01,10,19

Метод определения параметров парного межатомного потенциала

© М.Н. Магомедов

Институт проблем геотермии и возобновляемой энергетики – филиал Объединенного института высоких температур РАН, Махачкала, Россия

E-mail: mahmag4@mail.ru

Поступила в Редакцию 11 февраля 2020 г. В окончательной редакции 11 февраля 2020 г. Принята к публикации 11 февраля 2020 г.

Указаны недостатки известных из литературы методов определения 4-х параметров парного межатомного потенциала Ми–Леннард–Джонса применительно к кристаллам. Предложен новый метод для определения параметров этого потенциала по термоупругим свойствам кристалла. В данном методе параметры определяются по наилучшему совпадению рассчитанных значений с экспериментальными данными: 1) энергии сублимации кристалла при нулевых значениях температуры (T = 0 K) и давления (P = 0); 2) коэффициента теплового расширения и изотермического модуля упругости, измеренными при P = 0 и T = 300 K; 3) зависимостью изотермы T = 300 K уравнения состояния от объема P(300 K, V). Метод был апробирован на железе и золоте и показал хорошие результаты. Данным методом были также определены параметров межатомного потенциала для тугоплавких металлов: Nb, Ta, Mo и W. Полученные результаты позволили также более точнее определить такие свойства данных металлов как энергия сублимации, температура Дебая и поверхностная энергия.

Ключевые слова: межатомный потенциал, уравнение состояния, тепловое расширение, поверхностная энергияю

DOI: 10.21883/FTT.2020.07.49462.026

1. Введение

Для численного или аналитического расчета термодинамических свойств кристалла простого (однокомпонентного) вещества необходимо определить потенциал взаимодействия пары его атомов. Для аналитического расчета часто парное межатомное взаимодействие в кристалле простого вещества представляется в виде 4-х параметрического потенциала Ми–Леннард–Джонса, который имеет следующий вид [1–7]:

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_o}{r} \right)^b - b \left(\frac{r_o}{r} \right)^a \right], \qquad (1)$$

где D и r_o — глубина и координата минимума потенциала, b > a > 1 — численные параметры.

В литературе встречаются высказывания, что парный 4-х параметрический потенциал Ми–Леннард–Джонса (1) дает при расчетах свойств кристаллов худшие результаты, чем трех параметрический потенциал Морзе для металлов, либо многочастичные потенциалы для Si или Ge (потенциалы типа Stillinger-Weber или Tersoff, которые включают не менее 10–12 параметров, и которые можно использовать только в численных расчетах). Это мнение возникло из-за трудностей определения самосогласованным образом всех четырех параметров потенциала Ми–Леннард–Джонса, особенно значений степенней a и b. Поэтому ранее (лет 50 тому назад) в большинстве расчетов брали ничем не обоснованные значения степенных параметров a = 6 и b = 12. Это было обусловлено тем, что с параметрами 6 и 12 получается квадратное уравнение, с которым было легче работать. Потенциал 6-12 использовался Леннард–Джонсом с соавт. в "докомпьютерную эру" (т.е. 30-40-х годах ХХ века) для описания свойств инертных газов [8]. По этой же причине потенциал 6-12 (названный потенциалом Леннард-Джонса) был применен для расчета свойств твердой фазы металлов и диэлектриков. Это и привело к плохим результатам, на основе которых и сложилось неправильное мнение о неприменимости потенциала Ми-Леннард-Джонса общего вида (1), т.е. со степенями *a*-*b*, для описания свойств металлов. Отметим, что потенциал Морзе дает для металлов более лучшие результаты чем потенциал Леннард-Джонса 6-12. Но 3-х параметрический потенциал Морзе является частным случаем 4-х параметрического потенциала Ми-Леннард-Джонса (1) при b = 2a [8, Т. 1, стр. 282].

