19,11

Термодинамические свойства оксипентафторида ванадия (IV), (NH₄)₃VOF₅

© Е.В. Богданов^{1,2}, Е.И. Погорельцев^{1,3}, А.В. Карташев¹, М.В. Горев^{1,3}, М.С. Молокеев^{1,3}, С.В. Мельникова¹, И.Н. Флеров^{1,3}, Н.М. Лапташ⁴

¹ Институт физики им. Л.В. Киренского СО РАН ФИЦ КНЦ СО РАН,

Красноярск, Россия

² Институт инженерных систем и энергетики, Красноярский аграрный университет,

Красноярск, Россия

³ Институт инженерной физики и радиоэлектроники, Сибирский федеральный университет,

Красноярск, Россия ⁴ Институт химии ДО РАН. Владивосток, Россия

E-mail: evbogdanov@iph.krasn.ru

Поступила в Редакцию 22 января 2020 г. В окончательной редакции 30 января 2020 г. Принята к публикации 30 января 2020 г.

Выращены кристаллы (NH₄)₃VOF₅, однородность и однофазность которых установлена рентгеновскими методами (энергодисперсионной спектроскопи, рентгеновской фотоэлектронной спектроскопии и рентгеновской дифракции). Проведенные исследования температурных зависимостей теплоемкости, энтропии, деформации и барической восприимчивости свидетельствуют о наличии в кристаллах (NH₄)₃VOF₅ трех фазовых переходов, связанных со структурными превращениями. Построенная фазовая T-p диаграмма показывает температурные границы устойчивости реализующихся кристаллических фаз в (NH₄)₃VOF₅. Оптические и диэлектрические исследования свидетельствуют о сегнетоэластической природе фазовых переходов. Анализ экспериментальных данных совместно с данными изоструктурного кристалла (NH₄)₃VO₂F₄ позволяет выделить особенности физических свойств оксифторидов, содержащих ванадий различной валентности (IV и V).

Ключевые слова: оксифториды, фазовые переходы, теплоемкость, двупреломление, тепловое расширение, восприимчивость к давлению.

DOI: 10.21883/FTT.2020.07.49485.008

1. Введение

Структура комплексных фторидов и оксифторидов на основе ванадия $A_2A'VO_xF_{6-x}$ (A, A': NH₄, Cs, Rb, K, Na; x = 0, 1, 2) может быть образована анионными полиэдрами разной симметрии, вследствие способности центрального атома устойчиво существовать в различных валентных состояниях [1]. В отличие от фторидов, в которых шестикоординированный полиэдр [VF₆]³⁻ представляет собой правильный октаэдр [2], в соединениях с x = 1 и 2 его локальная симметрия является соответственно тетрагональной и ромбической, что приводит к появлению локального полярного момента [3,4]. Однако, несмотря на последнее обстоятельство, кристаллическая структура большинства соединений A2A'VO2F4 и $A_2A'VOF_5$ является высокосимметричной (пр. гр. $Fm\bar{3}m$, Z = 4), что обусловлено, как минимум, разупорядочением фторкислородных лигандов [5, 6].

В аммонийных оксифторидах $(NH_4)_3VOF_5$ и $(NH_4)_3VO_2F_4$ лиганды распределены одинаковым образом по двум кристаллографическим позициям 24e + 96j, однако анионные полиэдры $[VO_2F_4]^{3-}$ и $[VOF_5]^{3-}$ характеризуются разным числом пространственных ориентаций: соответственно двенадцать и шесть [6]. Результаты исследований методом колебательной спектроскопии

указывают на динамический характер ориентационного разупорядочения анионных групп, который более выражен в случае $(NH_4)_3VOF_5$ [7]. Аммонийные группы также оказываются разупорядоченными. Тетраэдр в позиции 4b имеет восемь пространственных ориентаций из-за разупорядочения атомов водорода по позициям 96*j*, а два тетраэдра в положении 8*c* разупорядочены по положениям 32f и характеризуются четырьмя пространственными.

