Фотодиоды для регистрации излучения квантово-размерных дисковых лазеров, работающих на модах шепчущей галереи (2.2–2.3 мкм)

© Е.В. Куницына¹, М.А. Ройз², И.А. Андреев¹, Е.А. Гребенщикова¹, А.А. Пивоварова¹, М. Ahmetoglu (Afrailov)³, Е.В. Лебедок⁴, Р.Ю. Микулич⁴, Н.Д. Ильинская¹, Ю.П. Яковлев¹

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,
194021 Санкт-Петербург, Россия
² University of Helsinki,
Helsinki 00014, Finland
³ Department of Physics, Uludag University,
16059 Gorukle, Bursa, Turkey
⁴ ГНПО "Оптика, оптоэлектроника и лазерная техника" Национальной академии наук Беларуси,
220072 Минск, Республика Беларусь

E-mail: kunits@iropt9.ioffe.ru

Поступила в Редакцию 25 февраля 2020 г. В окончательной редакции 28 февраля 2020 г. Принята к публикации 28 февраля 2020 г.

Фотодиоды, созданные на основе твердых растворов в системе GaSb-InAs, были впервые применены для исследования спектральных характеристик одиночных и сдвоенных дисковых WGM-лазеров, излучающих на модах шепчущей галереи в диапазоне 2.2-2.3 мкм. Емкость фотодиодов при диаметре фоточувствительной площадки 2.0 мм составляет C = 520 пФ при U = -2 В, что соответствует постоянной времени $\tau = 53$ нс. Показано, что параметры созданных фотодиодов позволяют регистрировать излучение квантово-размерных дисковых лазеров при комнатной температуре и не использовать криогенное охлаждение.

Ключевые слова: фотодиоды, GaSb/GaInAsSb/GaAlAsSb-гетероструктуры, квантово-размерные дисковые лазеры, WGM-моды.

DOI: 10.21883/FTP.2020.07.49515.9378

1. Введение

В последнее десятилетие разработаны новые конструкции полупроводниковых лазеров, работающих на модах шепчущей галереи (WGM) в среднем ИК диапазоне при комнатной и близких к комнатной температурах [1,2]. Отличительной особенностью таких лазеров является использование дискового резонатора с высокой добротностью, что позволяет применять материалы с низким оптическим усилением. Кроме высокой добротности, дисковые WGM-лазеры демонстрируют более низкие значения порогового тока и расширенный диапазон частотной перестройки по сравнению с полосковыми лазерами [2], что делает их перспективными для создания оптических стандартов частоты.

Известно, что регистрация лазерного излучения в спектральном диапазоне 2–3 мкм является непростой научной и практической задачей. В данном диапазоне длин волн используются полупроводниковые фотоприемники на основе халькогенидов свинца, обнаружительная способность которых в настоящее время при неглубоком охлаждении приближается к теоретическому пределу [3]. Однако постоянная времени большинства фотоприемников на данных материалах составляет 100–400 мкс. В работе [4] сообщалось о создании быстродействующих фотоприемников на основе твердых растворов CdPbS для длин волн 2.1–2.4 мкм

с постоянной времени $\tau = 20-50$ мкс, а также фотоприемников на основе особочистой пленки PbS с $\tau = 5-70$ мкс при T = 295 К. Авторами работы [5] был разработан PbS-фоторезистор, демонстрирующий спектральную чувствительность в диапазоне 0.4–3.0 мкм и $\tau = 3-5$ мкс. Такие приборы с рекордными параметрами востребованы в различных областях науки и техники, однако для работы с лазерами требуется существенно более высокое быстродействие. Следует отметить, что перспективными материалами следующего поколения для фотоприемников являются квантовые точки PbS и PbSe, включая коллоидные квантовые точки, и в этом направлении ведутся интенсивные исследования [6–8].