Задача корректного определения параметров потенциала (1) решалась во многих работах (см. обзор в [1,2]), но так до сих пор и не получила полного решения. Координата минимума потенциала r_o легко вычисляется либо из мольного объема (V_{00}), либо из параметра решетки (l_{00}) кристалла при нулевых значениях температуры T = 0 К и давления P = 0 по формулам [1,2]:

$$r_o = \left(q_v \frac{V_{00}}{N_A}\right)^{1/3}, \quad r_o = \left(6 \frac{k_p V_{00}}{\pi N_A}\right)^{1/3}, \quad r_o = q_l l_{00} = c_{00}.$$
(2)

Здесь N_A — число Авогадро, k_p — коэффициент упаковки структуры, c₀₀ — расстояние между центрами ближайших атомов при T = 0 К и P = 0, структурные константы q_v и q_l были определены в [1,2].

Величину D — глубину потенциальной ямы можно определить из молярной энергии сублимации кристалла, экстраполированной к T = 0 К при P = 0: L_{00} . В работе [1] величину D определяли из L_{00} без учета энергии "нулевых колебаний" решетки кристалла. Но это приближение плохо выполняется даже для металлов. Параметры b и a в [1] определялись из зависимости величины $L_{00}/(B_{00}r_o^3)$ от произведения ba. Здесь $B = -V(\partial P/\partial V)_T$ — изотермический модуль упругости. Такой подход позволил в [1] приближенно рассчитать параметры r_o , D, b и a для металлов с различной структурой.

Нами в [2] был предложен метод самосогласованного определения всех 4-х параметров потенциала (1): r_o , D, b и a, который состоит в следующем. Значение r_o вычисляется по формулам (2). Величина D в приближении "взаимодействия только ближайших соседей" вычислялась из уравнения, в котором учитывается энергия "нулевых колебаний"

$$L_{00}/N_A = (k_n/2)D - (9/8)k_B\Theta_{00},$$
(3)

где k_n — первое координационное число, k_B — постоянная Больцмана, Θ_{00} — температура Дебая при T = 0 К и P = 0.

Для определения степеней *b* и *a* в [2] используется выражение для Θ и вытекающая из этого выражения формула для первого параметра Грюнайзена (γ), которые были получены в [9] также на основе приближения "взаимодействия только ближайших соседей"

$$\Theta(k_n, c) = A_w(k_n, c)\xi \left[-1 + \left(1 + \frac{8D}{k_B A_w(k_n, c)\xi^2} \right)^{1/2} \right],$$
(4)
$$\gamma = -\left(\frac{\partial \ln \Theta}{\partial \ln V} \right)_T = \frac{b+2}{6(1+X_w)}.$$
(5)

Здесь $c = [6k_p V/(\pi N)]^{1/3}$ — расстояние между центрами ближайших атомов, функция A_w возникает из-за учета энергии "нулевых колебаний" атомов в кристалле,

$$A_{w}(k_{n},c) = K_{R} \frac{5k_{n} ab(b+1)}{144(b-a)} \left(\frac{r_{o}}{c}\right)^{b+2},$$

$$K_{R} = \frac{\hbar^{2}}{k_{B}r_{o}^{2}m}, \quad \xi = \frac{9}{k_{n}},$$
(6)

где *m* — масса атома, \hbar — постоянная Планка, функция $X_w = A_w \xi / \Theta$ определяет роль квантовых эффектов в кристалле.

Таким образом, для одноатомного вещества параметры r_o , D, b и a в [2] однозначно определялись из формул (2) и из 3-х уравнений, в которые входят три экспериментально определенные при T = 0 К и P = 0 величины: L_{00} , Θ_{00} , γ_{00} :

$$D/k_B = (2/k_n) \{ [L_{00}/(N_A k_B)] + (9\Theta_{00}/8) \},\$$

$$b = 6\gamma_{00} [1 + (2F_b)^{-1}] - 2,$$
 (7)

$$a = b/\{1 + [5K_Rk_n b(b+1)/(144A_w(1))]\}.$$

Здесь, согласно (4) и (6), имеем: $A_w(1) = \Theta_{00}/(2\xi F_b)$, $F_b = [4D/(k_B \xi \Theta_{00})] - 1$.