В соответствии с данными оптических, теплофизических и диэлектрических исследований кристалл (NH₄)₃VO₂F₄ претерпевает последовательность из четырех фазовых переходов при температурах $T_1 = 438 \, \text{K}$, $T_2 = 244 \text{ K}, T_3 = 210 \text{ K}$ и $T_4 = 205 \text{ K}$, которые сопровождаются изменением симметрии $Fm\bar{3}m \leftrightarrow Immm(I222) \leftrightarrow$ ромбическая $\leftrightarrow P112/m \leftrightarrow P\overline{1}$ [8,9]. Калориметрические измерения позволили определить энергетические характеристики переходов, позволяющие анализировать механизмы структурных искажений. Суммарное изменение энтропии для последовательности фазовых переходов в кристалле (NH₄)₃VO₂F₄ ($\sum_{i} \Delta S_{i} \approx 17 \text{ J/mol} \cdot \text{K}$) оказалось значительно меньше величины энтропии, которая следует из модели разупорядочения структурных элементов в фазе $Fm\bar{3}m$ ($\sum_i \Delta S_i \approx 34 \text{ J/mol} \cdot \text{K}$) [6]. Существенная роль аммонийного катиона в механизмах структурных искажений установлена при исследовании дейтерированного кристалла $(ND_4)_3VO_2F_4$ [10]. Дейтерирование привело к изменению химического давления и, как следствие, к изменению температур фазовых переходов и уменьшению ангармонизма колебаний тетраэдрических катионов, приведшему к уменьшению величины суммарной энтропии ($\sum_i \Delta S_i \approx 15 \text{ J/mol} \cdot \text{K}$) по сравнению с протонированным кристаллом (NH_4)₃VO₂F₄ [9].

В кристаллах (NH₄)₃VOF₅, согласно поисковым исследованиям, наблюдается последовательность из трех фазовых превращений $Fm\bar{3}m \leftrightarrow Immm \leftrightarrow$? \leftrightarrow ? при температурах $T_1 = 349$ K, $T_2 = 230$ K и $T_3 = 221$ K [6]. Несмотря на подробные исследования структуры в фазах $Fm\bar{3}m$ и Immm, информация обоих физических свойствах отсутствует, что затрудняет анализ природы и механизма фазовых переходов.

В настоящей работе выполнены исследования оптических, теплофизических, структурных и диэлектрических свойств кристалла $(NH_4)_3VOF_5$ в широком интервале температур и давлений. Установлен характер влияния внешнего гидростатического и химического давлений на устойчивость реализующихся искаженных фаз.

2. Экспериментальные методы и результаты исследований

Получение исходных кристаллов оксофторованадатов аммония выполнено при помощи механохимического взаимодействия исходных оксидов ванадия (или ванадатов) с гидродифторидом аммония (NH₄HF₂, температура плавления $T_{melt} = 126^{\circ}$ C). [6]. В результате реакции при растирании компонентов при обычных условиях были получены исходные комплексы (NH₄)₃VO₂F₄ и (NH₄)₃VF₆:

$$NH_4VO_3 + 2 \cdot NH_4HF_2 = (NH_4)_3VO_2F_4 + H_2O_7$$

$$VF_3 + 3 \cdot NH_4HF_2 = (NH_4)_3VF_6 + 3 \cdot HF.$$

При дальнейшем растворении стехиометрических количеств полученных комплексов в воде при подогреве на водяной бане и последующем медленном выпаривании зеленовато-голубого раствора кристаллизовались хорошо ограненные октаэдры (NH₄)₃VOF₅ ярко-голубого цвета:

$$(NH_4)_3VO_2F_4 + (NH_4)_3VF_6 = 2\cdot (NH_4)_3VOF_5.$$

Анализ методом энергодисперсионной рентгеновской спектроскопии, выполненный на электронном сканирующем микроскопе высокого разрешения Hitachi 5500 с энергодисперсионной приставкой EDS Thermo Scientific, подтвердил состав монокристаллов $(NH_4)_3VOF_5$, давая соотношение O:F, близкое к 1:5.

Полученные кристаллы были исследованы методом рентгеновской фотоэлектронной спектроскопии. Из

Рис. 1. Спектры рентгеновской фотоэмиссии для (NH₄)₃VOF₅ (*1*) и (NH₄)₃VO₂F₄ (*2*).

спектров рентгеновской фотоэмиссии получена информация о природе химической связи изучаемых элементов. Рассчитанные из спектров значения энергии связи (линия V2p_{3/2}) для исходного (NH₄)₃VO₂F₄ и исследуемого (NH₄)₃VOF₅ кристаллов, составили, соответственно $E_b = 518.3 \text{ eV}$ и $E_b = 517.7 \text{ eV}$ (рис. 1). Значительное различие в величинах энергии связи $\Delta E_b = 0.6 \text{ eV}$ позволяет однозначно идентифицировать ванадиевые соединения. Спектры также показывают, что в выращенных кристаллах (NH₄)₃VOF₅ ванадий присутствует только в одной форме V⁴⁺.

Данные о структуре $(NH_4)_3VOF_5$ получены методом рентгеновской дифракции при помощи порошкового дифрактометра Bruker D8 ADVANCE (излучение линии K_{α} Cu) и линейного детектора VANTEC ($2\theta \approx 0.016^{\circ}$, $t \approx 0.2 \text{ s}/2\theta$). Исследования выполнены в температурном диапазоне 133–423 K с шагом ~ 10 K при помощи температурной камеры TTK450 Anton Paar.