Другими широко применяемыми фотоприемниками, в том числе в диапазоне вблизи 3 мкм, являются фотодиоды на основе InSb [9]. Подробный обзор технологических аспектов выращивания материалов для InSb-фотодиодов методами MBE и MOCVD на подложках Si и GaAs дан в работе Разеги [10]. Одним из новых направлений в области создания высокочувствительных наноразмерных приборов является изучение фотоэлектрических свойств структур "металл-полупроводник-металл" на основе нанопроволок InSb [11]. В последние годы развиваются исследования с целью создания HOT-InSb фотоприемников для детектирования ИК излучения при комнатной температуре [12]. Новые возможности в этой области, как было показано теоретически, открывает

Состав	Тип	Легирующая	Температура	Толщина,
	проводимости	примесь	выращивания, °С	мкм
$\begin{array}{c} Ga_{0.78}In_{0.22}As_{0.18}Sb_{0.82}\\ Ga_{0.66}Al_{0.34}As_{0.025}Sb_{0.975} \end{array}$	n	Te	600	2.0-2.5
	p	Ge	599	1.5-2.0

Параметры эпитаксиальных слоев для фотодиодных гетероструктур GaSb/GaInAsSb/GaAlAsSb

создание неравновесных p-i-n InSb-фотодиодов, обнаружительная способность которых может достигать $3 \cdot 10^9$ см · Гц^{1/2}Вт⁻¹ (T = 300 K) в спектральном диапазоне до 8 мкм [13]. Сообщалось о применении неохлаждаемых InSb фотодиодов с чувствительностью в диапазоне 2–7 мкм, объединенных в серии, для разработки сенсора таких газов, как CO₂, CO и NO_x [14]. Однако для эффективной работы большинства фотодиодов на основе InSb требуется охлаждение до 80–200 К.

В данной работе рассмотрена возможность применения фотодиодов, созданных на основе твердых растворов в системе GaSb-InAs, для регистрации излучения квантово-размерных дисковых WGM-лазеров с длиной волны 2.2–2.3 мкм при комнатной температуре.

Создание экспериментальных образцов и методы исследования

Одиночные и сдвоенные дисковые WGM-лазеры были изготовлены на основе квантово-размерной GaInAsSb/GaAlAsSb-гетероструктуры, процесс выращивания которой описан в работе [15], методом фотолитографии и жидкостного химического травления. Диаметр резонатора составлял 400 мкм, высота — около 3 мкм при высоте мезы 7 мкм. Лицевой омический контакт в форме кольца формировался с использованием взрывной фотолитографии и высоковакуумного термического напыления системы Cr/Au/Ni/Au. Далее проводилось утолщение лицевого контакта методом селективного электрохимического осаждения Аu. Для создания сплошного омического контакта со стороны подложки GaSb проводилось последовательное напыление систем Cr/Au/Ni/Au и Cr/Au. Контакты вжигались в атмосфере водорода при температуре 300°С. Лазерные чипы монтировались на стандартном корпусе ТО-18.

Фотодиоды были созданы на основе гетероструктур *n*-GaSb/*n*-GaInAsSb/*p*-GaAlAsSb. Данные гетероструктуры выращивались методом ЖФЭ на подложках *n*-GaSb(100), легированных теллуром до концентрации носителей $(1-5) \cdot 10^{17}$ см⁻³. Областью поглощения являлся эпитаксиальный слой узкозонного твердого раствора GaIn_{0.22}AsSb ($E_g = 0.53$ эВ), толщиной 2.0–2.5 мкм (см. таблицу). В качестве "широкозонного окна" использовались эпитаксиальные слои: GaAl_{0.34}AsSb ($E_g = 1.1$ эВ), толщиной 1.5-2.0 мкм. При выращивании Al-содержащих слоев для введения As в расплав в процессе гомогенизации использовалась насыщающая монокристаллическая подложка GaAs, находящаяся в контакте с расплавом. В случае применения

данного двухфазного метода концентрация As в расплаве определяется температурой и практически не зависит от содержания других компонент.