Таким методом в [2] были определены параметры потенциала (1) для многих элементарных кристаллов. При этом было учтено, что потенциальные параметры простых веществ ограничены определенными интервалами допустимых значений

$$0.67 \,\mathrm{K} \le D/k_B \le 97473.6 \,\mathrm{K}$$
и $6 \le ab \le 108.$ (8)

Но метод из [2] предполагает, что значения L_{00} , Θ_{00} и γ_{00} определены в эксперименте при T = 0 К и P = 0 с высокой точностью. К сожалению, этого не получается, причем наименее точно определяется величина γ_{00} . Именно поэтому в [2] значения D, b и a были рассчитаны из фиксированных значений L_{00} и Θ_{00} и различных значений γ_{00} , которые известны из литературы. При этом возникала неопределенность в выборе значения γ_{00} и вытекающих из этого расчета набора параметров b и a.

Это привело к тому, что в работе [3] нами был предложен метод, в котором при данных значениях r_o , D и b величина a корректировалась так, чтобы получить хорошее совпадение с экспериментальным значением коэффициента теплового расширения: $\alpha_p(P,T) = (\partial \ln V / \partial T)_P$, измеренным при P = 0 и T = 300 К. Таким методом для ОЦК-Fe величина a была скорректирована от a = 3.58 [2] до a = 2.95 [3].

Но для тугоплавких металлов (Мо, W, Nb) такая корректировка величины *a* для получения хорошего согласия с величиной $\alpha_p(P = 0, T = 300 \text{ K})$ оказалась недостаточной. Это было связано с тем, что для таких металлов приближенно измеряется не только значение γ_{00} , но и величина Θ_{00} . Например, для Мо и W в литературе приводятся следующие значения:

$$\Theta_{00}(Mo)/K = 450 [10], 460-474.5 [11],$$

472.4-474.9 [12], 259 ± 11 [13], 423 [14],
273.7 [15], 375-527 [16], 455-470 [17];
 $\Theta_{00}(W)/K = 400 [10], 382.58-390 [11],$
382.6-384.6 [12], 384-388 [13], 383 [14],
232 [15], 378 ± 7 [18].

Для Nb и Ta разброс чуть меньше:

 $\Theta_{00}(Nb)/K = 275 [10], 275.7 - 277.05 [11],$

По этим причинам в [5,7] при расчетах свойств W и Au корректировались уже два параметра *b* и *a*,

при фиксированных значениях r_o и *D*. Корректировка производилась до получения наилучшего совпадения как с экспериментальным значением коэффициента теплового расширения: $\alpha_p(P = 0, T = 300 \text{ K})$, так и с экспериментальной зависимостью уравнения состояния $P(300 \text{ K}, v/v_o)$. Здесь v = V/N — удельный объем, $v_o = \pi r_o^3/(6k_p)$. Однако, полученные таким путем параметры потенциала (1) привели к низким значениям модуля упругости B(P = 0, T = 300 K).

Поэтому в работах [4,6] оптимизация потенциала (1) проводилась уже по трем параметрам: D, b и a, при фиксированном значении r_o . В этом методе стремились получить наилучшее согласие с экспериментальными данными для $\alpha_p(P = 0, T = 300 \text{ K}), B(P = 0, T = 300 \text{ K})$ и с экспериментальной зависимостью $P(300 \text{ K}, v/v_o)$. Таким путем были получены параметры потенциала (1) для Mo [4] и Nb [6]. Эти параметры позволили получить хорошие зависимости для функций: $P(T, v/v_o), \alpha_p(P, T)$, B(P, T), изохорной (C_v) и изобарной теплоемкости: $C_p = C_v(1 + \gamma \alpha_p T)$, температуры плавления (T_m) , а также производных этих функций по давлению. Однако, ввиду высокой величины D, рассчитанные значения энергии сублимации L_{00} и поверхностной энергии (σ) оказались много больше экспериментальных данных.