Уточнение модели структуры высокотемпературной фазы проводилось методом Ритвельда (рис. 2) с использованием программы TOPAS 4.2 [11]. Индицирование рентгенограмм, полученных в интервале температур 353-423 К, показало, что элементарная ядейка является кубической гранецентрированной (пр. гр. $Fm\bar{3}m$, Z = 4, см. табл. 1), дополнительных рефлексов не наблюдалось.

При понижении температуры происходит расщепление основных рефлексов кубической фазы (рис. 3), которое, согласно методу гомологии [12], указывает на появление при комнатной температуре ромбической структуры. Ниже температуры фазового перехода $T_1 = 349$ К наблюдаются сверхструктурные рефлексы, соответствующие нестабильности в точке k = (2/3, 2/3, 0) зоны

Рис. 2. Разностная рентгенограмма Ритвельда, полученная при уточнении кристаллической структуры (NH₄)₃VOF₅ в кубической фазе (*T* = 383 K).

Рис. 3. Фрагмент рентгенограмм $(NH_4)_3VOF_5$ при температуре *T*, меняющейся в диапазоне 223–423 K с шагом $\Delta T = 10$ K, в скобках указаны индексы кубической ячейки.

Бриллюэна, что говорит о существенном увеличении объема примитивной ячейки, минимум в три раза. Индицирование и уточнение профиля рентгенограммы показало, что элементарная ячейка описывается пространственной группой Immm: a = 9.1685(2) Å, b = 18.9112(8) Å, c = 6.3014(3) Å. Наблюдается существенное изменение параметров ромбической ячейки по сравнению с кубической ячейкой: $a_{orth} = a_{cub}$;

Таблица 1. Основные параметры уточнения структуры кристалла (NH₄)₃VOF₅, пр. гр. $Fm\bar{3}m$: а и V — параметр и объем элементарной ячейки, Z — число формульных единиц в ячейке, M_r — относительный молекулярный вес формульной единицы, 2θ — интервал углов рентгенограммы; факторы достоверности: R_p — профильный, R_{wp} — весовой профильный, R_B — брэгговский, χ^2 — качество подгонки R_{wp}/R_{exp} , где R_{exp} — ожидаемый профильный фактор.

Параметр	Значение
<i>a</i> , Å	9.0710(2)
$V, Å^3$	746.38(4)
Ζ	4
M_r	216.05
2 heta	5-120
$R_{wp}, \%$	7.677
$R_{p}, \%$	6.089
$R_{\rm exp}$, %	3.292
χ^2	1.11
R_B , %	2.87

 $b_{orth} = 3b_{cub}/2 + 3c_{cub}/2;$ $c_{orth} = b_{cub}/2 - c_{cub}/2,$ где $a_{orth}, b_{orth}, c_{orth}$ — базисные векторы ромбической ячейки, $a_{cub}, b_{cub}, c_{cub}$ — базисные векторы кубической ячейки (рис. 4).

При дальнейшем понижении температуры происходит незначительное расщепление главных рефлексов, которое может быть связано с наличием второго или даже нескольких фазовых переходов. При этом кристаллическая ячейка становится либо моноклинной, либо триклинной. Анализ сверхструктурных рефлексов показал, что они соответствуют появлению нестабильности в точках k = (1/2, 1/2, 1/2) и k = (1/2, 0, 0) зоны Бриллюэна. Минимальный объем примитивной ячейки при этом становится в двенадцать раз больше объема примитивной кубической ячейки и установление параметров ячеек такой искаженной фазы затруднено.

Рис. 4. Температурные зависимости параметров ячеек (NH₄)₃VOF₅: a_{cub} (1), a_{otrh} (2); $b_{orth}\sqrt{2}/3$ (3) и $c_{orth}\sqrt{2}$ (4).

Оптические исследования были выполнены при помощи поляризационного микроскопа Axioskop-40 и температурной камеры Linkam LTS 350. Температурные исследования проводились в квазистатическом режиме с точностью ± 0.1 К в температурном диапазоне 100-400 К. Положение погасания и угол поворота индикатрисы были определены с точностью $\sim 0.5^{\circ}$. Двупреломление измерялось с помощью компенсатора Berek (Leica) с точностью ~ 0.00001 .

Для исследований были отобраны тонкие ростовые пластинки $(NH_4)_3VOF_5$ (толщиной $30-100\,\mu$ m), которые имели ориентацию в плоскостях (111) и (110) кубической кристаллической структуры. В высокотемпературной области образец $(NH_4)_3VOF_5$ является оптически изотропным, $\Delta n = 0$ (рис. 5, *a* и 5, *b*), что подтверждает исходную кубическую симметрию кристалла.