Эффективное разделение носителей заряда обеспечивается при формировании в фотодиодных гетероструктурах GaSb/GaInAsSb/GaAlAsSb достаточно широкой области пространственного заряда. Классический p-i-n-фотодиод включает область i с концентрацией носителей, близкой к собственной в выбранном материале. В эпитаксиальном *i*-слое толщиной *d* при обратном смещении U_{rev} образуется область пространственного заряда шириной W со встроенным полем, напряженностью E(x). Приложенное U_{rev} должно быть достаточным для истощения *i*-слоя и обеспечения условия $W \le d$. С другой стороны, для полного поглощения излучения в активном слое должно выполняться условие $\alpha \cdot W \gg 1$, где α — коэффициент поглощения материала. В прямозонных полупроводниках, в частности в твердом pacтворе GaInAsSb, для излучения с энергией кванта, большей E_g материала, коэффициент поглощения α превышает 10^4 см⁻¹. В таком случае W должна составлять несколько микрон, поэтому выбор толщины активной области GaInAsSb 2-3 мкм обеспечивает практически полное поглощение падающего излучения.

Активная область GaInAsSb легировалась теллуром до концентрации $n = (2-5) \cdot 10^{16} \text{ см}^{-3}$, "широкозонное окно" GaAlAsSb — германием до концентрации $p = (6-8) \cdot 10^{18} \text{ см}^{-3}$. При легировании твердых растворов Ga_{0.78}In_{0.22}As_{0.18}Sb_{0.82} теллуром возможно получать материал *n*-типа проводимости. При этом степень компенсации полупроводника определяется как

$$\frac{N_D + N_A}{N_D - N_A},$$

где N_A — концентрация природных акцепторов, N_D — концентрация нескомпенсированных доноров [16]. В материале активной области исследуемых фотодиодов: $N_A \sim 2 \cdot 10^{17} \,\mathrm{cm^{-3}}, \ N_D - N_A = (2-5) \cdot 10^{16} \,\mathrm{cm^{-3}}, \ тогда K \sim 10.$

При создании фотодиодов следует учитывать, что высокая степень компенсации материала активной области приводит к росту генерационно-рекомбинационной составляющей темнового тока. Этот эффект в компенсированных полупроводниках обусловлен снижением эффективного времени жизни носителей в слое объемного заряда $\tau_{\rm eff}$ по сравнению с чистыми материалами. При больших обратных смещениях $U_{\rm rev}$, соответствующих электрическим полям с напряженностью порядка $E \sim 10^4 - 10^5$ В/см, высокая степень компенсации

Рис. 1. Микрофотография фотодиодных чипов с диаметром фоточувствительной площадки 2.0 (*a*) и 2.8 мм (*b*), созданных на основе гетероструктур GaSb/GaInAsSb/GaAlAsSb.

приводит к росту туннельной составляющей темнового тока, обусловленной туннелированием через энергетические состояния в запрещенной зоне. Известно, что флуктуации напряженности электрического поля, обусловленные неоднородностями легирования, прямо пропорциональны степени компенсации материала К. В таком случае при легировании теллуром твердых растворов GaInAsSb даже до концентрации $n=2\cdot 10^{16}\,{\rm cm}^{-3}$ (K = 10) флуктуации электрического поля на порядок выше, чем в гетероструктурах на основе чистого материала. Таким образом, дальнейшее снижение концентрации в активной области GaInAsSb за счет легирующей примеси приводит к росту темнового тока и сильным флуктуациям электрического поля. Для решения данной проблемы необходимо применять такие методы, как выращивание с использованием редкоземельных элементов либо нейтрального растворителя [16].

Из выращенных образцов фотодиодных гетероструктур GaSb/GaInAsSb/GaAlAsSb методами контактной фотолитографии и жидкостного химического травления были созданы чипы с диаметром фоточувствительной площадки 0.5, 2 и 2.8 мм. Для защиты боковой поверхности мезы и p-n-перехода использовался анодный оксид, полученный в растворе электролита (винная кислота 0.3% /этиленгликоль в соотношении 1:2). Толщина окисла, образованного при U = 60 В и j = 5 мА/см², была ~ 0.3 мкм.