В связи с этим в данной работе предложен самосогласованный метод определения параметров межатомного потенциала (1) по термоупругим свойствам кристалла, который будет более корректнее, чем методы из [1–7].

2. Метод определения параметров

В новом методе оптимизация потенциала (1) идет по двум параметрам: b и a, при фиксированных значениях r_o и молярной энергии сублимации L_{00} . При этом значения Θ_{00} , γ_{00} изменяются в широких диапазонах. Для металлов эти величины равны:

$$100 < \Theta_{00} < 600$$
 и $1.1 < \gamma_{00} < 4.1.$

Из рассчитанных по формулам (7) наборам значений *D*, *b* и *a* отбираются только такие, которые при расчете уравнения состояния: $P(300 \text{ K}, v/v_o = 0.8)$, модуля упругости: B(P = 0, T = 300 K) и коэффициента теплового расширения: $\alpha_p(P = 0, T = 300 \text{ K})$, дают величины, входящие в интервал допустимых значений. Данные функции вычисляются по формулам полученным в [3] на основании модели кристалла Эйнштейна и приближения "взаимодействия только ближайших соседей"

$$P = -\left(\frac{\partial f_H}{\partial v}\right)_T$$
$$= \left[\frac{k_n}{6}D \cdot U'(R) + 3k_B\Theta_E \cdot \gamma \cdot E_w\left(\frac{\Theta_E}{T}\right)\right]\frac{1}{v}, \quad (9)$$

$$B = -v \left(\frac{\partial P}{\partial v}\right)_{T}$$

= $P + \left[\frac{k_{n}}{18}D \cdot U''(R) + 3k_{B}\Theta_{E} \cdot \gamma \cdot (\gamma - q) \cdot E_{w}\left(\frac{\Theta_{E}}{T}\right) - 3N \cdot k_{B} \cdot \gamma^{2} \cdot T \cdot F_{E}\left(\frac{\Theta_{E}}{T}\right)\right] \frac{1}{v}.$ (10)

$$\alpha_p = \gamma \, \frac{C_v}{V \cdot B} = \frac{\gamma \cdot C_v}{N \cdot B [\pi r_o^3/(6k_p)]} \left(\frac{v_o}{v}\right). \tag{11}$$

Здесь f_H — удельная (на атом) свободная энергия Гельмгольца для кристалла Эйнштейна, Θ_E — это температура Эйнштейна, которая связана с температурой Дебая соотношением [19]: $\Theta = (4/3)\Theta_E$, $R = r_o/c$ относительная линейная плотность кристалла, U(R) функция потенциальной энергии, которая, в соответствии с (1), равна

$$U(R) = \frac{aR^{b} - bR^{a}}{b - a},$$

$$U'(R) = R\left[\frac{\partial U(R)}{\partial R}\right] = \frac{ab(R^{b} - R^{a})}{b - a},$$

$$U''(R) = R\left[\frac{\partial U'(R)}{\partial R}\right] = \frac{ab(bR^{b} - aR^{a})}{b - a},$$

$$I(2)$$

$$E_{w}(y) = 0.5 + \frac{1}{\left[\exp(y) - 1\right]},$$

$$F_{E}(y) = \frac{y^{2} \exp(y)}{\left[\exp(y) - 1\right]^{2}}, \quad C_{v} = 3N \cdot k_{B} \cdot F_{E}\left(\frac{\Theta_{E}}{T}\right),$$

$$q = \left(\frac{\partial \ln \gamma}{\partial \ln v}\right)_{T} = \gamma \frac{X_{w}(1 + 2X_{w})}{1 + X_{w}}.$$

Проверка данного метода была проведена на Fe с объемно-центрированной кубической (ОЦК) структурой и на Au с гранецентрированной кубической (ГЦК) структурой. Были определены как параметры межатомного потенциала (1), так и вытекающие из этих параметров значения энергии сублимации: L_{00} , уравнения состояния: $P(300 \text{ K}, v/v_o = 0.8)$, и значения решеточных свойств кристалла: α_p , B, Θ , γ . Здесь σ — удельная (на единицу площади) поверхностная энергия грани (100), выражение для которой имеет вид [20]:

$$\sigma(R,T) = -\frac{k_n D R^2}{12\alpha^{2/3} r_o^2} L_E(R,T),$$
 (13)