Ниже температуры 350 К в поле зрения микроскопа появляется двойниковая картина (рис. 5, c) в виде широких полос с границами, расположенными под углом 120°, что указывает на потерю кристаллом оси третьего порядка в процессе охлаждения при температуре $T_{1\downarrow}$. Прямое погасание образовавшихся двойников вдоль [110] также подтверждает реализацию ромбической симметрии при комнатной температуре.

Фазовый переход сопровождается скачкообразным появлением оптической анизотропии (рис. 5, *a*). В процессе нагревания значение температуры фазового перехода $T_{1\uparrow}$ зависит от скорости нагрева и может изменяться в интервале 349-357 К, тогда как при охлаждении температура $T_{1\downarrow}$ практически постоянна и равна 338 К. Измерения $\Delta n(T)$ в квазистатическом режиме с шагом $\Delta T \approx 0.1$ К позволили определить равновесные температуры фазовых переходов $T_{1\uparrow} = 357.1$ К и $T_{1\downarrow} = 338.1$ К. Значительный гистерезис $\delta T_1 \approx 19$ К однозначно свидетельствует, что высокотемпературный фазовый переход является превращением первого рода.

При охлаждении ниже температуры 230 К двойниковая картина значительно усложняется, а погасание образца полностью исчезает (рис. 5, *d*). При первом охлаждении наблюдается аномалия $\Delta n(T)$ при температуре $T_{3\downarrow} \approx 218$ К, это сопровождается появлением дополнительного двойникования кристалла. В процессе нагревания изменение $\Delta n(T)$ происходит при более высокой температуре $T_{2\uparrow} = 228$ К, это значение воспроизводится при дальнейших нагревах/охлаждениях образца.

Отсутствие погасания образцов при низких температурах свидетельствует о самой низкой группе симметрии кристалла $P\bar{1}$ или P1 в этой фазе, а ступенчатое аномальное поведение двупреломления (рис. 5, *a*) говорит о наличии некоторой промежуточной (моноклинной) фазы.

Для получения сведений о количестве, температуре и интегральных энергетических характеристиках фазовых переходов в кристаллах $(NH_4)_3VOF_5$ были выполнены исследования температурной зависимости теплоемкости $C_p(T)$ методом адиабатической калориметрии. Исследуемый образец с общей массой ~ 1.1 g герметично

Рис. 5. Температурная зависимость двупреломления в пластинках (111) (1) и (110) (2) кубической фазы кристалла (NH₄)₃VOF₅ (*a*). Поляризационно-оптические наблюдения образцов (111) кубической структуры в фазах: $Fm\bar{3}m$ (*b*), *Immm* (*c*) и $P\bar{1}$ (*d*).

упаковывался в инертной атмосфере гелия в фурнитуру с нагревателем. Измерения теплоемкости системы проводились в режимах непрерывных (dT/dt = 0.15 K/min) и дискретных ($\Delta T = 2.5 - 3.0$ K) нагревов. Теплоемкость фурнитуры измерялась в отдельном эксперименте.

Температурная зависимость молярной изобарной теплоемкости $C_p(T)$ кристаллов (NH₄)₃VOF₅ характеризуется аномальным поведением при уточненных температурах фазовых переходов: $T_1 = 348.1 \pm 0.5$ K, $T_2 = 229.1 \pm 0.2 \,\mathrm{K}$ и $T_3 = 218 \pm 1 \,\mathrm{K}$ (рис. 6, *a*). Для определения интегральных характеристик выполнено разделение теплоемкости на регулярный вклад и аномальный вклад $\Delta C_p(T)$, связанный с последовательностью переходов. Для этого участки температурной зависимости теплоемкости вне области существования аномалий аппроксимировались комбинацией функций Дебая и Эйнштейна. Интегрированием температурной зависимости избыточной теплоемкости $\Delta C_p(T)$, получены величины изменения энтропии $\Delta S_i = \int (\Delta C_p / T) dT$, которыми характеризуются фазовые превращения в (NH₄)₃VOF₅: $\Delta S_1 = 5.4 \pm 0.5$ J/mol · К и $\Delta S_{2+3} = 8 \pm 0.5 \text{ J/mol} \cdot \text{K}$ (puc. 6, *b*).

Измерения теплового расширения выполнены на дилатометре NETZSCH DIL 402С в температурном диапазоне 120–350 К в динамическом режиме со скоростью нагрева ~ 3 К/тіп. Исследования проводились в потоке газообразного гелия при расходе ~ 50 ml min⁻¹. Для калибровки прибора и учета теплового расширения измерительной системы использовались эталоны из плавленого кварца [13]. Образцы (NH₄)₃VOF₅ были приготовлены в виде таблеток диаметром ~ 4 mm и высотой ~ 4–6 mm путем прессования при давлении ~ 2 GPa.