В качестве контактной системы к Аl-содержащему эпитаксиальному слою *p*-типа проводимости использовались система Cr/Au/Ni/Au и слой гальванического Au, полученный селективным электрохимическим осаждением. Такое усиление контакта позволяет осуществлять сборку фотодиодов методом пайки при повышенных температурах припоя 200–230°С. Сплошной контакт к подложке *n*-GaSb создавался путем напыления системы Cr/Au/Ni/Au с последующим напылением дополнительного слоя Cr/Au для осуществления сборки. Лицевой контакт для фотодиодов с диаметрами фоточувствительной площадки 0.5 и 2.0 мм формировался в виде кольца (см. рис. 1, *a*). Однако при большем диаметре светочувствительной площадки — 2.8 мм (см. рис. 1, b) использовался крестообразный контакт, который позволял более эффективно осуществлять сбор фототока. Выбранный контакт отвечал оптимальному соотношению величины получаемого фототока и степени затенения. Фотодиодные чипы монтировались на корпуса TO-5 с термохолодильником для установления и стабилизации температуры от -70° С до $+100^{\circ}$ С.

Вольт-амперные характеристики (ВАХ) фотодиодов исследовались с помощью автоматизированного измерителя ВАХ. Графики выводились в режиме реального времени на монитор компьютера. Измерения спектров фоточувствительности исследуемых образцов фотодиодов проводились по схеме синхронного детектирования с использованием призменного монохроматора SPM2 (Carl Zeiss), механического модулятора и синхронного детектора Stanford Research SR830. Для определения токовой монохроматической чувствительности $S_I(\lambda_{max})$ использовался метод сравнения с калиброванным приемником излучения.

Исследования спектральных характеристик WGMлазеров проводились на установке, включающей монохроматор DK-480 (CVI Laser Corp.), при комнатной температуре в импульсном режиме питания. В качестве предварительного усилителя использовался прибор PA-9 фирмы Judson Technologies. Применялась схема синхронного детектирования с использованием прибора Stanford Research типа SR810. Спектры WGM-лазеров исследовались при различных токах накачки. В качестве детектора лазерного излучения использовались созданные GaSb/GaInAsSb/GaAlAsSb-фотодиоды.

3. Экспериментальные результаты и обсуждение

Распределение спектральной чувствительности GaSb/ GaInAsSb/GaAlAsSb-фотодиодов представлено на рис. 2. Длинноволновая граница спектральной чувствительности $\lambda = 2.4$ мкм при комнатной температуре определяется шириной запрещенной зоны активной области. Как видно из рис. 2, а, длина волны полуспада спектральной характеристики — $\lambda_{50\%} = 2.32$ мкм. Тогда ширина запрещенной зоны прямозонного твердого раствора GaIn_{0.22}AsSb в активной области фотодиода, вычисленная по $\lambda_{50\%}$, составляет $E_g = 0.53$ эВ, что полностью согласуется с данными фотолюминесценции. При определении Eg по результатам измерений вольт-амперных характеристик фотодиодов при двух температурах по методу, предложенному в работе [17] изначально для полупроводниковых *p*-*n*-гомоструктур, нами было получено близкое значение — $E_g = 0.535$ эВ. Таким образом, мы полагаем, что данный метод может применяться для оценки E_g активной области узкозонных гетероструктур на основе GaSb с погрешностью $\sim 1\%$.

В более коротковолновой части спектра чувствительность плавно уменьшается в сторону коротких длин волн, что связано с поглощением на непрямых переходах

Рис. 2. Распределение спектральной чувствительности GaInAsSb/GaAlAsSb-фотодиодов: *а* — при комнатной температуре, *b* — при различных температурах, *T*, K: *I* — 253, *2* — 296, *3* — 313.

в слое Al-содержащего твердого раствора. Коротковолновая граница спектральной чувствительности, определяемая шириной запрещенной зоны "широкозонного окна", при T = 300 K — $\lambda = 1.12$ мкм.