Здесь введены обозначения:

$$L_E(R, T) = U(R) + 3H_w(R, T),$$
$$H_w(R, T) = \frac{6\gamma}{(b+2)} \left[\frac{k_B \Theta_E}{Dk_n}\right] E_w\left(\frac{\Theta_E}{T}\right)$$

Таким образом, в данном методе производится оптимизация параметров потенциала (1) как по энергетическим, так и по упругим параметрам кристалла. Энергия сублимации, параметры межатомного потенциала (1) и статья, в которой они были определены, и свойства, которые получаются при расчете с использованием указанных параметров

Кристалл	L ₀₀ , kJ/mol	$D/k_B,$ K	b	а	Статья	P(0.8), GPa	$\frac{\alpha_p}{10^{-6}\mathrm{K}^{-1}}$	$B = -v(\partial P/\partial v)_T,$ GPa	$B'(P) = (\partial B/\partial P)_T$	Θ K	γ	$\sigma, 10^{-3} \text{J/m}^2$
Fe	$413.80 [1] \\ ^{-//-} \\ 414.454 \\ 414.634 \pm 1.255 \\ [21]$	12561.53 12576.70 12576.70	8.37 8.26 8.26	3.097 3.58 2.95	[2] [3]	75.9 87.7 71.1 50–60 [23]	34.1 28.6 36.1 33–38 [25,26]	161.3 185.7 151.9 156–171 [26,32]	5.85 5.98 5.77 4–6 [26,32]	415.17 470.01 399.5 420–478 [33]	1.720 1.701 1.702 1.4–1.8 [33]	2202.98 2207.35 2204.95 1910–2525 [34] 2420–2480 [35]
Au	$368.19 [1] \\ -//- \\ -//- \\ 367.903 \\ 368.610 \pm 1.255 \\ [21]$	7419.16 7411.50 -//- -//-	16.05 15.56 16.34 12.82	2.80 1.96 1.89 2.93	[2] [2] [7]	109.9 71.9 75.2 80.5 65-75 [15]	43.0 64.0 66.6 41.7 42-42.8 [25,27]	166.4 109.0 109.4 141.1 166.4–173.2 [10,14]	8.35 7.91 8.15 7.30 5.31 [15]-9.57 [27]	198.04 156.23 155.38 190.09 156–178 [33]	3.001 2.921 3.051 2.464 2.3-3.05 [33]	1531.38 1523.82 1523.08 1530.31 1175–1850 [34] 1500–1510 [35]
Nb	$719.65 [1] \\ -//- \\ -//- \\ 1001.25 \\ 719.472 \pm 4.184 \\ [21]$	21732.20 21706.44 -//- 30200.0	9.24 5.81 7.50 6.2	2.55 1.88 1.72 2.3	[2] [2] [6]	77.7 31.1 39.0 57.4 50–60 [15]	24.0 37.0 38.4 20.6 21.3-22.8 [25,28,29]	167.2 77.2 90.5 145.1 144.2–170.2 [10,14]	5.95 4.58 5.09 4.84 3.3 [15]-14.5 [14]	327.28 237.02 236.38 331.56 241[13]-300 [10]	1.869 1.300 1.581 1.367 1.3–1.69 [33]	2870.66 2860.54 2859.80 3998.34 2050-2550 [34] 2660-2700 [35]
Та	706.26 [1] -//- 785.608 [21] 785.608 ± 4.184 [21]	21318.49 21305.51 -//- 23701.02	7.86 7.01 11.16 7.92	3.49 2.90 2.52 3.13	[2] [2]	86.3 60.8 97.9 85.8 55-75 [15,24]	18.5 23.2 24.8 18.6 18–19.8 [25,29,30]	192.8 142.4 194.7 193.8 192 [15]-195 [24]- 201.9 [14]	5.80 5.32 6.58 5.70 3.4–3.55 [24] - 3.842 [14]	289.93 244.43 242.84 278.54 160.9 [15] -264.6 [12]	1.640 1.499 2.190 1.650 1.5-2.19 [33]	2819.56 2815.53 2814.5 3136.47 1950–2680 [34] 2900–3150 [35]
Мо	$\begin{array}{c} 655.31 \ [22] \\ & -//- \\ 1624.34 \\ \textbf{654.867} \pm \textbf{2.928} \\ \ [\textbf{21}] \end{array}$	19832.34 19776.91 48950.0	8.29 7.68 6.82	3.93 1.93 1.87	[2] [4]	115.0 48.4 97.5 80–95 [15,17]	16.4 37.2 14.9 14–16.5 [25,29,31]	248.7 110.6 242.6 244–260 [17]	6.09 5.22 4.90 4.21-4.67 [17]	451.13 253.91 383.66 455–470 [17]	1.710 1.610 1.468 1.95 - 2.03 [17]	2907.50 2889.24 7207.60 1865–2630 [34] 2910–3000 [35]
W	$848.10 [1] \\ -//- \\ 847.987 \\ 855.644 \pm 4.184 \\ [21]$	25594.79 25608.93 -//-	8.82 8.58 6.28	3.45 4.06 3.97	[2] [5]	136.2 157.6 103.1 103–120 [15]	15.0 12.6 13.6 11–15 [18,25,29]	295.7 339.6 243.5 296 [15]-323.3 [10]	6.10612 6.22903 5.42890 4.4 [15]-19.1 [14]	330.35 381.042 393.482 232 [15]-400 [10] 310-610 [33]	1.800 1.760 1.377 1.1–1.76 [33]	3715.79 3719.21 3718.11 2668-2712 [34] 3270-3680 [35]