В области температур фазовых переходов наблюдается аномальное поведение теплового расширения (рис. 7). Значительная величина скачка деформации $\delta(V/V_0) = 1 \cdot 10^{-4}$ К характеризует переход при температуре T_1 как превращение первого рода. В низкотемпературной области более выражены анома-

Рис. 6. Температурные зависимости теплоемкости и энтропии фазовых переходов (на вставке) в кристалле $(ND_4)_3VOF_5$ в широком интервале температур.

Рис. 7. Температурные зависимости коэффициента объемного расширения и деформации (на вставке) кристалла (ND₄)₃VOF₅.

лии коэффициента объемного теплового расширения: $\Delta\beta(T_2) = 0.62 \cdot 10^{-4} \text{ K}^{-1}$ и $\Delta\beta(T_3) = 0.24 \cdot 10^{-4} \text{ K}^{-1}$.

1128

Восприимчивость к гидростатическому давлению исследовалась методом дифференциально-термического анализа (ДТА). Поликристаллический образец массой ~ 0.02 g упаковывался в медный контейнер, прикрепленный к одному из спаев термоэлектрического ДТА-элемента. Измерения проводились в камере высокого давления типа цилиндр-поршень, в качестве среды передающей гидростатическое давления использовалось силиконовое масло.

Вследствие температурных ограничений установки ДТА прямые измерения барической восприимчивости высокотемпературного фазового перехода были невозможны.

Температуры фазовых переходов T_2 и T_3 растут практически линейно при увеличении внешнего давления (рис. 8). Вследствие существенно разных величин барических коэффициентов $dT_2/dp = 23 \pm 2$ K/GPa и $dT_3/dp = 92 \pm 4$ K/GPa на фазовой диаграмме T-p при давлении $p \approx 0.1$ GPa наблюдается тройная точка. Восприимчивость образовавшейся при высоком давлении фазовой границы $Immm \leftrightarrow P\bar{1}(P1)$ характеризуется достаточной большой величиной барического коэффициента $dT^*/dp = 80 \pm 1$ K/GPa.

Исследования температурной зависимости диэлектрической проницаемости были выполнены с помощью измерителя иммитанса E7-20 на частоте 1 kHz в интервале температур 100–320 K. Образцы (ND₄)₃VOF₅ были приготовлены в виде таблеток диаметром ~ 8 mm и высотой ~ 1–2 mm путем прессования при давлении ~ 2 GPa. В качестве электродов на образцы наносилось золото путем вакуумного напыления. Скорости изменения температуры в режимах нагрева и охлаждения составляли ~ 0.7 K/min.

На температурных зависимостях диэлектрической проницаемости $\varepsilon(T)$ и диэлектрических потерь tg $\delta(T)$

Рис. 8. Фазовая диаграмма температура–давление кристалла $(ND_4)_3VOF_5$. Линия раздела фаз $Fm\bar{3}m$ и Immm (штриховая линия) восстановлена на основании расчета $(dT_1/dp)_{calc}$.

Рис. 9. Температурные зависимости диэлектрической пронинаемости $\varepsilon(T)$ и диэлектрических потерь tg $\delta(T)$ (на вставке) в кристаллах (ND₄)₃VOF₅.

(рис. 9) в области фазовых переходов при температурах T_2 и T_3 происходит ступенчатое увеличение диэлектрической проницаемости $\Delta \varepsilon_1 \approx \Delta \varepsilon_2 \approx 2$. Такое поведение $\varepsilon(T)$ является характерным для фазовых переходов, имеющих несегнетоэлектрическую природу. Аномальное поведение в области высокотемпературного фазового перехода сопровождается значительным ростом диэлектрической проницаемости, причиной которого является существенное увеличение диэлектрических потерь в области высоких температур T > 270 K (рис. 9, *b*).

3. Обсуждение результатов

Парафаза исследуемого соединения $(NH_4)_3VOF_5$ изоструктурна эльпасолиту $(Fm\bar{3}m, Z=4)$ [14,15]. Исходя из анализа структурных данных, атомы F и O занимают одну позицию 24*e* с заселенностью 5/6 и 1/6 (табл. 2). Их совместный тепловой параметр уточнялся в анизотропном приближении. Однако у электронной плотности были обнаружены дополнительные максимумы в позиции 48*h*, соответствующие атомам F(O), O1(F1) и O2(F2). Поэтому в финальном уточнении были использованы две позиции O1/F1 и O2/F2. На заселенности позиций наложены ограничения посредством линейных уравнений, чтобы результирующая формула оказалась (NH₄)₃VOF₅.