Токовая монохроматическая чувствительность GaInAsSb/GaAlAsSb-фотодиодов в максимуме спектральной характеристики ($\lambda = 2.0-2.3$ мкм) составляет $S_I = 0.7-1.0$ A/BT, что соответствует квантовой эффективности $\eta = 0.5-0.7$.

Как видно из рис. 2, *b*, с понижением температуры длинноволновая граница спектральной чувствительности смещается в сторону более коротких длин волн. Коэффициент температурного изменения длины волны составляет $\Delta\lambda/\Delta T = 3.3 \cdot 10^{-3}$ мкм/К, что соответствует коэффициенту температурного изменения ширины запрещенной зоны активной области $\Delta E_g/\Delta T = -7.7 \cdot 10^{-4}$ эВ/К в диапазоне температур $\Delta T = 60$ К.

Исследование вольт-фарадных характеристик показало, что емкость фотодиодов при нулевом обратном смещении ($U_{rev} = 0$ В) составляет: C = 150 пФ при диаметре фоточувствительной площадки 0.5 мм, C = 685 пФ при

диаметре 2.0 мм и $C = 1380 \, \mathrm{n}\Phi$ при диаметре 2.8 мм соответственно.

Созданные GaSb/GaInAsSb/GaAlAsSb-фотодиоды использовались нами для исследований спектральных характеристик одиночных и сдвоенных дисковых WGM-лазеров на основе квантово-размерной GaInAsSb/ GaAlAsSb-гетероструктуры. На рис. 3, а представлено изображение боковой поверхности резонатора, полученное с помощью растрового электронного микроскопа (РЭМ). Химическое травление напряженных и ненапряженных слоев разного состава протекает с разной скоростью. В гетероструктуре GaInAsSb/GaAlAsSb изопериодные слои, содержащие алюминий, травятся быстрее, чем напряженный слой квантовых ям GaInAsSb, что ведет к формированию выпуклой части волновода резонатора, внутри которого распространяются WGM-моды по круговой траектории. Сдвоенные WGM-лазеры были изготовлены с перемычкой между резонаторами (см. рис. 3, b), ширина перемычки составляет 20-35 мкм, длина — 10-15 мкм, высота — 7 мкм (как и у мезы резонатора). Такая конструкция позволяет создать сильную оптическую связь между двумя дисковыми резонаторами лазера, поскольку излучение может переходить из одного резонатора в другой через перемычку, не покидая пределов резонаторов.

Длина волны излучения исследуемых WGM-лазеров лежала в диапазоне 2.2–2.3 мкм. После сравнения па-

Рис. 3. РЭМ-изображения полупроводниковых WGM-лазеров: *а* — боковая поверхность резонатора; *b* — сдвоенные лазеры с диаметром резонатора 400 и 200 мкм.

Рис. 4. Электрические характеристики GaSb/GaInAsSb/ GaAlAsSb-фотодиода с диаметром чувствительной площадки 2.0 мм: a — зависимость обратного темнового тока I_d от приложенного напряжения U_{rev} при T = 173 (I), 263 (2) и 296 К (3); b— вольт-фарадная характеристика при T = 296 К.

раметров фотодиодов с различными диаметрами фоточувствительной площадки в качестве детектора для установки были выбраны образцы с диаметром площадки 2.0 мм. С одной стороны, такие фотодиоды имеют более низкий уровень обратных темновых токов и, соответственно, шумов, а также меньшую емкость (более высокое быстродействие), чем приборы с диаметром 2.8 мм. С другой стороны, по сравнению с фотодиодами с диаметром 0.5 мм, они демонстрируют более высокую спектральную чувствительность и значительно удобнее для юстировки установки при исследовании лазеров.