1001

3. Результаты расчетов

В таблице представлены полученные в различных работах параметры межатомного потенциала (1) и вытекающие из этих параметров значения указанных свойств как для ОЦК-Fe и ГЦК-Аu, так и для тугоплавких металлов Nb, Ta, Mo и W, которые имеют ОЦК структуру. Для координаты минимума потенциала (1) брали следующие значения: $r_o/[10^{-10} \text{ m}] = 2.4775$ (ОЦК-Fe), 2.8751 (ГЦК-Аи), 2.8648 (ОЦК-Nb), 2.8648 (ОЦК-Та), 2.7365 (ОЦК-W) — из [1]; 2.72 (ОЦК-Мо) — из [2]. Для каждого кристалла в верхних строках представлены результаты полученные новым методом, а в нижней строке представлены экспериментальные оценки указанных свойств. Для ОЦК-Та расчет параметров потенциала (1) и свойств сделан для двух значений энергий сублимации: из [1] и из [21], ввиду их заметного различия. Результаты представлены в первой и четвертой строках.

Как видно из таблицы, полученные новым методом параметры потенциала (1) для Fe и Au дают при $T = 300 \,\text{K}$ и P = 0 значения решеточных свойств лучше, чем потенциалы из других работ. Но величина P(300 K, $v/v_o = 0.8$) по данным параметрам получилась несколько выше экспериментальных данных. Это указывает на то, что полученные здесь параметры потенциала работоспособны в области упругих деформаций, т.е. при $v/v_o \ge 0.9$. Аналогичный вывод можно сделать и по результатом расчета свойств тугоплавких ОЦКметаллов. Но потенциальные параметры, полученные предлагаемым методам, дают в комплексе более лучшее согласие с набором экспериментальных данных: как по L_{00} и $P(300 \text{ K}, v/v_o = 0.8)$, так и для определенных при $T = 300 \,\mathrm{K}$ и P = 0 решеточных свойств: α_p , B, Θ , γ и σ. Для ОЦК-Та лучшее согласие рассчитанных свойств с экспериментальными данными получено из значения энергии сублимации из [21], которые представлены в четвертой строке.