В результате фазового перехода структура (ND₄)₃VOF₅ меняется на ромбическую (пр. гр. *Immm*) и имеет параметры ячейки, сходные с кристаллом (NH₄)₃VO₂F₄ [6]. Вследствие сильного двойникования структура кристалла (NH₄)₃VO₂F₄ не была полностью определена даже для монокристалла [6,8], в результате разупорядочения одного из двух модель чего независимых полиэдров [VO₂F₄]³⁻ достоверно не установлена. Модель разупорядочения (NH₄)₃VOF₅ также невозможно установить из проведенных рентгеновских исследований.

Атом	x	у	Z	р	B_{iso}/U_{ij}
V	0	0	0	1	5.8(2)
N1	1/2	1/2	1/2	1	12.4(4)
H1	0.55	0.55	0.55	0.5	
N2	1/4	1/4	1/4	1	7.1(3)
H2	0.198	0.198	0.198	1	5
F1	0.2098(4)	0	0	0.691(8)	$U_{11} = 0.011(5)$ $U_{22} = U_{33} = 0.173(5)$
01	0.2098(4)	0	0	0.138(2)	$U_{11} = 0.011(5)$ $U_{22} = U_{33} = 0.173(5)$
F2	0.366(2)	0.366(2)	0	0.071(4)	5.0(8)
O2	0.366(2)	0.366(2)	0	0.0143(8)	5.0(8)

Таблица 2. Координаты атомов, заселенности позиций p, а также изотропный B_{iso} и анизотропный U_{ij} тепловые параметры кристалла (NH₄)₃VOF₅ при T = 383 K.

Температурная зависимость объема элементарной ячейки характеризуется значительным скачком объема $\Delta V_c \approx 13.8$ Å, который наблюдается при фазовом превращении при T_1 (рис. 10). Таким образом, высокотемпературное превращение является фазовым переходом первого рода. Информация об изменении энтропии ΔS_1 высокотемпературного фазового перехода, полученная из проведенных теплофизических экспериментов, позволяет оценить наклон фазовой границы $Fm\bar{3}m \leftrightarrow Immm$. Величина барического коэффициента определена из уравнения Клапейрона–Клаузиуса: $dT/dp_1 = (\Delta V N_A)/(Z\Delta S) \approx 128$ К/GPa, где ΔV — изменение объема кубической ячейки при фазовом переходе, N_A — число Авогадро, Z = 4 — число формульных единиц в ячейке.

В результате исследования температурной зависимости $C_p(T)$ установлено наличие избыточной теп-

Рис. 10. Температурные зависимости объема ячеек V_{cub} (1) и $V_{otrh}2/3$ (2).

Рис. 11. Температурные зависимости избыточной теплоемкости и квадрата обратной ее величины (на вставке) в окрестности *T*₂.

лоемкости в довольно широком интервале температуры ниже T_2 (рис. 11, *a*), что позволило выполнить анализ фазового превращения *Immm* \leftrightarrow моноклинная фаза в рамках термодинамической теории Ландау. В соответствии с [16], квадрат обратной избыточной теплоемкости является линейной функцией температуры: $(\Delta C_p/T)^{-2} = [2(B^2 - 3A'C)^{0.5}/A_T^2]^2 + 12C \times (T_o - T)/A_T^3$, где величины $A = A_T(T_0 - T_C) + A_T(T - T_0)$ $= A' + A_T(T - T_0)$, B и C являются коэффициентами термодинамического потенциала: $\Delta \Phi(p, T, \eta) =$ $= A\eta^2 + B\eta^4 + C\eta^6$ (η — параметр перехода, T_C температура Кюри, T_0 — температура фазового перехода). Температурное поведение величины квадрата обратной избыточной теплоемкости (NH4)₃VOF₅ ниже температуры T_2 достаточно хорошо описывается линейной функцией (рис. 11, *b*). Рассчитанные параметры