Зависимость обратного темнового тока I_d от приложенного напряжения U_{rev} при различных температурах для GaSb/GaInAsSb/GaAlAsSb-фотодиода с диаметром чувствительной площадки 2.0 мм, смонтированного на термоэлектрическом модуле, представлена на рис. 4, *а*. Как видно из рисунка, при комнатной температуре при изменении U_{rev} в 10 раз, от 0.2 до 2 В, I_d также увеличивается в 10 раз, что говорит о возрастающем

Физика и техника полупроводников, 2020, том 54, вып. 7

влиянии туннельного механизма протекания тока. Значение емкости фотодиода падает от $C = 685 \,\mathrm{n}\Phi$ при $U_{\mathrm{rev}} = 0 \,\mathrm{B}$ до $C = 520 \,\mathrm{n}\Phi$ при $U_{\mathrm{rev}} = -2 \,\mathrm{B}$ (см. рис. 4, *b*), что позволяет увеличить быстродействие — постоянную времени от $\tau = 75$ до $\tau = 53 \,\mathrm{hc}$.

Генерация лазерного излучения одиночных WGMлазеров возбуждалась при подаче электрических импульсов прямоугольной формы различной частоты и длительности. Диапазон рабочих частот Δf составлял 2–16 кГц, при этом длительность импульса t_i могла варьироваться от 2 до 60 мкс. Однако оптимальная работа лазера наблюдается при частоте следования импульсов f = 10 кГц и длительности $t_i = 2.7$ мкс. Данные значения параметров позволяют сохранить положение генерируемых лазерных мод на спектрах излучения во всем диапазоне рабочих токов накачки, т.е, позволяют избежать эффекта "красного смещения" из-за нагрева образца.

На рис. 5 представлен спектр когерентного излучения одиночного WGM-лазера с диаметром резонатора 400 мкм при разных токах накачки, полученный при помощи монохроматора с двумя дифракционными решетками. На спектрах изучения наблюдаются четкие эквидистантные лазерные моды, расстояние между которыми составляет ~ 12 Å. Данная величина согласуется со значением, полученным при помощи формулы для расчета межмодового расстояния мод первого порядка в WGM-лазере:

$$\Delta \lambda = \frac{\lambda^2}{2\pi Rn},\tag{1}$$

где λ — рабочая длина волны, $\Delta\lambda$ — межмодовое расстояние, R — радиус резонатора, n — показатель преломления среды (n = 3.5 для нашего случая).

Соответствие экспериментального и рассчитанного значений межмодового расстояния $\Delta\lambda$ подтверждает, что

Рис. 5. Спектры излучения одиночного WGM-лазера с дисковым резонатором диаметром 400 мкм при комнатной температуре и плотностях тока накачки I = 175 (*I*), 180 (*2*), 200 A/см² (*3*).

Рис. 6. Диаграмма направленности излучения дискового WGM-лазера при токах накачки *I* = 150-400 мА.

Рис. 7. Спектры излучения сдвоенных WGM-лазеров с резонаторами диаметром 400 мкм и перемычкой при подаче питания на первый резонатор (*1*), на второй резонатор (*2*) и на оба резонатора одновременно (*3*); спектры получены при комнатной температуре и плотности тока накачки $I = 250 \text{ A/cm}^2$.

данные лазеры работают на модах шепчущей галереи первого порядка.

В режиме питания, описанном выше ($f = 10 \,\mathrm{k}\Gamma\mathrm{u}$, $t_i = 2.7 \,\mathrm{k}\mathrm{k}\mathrm{c}$), были проведены измерения диаграмм направленности. В отличие от большинства других типов лазеров, у дисковых WGM-лазеров отсутствует направленное излучение, поскольку излучение распространяется равномерно во всех направлениях за счет рассеяния на неоднородностях поверхности волновода. Это отчетливо наблюдается на типичной диаграмме направленности излучения одиночного дискового лазера с диаметром резонатора 400 мкм, полученной при различных токах

накачки (см. рис. 6). На данном рисунке видно, что распределение излучения однородно по всем направлениям, за исключением секторов от 0 до 30° и от 160 до 190°, где наблюдается спад интенсивности излучения. Это связано с тем, что дисковые WGM-лазеры монтировались на стандартном корпусе TO-18 с двумя изолированными выводами для обеспечения электрического контакта. Сектора спада интенсивности соответствуют положению данных контактных выводов.