Помимо определения параметров потенциала (1) данный метод расчета позволяет определить более достоверные значения для таких свойств как Θ , γ и σ , которые для тугоплавких металлов имеют большой разброс экспериментальных данных. Как было указано в [9,34,36] современные экспериментальные методы не позволяют измерить данные параметры с необходимой точностью (см. разброс экспериментальных данных в таблице). Кроме этого, на примере ОЦК-Та показано, что данный метод может быть использован для выбора более достоверного значения энергии сублимации кристалла. Поэтому данный комплексный метод расчета параметров потенциала (1), также позволяет более точнее определять и термодинамические свойства кристалла.

4. Заключение

Предложен новый метод для определения 4-х параметров потенциала Ми-Леннард-Джонса по термоупругим свойствам кристалла. Показано, что данный метод более корректен, чем известные из литературы другие методы определения параметров потенциала. Определены параметры межатомного потенциала для ГЦК-Аи, и для кристаллов Fe, Nb, Ta, Mo, W, имеющих ОЦК-структуру. На основании полученных результатов указаны более достоверные значения для Θ , γ и σ указанных кристаллов. На примере ОЦК-Та показано, что данным методом можно также указать более достоверное значение энергии сублимации кристалла.

Благодарности

Автор выражает благодарность С.П. Крамынину, Н.Ш. Газановой и З.М. Сурхаевой за плодотворные дискуссии и помощь в работе.

Финансирование работы

Работа выполнена при финансовой поддержке РФФИ (грант № 18-29-11013_мк) и Программы Президиума РАН (программа № 6, грант 2-13).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- S. Zhen, G.J. Davies. Phys. Status Solidi A 78, 2, 595 (1983). DOI: 10.1002/pssa.2210780226
- [2] М.Н. Магомедов. Теплофизика высоких температур 44, 4, 518 (2006). DOI: 10.1007/s10740-006-0064-
- [3] М.Н. Магомедов. ЖТФ 85, 11, 48 (2015).
- DOI: 10.1134/S1063784215110195
- [4] E.N. Akhmedov. J. Phys. Chem. Solids 121, 62 (2018).
 DOI: 10.1016/j.jpcs.2018.05.011
- [5] N.Sh. Gazanova. Appl. Solid State Chem. 3, 4, 36 (2018).
 DOI: 10.18572/2619-0141-2018-3-4-36-40
- [6] S.P. Kraminin, E.N. Ahmedov. J. Phys. Chem. Solids 135, 109108 (2019). DOI: 10.1016/j.jpcs.2019.109108
- [7] E.N. Ahmedov. J. Phys.: Conf. Ser. 1348, 012002, 1 (2019).
 DOI: 10.1088/1742-6596/1348/1/012002
- [8] Э.А. Мелвин-Хьюз. Физическая химия. ИЛ, М. (1962). 1148 с. [E.A. Moelwyn-Hughes. Physical Chemistry. Pergamon Press, London (1961).]
- [9] М.Н. Магомедов. ФТТ **45**, *1*, 33 (2003). DOI: 10.1134/1.1537405
- [10] Ч. Киттель. Введение в физику твердого тела. Наука, М. (1978). 792 с. [Ch. Kittel. Introduction to Solid State Physics, J. Wiley and Sons Ltd., N.-Y. (1976).]
- [11] M.M. Shukla, N.T. Padial. Rev. Brasil. Fís. **3**, *1*, 39 (1973). http://sbfisica.org.br/bjp/download/v03/v03a03.pdf
- [12] J.K.D. Verma, M.D. Aggarwal. J. Appl. Phys. 46, 7, 2841 (1975). DOI: 10.1063/1.322028
- [13] В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах. Справочник. Металлургия, М. (1989). 384 с.

