkov I.V. // Mater. Lett. 2020. V. 261. P. 127086. doi/10.1016/j.matlet.2019.127086
- [9] Kang D.-H., Park J.-H. // Mater. Res. Bull. 2014. V. 60.
 P. 814–818. doi.org/10.1016/j.materresbull.2014.09.037
- Berengue O.M., Rodrigues A.D., Dalmaschio C.J., Lanfredi A.J.C., Leite E.R., Chiquito A.J. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 045401.
 DOI: 10.1088/0022-3727/43/4/045401
- [11] Van Sebille M., Fusi A., Xie L., Ali H., van Swaaij R.A.C.M.M., Leifer K., Zeman M. // Nanotechnology. 2016. V. 27. P. 365601. DOI: 10.1088/0957-4484/27/36/365601
- Zamchiy A.O., Baranov E.A., Merkulova I.E., Volodin V.A., Sharafutdinov M.R., Khmel S.Y. // Vacuum. 2018. V. 152.
 P. 319–326. doi.org/10.1016/j.vacuum.2018.03.055
- [13] Neimash V.B., Goushcha A.O., Shepeliavyi P.E., Yukhymchuk V.O., Dan'ko V.A., Melnyk V.V., Kuzmich A.G. // Ukr. J. Phys. 2014. V. 59. P. 1168–1176. DOI: 10.15407/ujpe59.12.1168
- [14] Han L., Zeman M., Smets A.H.M. // Nanoscale. 2015. V. 7.
 P. 8389–8397. DOI: 10.1039/c5nr00468c