При помощи GaSb/GaInAsSb/GaAlAsSb-фотодиодов были также измерены спектры излучения сдвоенных WGM-лазеров с перемычкой между резонаторами. На рис. 7 представлены спектры лазера со сдвоенными резонаторами диаметром 400 мкм. Как видно из рисунка, спектры сдвоенных лазеров, включенных по отдельности (графики 1, 2), в значительной степени отличаются от случая, когда лазеры работают одновременно (график 3). Так, при подаче тока накачки на оба лазера одновременно наблюдается большое число новых лазерных мод, которые можно отнести к классу коллективных мод сдвоенных резонаторов. По сравнению с WGM-модами одиночного лазера, коллективные моды имеют значительно более сложную структуру и могут существовать только в случае, когда их оптический путь проходит через оба резонатора.

Перемычка исследуемых сдвоенных лазеров относительно широкая (35 мкм) по отношению к диаметру резонатора, в связи с чем эквидистантность лазерных линий при работе лазеров отдельно друг от друга нарушается, а в некоторых случаях исчезает (см. рис. 7, график 2). С другой стороны, при одновременной работе лазеров эквидистантность начинает проявляться вновь, и число генерируемых мод увеличивается. Межмодовое расстояние в данном случае составляет 9 Å (см. рис. 7, график 3), что меньше по сравнению со значением для одиночного диска. Это подтверждает, что оптический путь новых "коллективных мод" в сдвоенном резонаторе больше, чем оптический путь WGM-мод в одиночном резонаторе.

4. Заключение

Спектры излучения дисковых WGM-лазеров на основе квантово-размерной GaSb/GaInAsSb/GaAlAsSb-гетероструктуры впервые были исследованы с помощью фотодиодов, созданных также в системе твердых растворов GaSb-InAs. Фотодиоды были смонтированы на корпусах с термохолодильником, позволяющим устанавливать и стабилизировать температуру от -20° С до $+60^{\circ}$ С. Диаметр фотодиодов 2.0 мм был выбран с целью оптимального для приборов на основе данных узкозонных материалов сочетания спектральной чувствительности, уровня обратных темновых токов и шумов соответственно, быстродействия и удобства юстировки. Емкость таких фотодиодов составляет C = 520-685 пФ при обратном смещении $U_{rev} = -2-0$ В, что соответствует постоянной времени $\tau = 53-75$ нс. Данное

быстродействие на 2–3 порядка превосходит быстродействие широко применяемых фотоприемников на основе халькогенидов свинца. Было показано, что GaSb/GaInAsSb/GaAlAsSb-фотодиоды могут использоваться без охлаждения для регистрации излучения одиночных и сдвоенных WGM-лазеров с длиной волны излучения основной моды в диапазоне 2.2–2.3 мкм.

Благодарности

Авторы выражают благодарность С.И. Трошкову за создание РЭМ-изображений полупроводниковых WGM-лазеров.