- [14] Физические величины. Справочник / Под. ред. И.С. Григорьева, Е.З. Мейлихова. Энергоатомиздат, М. (1991).
 1232 с. [Handbook of Physical Quantities Ed. I.S. Grigoriev, E.Z. Meilikhov. Energoatomizdat, М. (1991); CRC Press, Boca Raton, Florida (1996).]
- [15] A. Karbasi, S.K. Saxena, R. Hrubiak. CALPHAD: Comp. Coupling Phase Diagrams Thermochem. 35, 1, 72 (2011). DOI:10.1016/j.calphad.2010.11.007
- [16] P.D. Desai. J. Phys. Chem. Ref. Data 16, 1, 91 (1987). DOI: 10.1063/1.555794
- [17] X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang, B. Liu, T. Cui. Sci. rep. 6, 19923 (2016).
 DOI: 10.1038/srep19923
- [18] В.Ю. Бодряков. Теплофизика высоких температур 53, 5, 676 (2015). DOI: 10.7868/S0040364415040067
- [19] Л. Жирифалько. Статистическая физика твердого тела. Мир, М. (1975). 383 с. [L.A. Girifalco. Statistical Physics of Materials. J. Wiley and Sons Ltd, N.-Y. (1973).]
- [20] М.Н. Магомедов. Кристаллография **62**, *3*, 487 (2017). DOI: 10.1134/S1063774517030142
- [21] http://www.chem.msu.su/cgi-bin/tkv.pl.
- [22] Термические константы веществ. Справочник в 10-ти вып. / Под ред. В.П. Глушко, ВИНИТИ, М. (1965–1982).
- [23] Д.К. Белащенко, О.И. Островский. ЖФХ 85, 6, 1063 (2011). DOI: 10.1134/S0036024411060094
- [24] J.-B. Gu, C.-J. Wang, W.-X. Zhang, B. Sun, G.-Q. Liu, D.-D. Liu, X.-D. Yang. Chin. Phys. B 25, 12, 126103 (2016).
 DOI: 10.1088/1674-1056/25/12/126103
- [25] С.И. Новикова. Тепловое расширение твердых тел. Наука, М. (1974). 294 с.
- [26] D.R. Wilburn, W.A. Bassett. Am. Mineral. 63, 5-6, 591 (1978). https://pubs.geoscienceworld.org/msa/ammin/articleabstract/63/5-6/591/40926
- [27] M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Voŏadlo.
 J. Appl. Crystallography 51, 2, 470 (2018).
 DOI: 10.1107/S1600576718002248
- [28] M.E. Straumanis, S. Zyszczynski. J. Appl. Crystallography 3, *1*, 1 (1970). DOI: 10.1107/s002188987000554x
- [29] K. Wang, R.R. Reeber. Mater. Sci. Engineering: Rep. 23, 3, 101 (1998). DOI: 10.1016/s0927-796x(98)00011-4
- [30] В.Ю. Бодряков. Теплофизика высоких температур 54, 3, 336 (2016). DOI: 10.7868/S0040364416030029
- [31] В.Ю. Бодряков. Теплофизика высоких температур 52, 6, 863 (2014). DOI: 10.7868/S004036441404005X
- [32] Y. Shibazaki, K. Nishida, Y. Higo, M. Igarashi, M. Tahara, T. Sakamaki, H. Terasaki, Y. Shimoyama, S. Kuwabara, Y. Takubo, E. Ohtani. Am. Mineral. 101, 5, 1150 (2016). DOI: 10.2138/am-2016-5545
- [33] М.Н. Магомедов. Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. Физматлит, М. (2010). 544 с.
- [34] V.K. Kumikov, Kh.B. Khokonov. J. Appl. Phys. 54, 3, 1346 (1983). DOI: 10.1063/1.332209
- [35] Q. Jiang, H.M. Lu, M. Zhao. J. Phys.: Condens. Matter 16, 4, 521 (2004). DOI: 10.1088/0953-8984/16/4/001
- [36] М.Н. Магомедов. ЖТФ 80, 9, 150 (2010).
 DOI: 10.1134/S1063784210090240

Редактор Т.Н. Василевская