Параметр	$(NH_4)_3 VOF_5 \\$	$(NH_4)_3VO_2F_4\ [9]$
T_1, K	348.1 ± 0.5	438 ± 1
ΔS_1 , J/mol · K	5.4 ± 0.5	9.7 ± 1.0
$(dT_1/dp)_{\text{calc}}, \text{ K} \cdot \text{GPa}^{-1}$	115 ± 10	-
T', K		244.0 ± 0.2
$\Delta S', J/mol \cdot K$		0.18 ± 0.04
T_2, K	229.1 ± 0.2	210.2 ± 0.2
$(A_T^2/B)_{T_2}, \text{ J/mol} \cdot \text{K}^2$	-0.6	-0.4
$(A_T^3/C)_{T_2}, \ \mathbf{J}^2/\mathrm{mol}^2 \cdot \mathbf{K}^3$	4.6	1.1
$T_2 - T_{C_2}, \mathbf{K}$	3.2	1.4
N_2	-0.13	-0.1
ΔS_2 , J/mol · K	7.6	6.2 ± 0.7
$(dT_2/dp)_{\rm exp}, \ { m K} \cdot { m GPa}^{-1}$	23 ± 2	-27 ± 3
T_3, K	218 ± 1	205.1 ± 0.2
$(A_T^2/B)_{T_3}$, J/mol · K ²	—	-1.3
$(A_T^3/C)_{T_3}, \ \mathrm{J}^2/\mathrm{mol}^2\cdot\mathrm{K}^3$	—	2.2
$T_3 - T_{C_3}$, K	—	0.4
N_3	—	-0.05
ΔS_3 , J/mol · K	0.4 ± 0.06	0.80 ± 0.12
$(dT_3/dp)_{\rm exp}, \ { m K}\cdot{ m GPa}^{-1}$	92 ± 4	-25 ± 3

Таблица 3. Термодинамические параметры фазовых переходов в оксифторидах (NH₄)₃VOF₅ и (NH₄)₃VO₂F₄.

феноменологической модели фазового перехода при T_2 (табл. 3) показывают, что в кристаллах (NH₄)₃VOF₅ превращение *Immm* \leftrightarrow моноклинная фаза находится дальше от трикритической точки ($T_i - T_{Ci} = 0$ и N = 0, где $N = \pm [B^2/(3A_TCT_0)]^{-0.5}$ — степень близости перехода к трикритической точке), чем фазовый переход *Immm* $\leftrightarrow P112/m$, который наблюдается при температуре T_3 в (NH₄)₃VO₂F₄ [9]. Экстраполяция зависимости ($\Delta C_p/T$)⁻²(T), полученной из феноменологической модели, позволяет разделить энергетические вклады фазовых переходов при температурах T_2 и T_3 (рис. 11, a), и оценить величину индивидуальных изменений энтропии ΔS_2 и ΔS_3 (табл. 3).

Совместный анализ экспериментальных данных о теплоемкости и тепловом расширении позволил рассчитать барическую восприимчивость кристаллических фаз, реализующихся в (NH₄)₃VOF₅. С использованием величин скачков энтропии $\Delta S_1 \approx 2.8$ J/mol · K (рис. 7, *b*) и деформации $\delta(\Delta V/V_0) = 0.01$ (рис. 8, *a*) при T_1 из уравнения Клапейрона–Клаузиуса был рассчитан соответствующий барический коэффициент $(dT_1/dp)_{calc} \approx 115$ K/GPa. Близкие величины dT_1/dp , полученные из рентгеновских и дилатометрических данных, свидетельствуют о надежности результатов независимых экспериментов.

Для низкотемпературных фазовых переходов барические коэффициенты $(dT_2/dp)_{calc} \approx 26 \text{ K/GPa}$ и $(dT_3/dp)_{calc} \approx 120 \text{ K/GPa}$ определены в рамках соотношения Эренфеста $\Delta C_p = \Delta \beta T_i/(dT_i/dp)_{p=0}$ [17]. Несмотря на сложности определения индивидуальных параметров низкотемпературных фазовых переходов согласие между экспериментальными и рассчитанными бариче-

скими коэффициентами можно считать удовлетворительным (табл. 3).

Замещение центрального атома, $V^{4+} \rightarrow V^{5+}$, привело к увеличению объема элементарной ячейки $(NH_4)_3VOF_5$ ($V_c = 746 \text{ Å}^3$) по сравнению с $(NH_4)_3VO_2F_4$ ($V_c = 735 \text{ Å}^3$ [5]), которое можно рассматривать как связанное с уменьшением химического давления. В соответствии с положительным знаком барического коэффициента dT_1/dp для $(NH_4)_3VOF_5$ это должно приводить к росту температуры устойчивости кубической фазы в $(NH_4)_3VO_2F_4$, что и наблюдалось в экспериментах (табл. 3). Оцененная величина избыточного химического давления составляет $\Delta p = 0.8$ GPa.