Финансирование работы

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 18-52-00027 Бел_а. Исследования белорусской стороны поддержаны БРФФИ (проект Ф18Р-121).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.Н. Именков, В.В. Шерстнев, М.А. Сиповская, А.П. Астахова, Е.А. Гребенщикова, А.М. Монахов, К.В. Калинина, G. Boissier, R. Teissier, А.Н. Баранов, Ю.П. Яковлев. Письма ЖТФ, **35** (18), 50 (2009).
- [2] A.N. Baranov, G. Boissier, R. Teissier, A.M. Monakhov, V.V. Sherstnev, M.I. Larchenkov, Yu.P. Yakovlev. Appl. Phys. Lett., 100, 061112 (2012).
- [3] В.Г. Буткевич, В.Д. Бочков, Е.Р. Глобус. Прикл. физика, 6, 66 (2001).
- [4] Р.Д. Мухамедьяров, И.Н. Мирошникова. http://uralsemiconductor.ru/articles/Doklad_Kongress-2017_ Ural_fotodetektory_r25.04-21.20%20.pdf
- [5] А.В. Шнайдер, М.П. Миронов, А.В. Гусельников, В.Ф. Марков, Л.Н. Маскаева. Пожаровзрывобезопасность, 2, 14 (2008).
- [6] H. Tang, J. Zhong, W. Chen, K. Shi, G. Mei, Y. Zhang, Z. Wen, P. Muller–Buschbaum, D. Wu, K. Wang, X. Sun. ACS Appl. Nano Mater., 2 (10), 6135 (2019).
- [7] M. Thambidurai, Y. Jang, A. Shapiro, G. Yuan, H. Xiaonan, Y. Xuechao, Q.J. Wang, E. Lifshitz, H.V. Demir, C. Dang. Optical Mater. Express, 7 (7), I 2326 (2017).
- [8] L. Hu, S. Huang, R. Patterson, J. Halpert. J. Mater. Chem. C, 7, 4497 (2019).
- [9] B.W. Jia, K.H. Tan, W.K. Loke, S. Wicaksono, K.H. Lee, S.F. Yoon. ACS Photonics, 5 (4), 1512 (2018).
- [10] M. Razeghi. Eur. Phys. J. Appl. Phys., 23 (3), 149 (2003).
- [11] C. Kuo, J. Wu, S. Lin, W. Chang. Nanoscale Res. Lett., 8, 327 (2013).
- [12] P. Martyniuk, A. Rogalski. Opto-Electronics Rev., 21 (2), 239 (2013).
- [13] C. Shi, Y. Dong, Q. Li. IEEE Trans. Electron Dev., 66 (3), 1361 (2019).

- [14] E.G. Camargo, S. Tokuo, H. Goto, N. Kuze. Sensors Mater., 26 (4), 253 (2014).
- [15] D.A. Yarekha, G. Glastre, A. Perona, Y. Rouillard, F. Genty, E.M. Skouri, G. Boissier, P. Grech, A. Joullie, C. Alibert, A.N. Baranov. Electron. Lett., 36 (6), 537 (2000).
- [16] У. Шокли. УФН, 77 (1), 161 (1962).
- [16] Т.И. Воронина, Т.С. Лагунова, Е.В. Куницына, Я.А. Пархоменко, Д.А. Васюков, Ю.П. Яковлев. ФТП, 35 (8), 941 (2001).
- [17] И.М. Викулин, Б.В. Коробицын, С.К. Криськив. ФТП, 50 (9), 1238 (2016).

Редактор Г.А. Оганесян

Photodiodes for detecting the emission of quantum-sized disk lasers operating on whispering gallery modes $(2.2-2.3 \,\mu\text{m})$

E.V. Kunitsyna¹, M.A. Royz², I.A. Andreev¹, E.A. Grebenshchikova¹, A.A. Pivovarova¹, M. Ahmetoglu (Afrailov)³, Ya.V. Lebiadok⁴, R.Yu. Mikulich⁴, N.D. Ilíinskaya¹, Yu.P. Yakovlev¹

¹ loffe Institute,

- 194021 St. Petersburg, Russia
- ² University of Helsinki,
- Helsinki 00014, Finland
- ³ Department of Physics, Uludag University,
- 16059 Gorukle, Bursa, Turkey

⁴SSPA "Optics, Optoelectronics & Laser Technology",

National Academy of Sciences of Belarus,

220072 Minsk, Belarus

Abstract Photodiodes developed in the GaSb-InAs system were first used for investigation the spectral characteristics of single and coupled disk lasers emitting on whispering gallery modes at $2.2-2.3 \,\mu$ m. The capacity of the photodiodes with a diameter of photosensitive area of 2.0 mm was $C = 520 \,\text{pF}$ at $U = -2 \,\text{V}$, which corresponds to a time constant of $\tau = 53 \,\text{ns}$. It is shown that the parameters of the developed photodiodes make it possible to detect the emission of quantum-sized disk lasers at room temperature and not to use cryogenic cooling.