В рамках структурной модели [6] исходная кубическая фаза (NH₄)₃VOF₅ характеризуется разупорядочением как фторкислородного аниона $[VOF_5]^{3-}$, так и аммонийных катионов, которое должно приводить к большой величине энтропии при фазовых переходах. Однако экспериментально установленное значение $\sum_{i} S_{i} \approx 14 \text{ J/mol} \cdot \text{K}$ оказалось относительно небольшим, хотя и характерным для процессов порядок-беспорядок. Аналогичная ситуация наблюдалась при исследованиях изоструктурного кристалла (NH₄)₃VO₂F₄, в котором предполагалось еще большее разупорядочение структурных элементов [6]. Однако суммарная установленная из теплофизических исследований [9], величина изменения энтропии, связанная с последовательными превращениями, оказалась ненамного превышающей аналогичную величину для $(NH_4)_3VOF_5$.

4. Заключение

Выращены однофазные кристаллы аммонийного оксопентафторванадата (IV), $(NH_4)_3VOF_5$. Анализ широкого спектра проведенных исследований (оптических, теплофизических, структурных, диэлектрических) совместно с данными, полученными ранее для изоструктурного соединения $(NH_4)_3VO_2F_4$ [6,9], позволил установить особенности физических свойств оксифторидов, содержащих ванадий разной валентности IV(V).

Уменьшение химического давления в $(NH_4)_3VOF_5$, вызванное увеличением объема элементарной ячейки по сравнению с $(NH_4)_3VO_2F_4$, сопровождается:

 значительным изменением температур фазовых переходов и интервалов устойчивости исходной и искаженных фаз;

2) уменьшением энтропий фазовых переходов, что качественно согласуется с моделями разупорядочения кубической структуры [6];

выклиниванием промежуточной моноклинной фазы
 в (NH₄)₃VOF₅ при относительно низком давлении;

4) сохранением сегнетоэластической (несегнетоэлектрической) природы структурных искажений;

5) незначительным изменением степени близости фазовых переходов к трикритической точке.

Благодарности

Авторы выражают глубокую признательность А.С. Романченко за любезно предоставленные результаты, полученные методом рентгеновской фотоэлектронной спектроскопии. Рентгенографические и дилатометрические данные получены с использованием оборудования Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

Финансирование

Исследования выполнены при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта: "Влияние дейтерирования на ориентационное упорядочение и фазовые переходы в аммонийных фторкислородных ванадатах" № 18-42-243003.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] G. Pausewang, K. Dehnicke, Z. Anorg. Allg. Chem. **369**, 265 (1969).
- [2] I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi. Mater. Sci. Eng. 24, 81 (1998).
- [3] R. Gautier, M.D. Donakowski, K.R. Poeppelmeier. J. Solid State Chem. 195, 132 (2012).
- [4] S.J. Patwe, A.S. Nagabhusan, K.G. Girija, C.G. Sivan Pillai, A.K. Tyagi. J. Mater. Res. 25, 1251 (2010).
- [5] M. Leimkühler, R.J. Mattes. Solid State Chem. 65, 260 (1986).
- [6] A.A. Udovenko, E.I. Pogoreltsev, Y.V. Marchenko, N.M. Laptash. Acta Cryst. B73, 1 (2017).
- [7] Yu.V. Gerasimova, A.S. Oreshonkov, N.M. Laptash, A.N. Vtyurin, A.S. Krylov, N.P. Shestakov, A.A. Ershov, A.G. Kocharova. Spectrochim. Acta A 176, 106 (2017).
- [8] С.В. Мельникова, А.Г. Кочарова. ФТТ **51**, *3*, 562 (2009).
- [9] V.D. Fokina, M.V. Gorev, A.G. Kocharova, E.I. Pogoreltsev, I.N. Flerov. Solid State Sci. 11, 836 (2009).
- [10] Е.В. Богданов, Е.И. Погорельцев, М.В. Горев, М.С. Молокеев, И.Н. Флеров. ФТТ **61**, *2*, 330 (2019).
- [11] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data.User's Manual, Bruker AXS, Karlsruhe, Germany (2008).
- [12] В.И. Михеев. Рентгенометрический определитель минералов. Геология и охрана недр, М: (1957). 867 с.
- [13] М.В. Горев, Е.В. Богданов, И.Н. Флёров, А.Г. Кочарова, Н.М. Лапташ. ФТТ 52, 1, 156 (2010).
- [14] М.С. Молокеев, С.В. Мисюль. ФТТ 54, 1, 144 (2012).
- [15] В.Д. Фокина, И.Н. Флёров, М.С. Молокеев, Е.И. Погорельцев, Е.В. Богданов, А.С. Крылов, А.Ф. Бовина, В.Н. Воронов, Н.М. Лапташ. ФТТ 50, 11, 2084 (2008).
- [16] К.С. Александров, И.Н. Флёров. ФТТ 21, 327 (1979).
- [17] Н. Парсонидж, Л. Стейвли. Беспорядок в кристаллах. Мир, М. (1982). 436 с.

Редактор Е.Ю. Флегонтова