12

Высокодисперсионные электростатические зеркала вращательной симметрии с времяпролетной фокусировкой по энергии третьего порядка

© С.Б. Бимурзаев, Н.У. Алдияров, З.С. Саутбекова

Алматинский университет энергетики и связи, Алматы, Kasaxctaн e-mail: bimurzaev@mail.ru

Поступило в Редакцию 25 июня 2019 г. В окончательной редакции 10 декабря 2019 г. Принято к публикации 27 января 2020 г.

Приведены выражения, описывающие время пролета заряженных частиц с учетом времяпролетных хроматических аберраций в электростатических зеркалах вращательной симметрии. Путем численных расчетов найдены условия времяпролетной фокусировки по энергии частиц до третьего порядка включительно в трехэлектродных зеркалах, электродами которых служат соосные цилиндры равного диаметра. Рассмотрены различные режимы работы таких зеркал: 1) пространственно-времяпролетная фокусировка в слуссовой плоскости зеркала; 2) пространственно-времяпролетная фокусировка в фокальной плоскости зеркала; 3) времяпролетная фокусировка в телескопическом режиме; 4) времяпролетная фокусировка в коллиматорном режиме. Результаты расчета представлены в зависимости от двух фундаментальных решений уравнения параксиальных траекторий. Одно из этих решений описывает траектории, прямая и обратная встви которых совпадают, а второе решение — траектории, прямая и обратная встви которых совпадают, а второе решение, что времяпролетная дисперсия зеркала по массам, определенная на основе второго решения, в несколько раз выше, чем на основе первого решения для всех режимов его работы.

Ключевые слова: времяпролетный масс-рефлектрон, времяпролетная дисперсия по массе, времяпролетная хроматическая аберрация, времяпролетная фокусировка, эффективное дрейфовое расстояние.

DOI: 10.21883/JTF.2020.07.49456.280-19

Введение

Разрешающая способность времяпролетного массрефлектрона (ВПМР) увеличивается пропорционально времени пролета ионов от источника до детектора [1], что связано с уменьшением относительного вклада в разрешающую способность временно́го разброса ионов в пакете, формируемом в ионном источнике. Увеличить время пролета ионов (т. е. времяпролетную дисперсию по массам) в ВПМР можно двумя способами: 1) наращиванием длины пролета ионов от источника до детектора; 2) путем определенного подбора распределения поля в электростатическом зеркале, выполняющем роль ионного рефлектора.

Первый способ увеличения времени пролета ионов реализован в многоотражательных ВПМР, в которых роль ионного рефлектора выполняет система, состоящая из двух параллельных друг другу двумерных электростатических зеркал [2,3]. При этом предельное разрешение многоотражательного ВПМР остается пропорциональным времени пролета ионов при однократном отражении зеркалом [3].

Второй способ увеличения времени пролета ионов описан в работе [4], в которой впервые было показано, что в двухэлектродном электростатическом зеркале вращательной симметрии могут быть реализованы два случая пространственно- времяпролетной фокусировки первого порядка. В первом случае узловая плоскость времяпролетной фокусировки совмещена с плоскостью, проходящей через центр кривизны зеркала, а во втором — через его вершину. При этом время пролета ионов в зеркале, следовательно, эффективное дрейфовое расстояние зеркала во втором случае значительно больше, чем в первом.

Несмотря на это, зеркала с режимом фокусировки с большим временем пролета практически были преданы забвению как менее светосильные, так как с увеличением длины пробега частиц происходит естественное уменьшение апертурных углов. При этом из поля зрения выпала другая причина, влияющая на светосилу зеркала — его пропускная способность. Вместе с тем, как показано в работе [5], пропускная способность двухэлектродного зеркала вращательной симметрии со вторым режимом фокусировки значительно больше по сравнению с первым режимом фокусировки.

В [6] были исследованы свойства времяпролетной фокусировки двухэлектродного зеркала вращательной симметрии для двух режимов его работы, когда светосила зеркала не зависит от длины пробега частиц: 1) телескопический режим — падающий на зеркало параллельный пучок частиц остается параллельным и после отражения зеркалом; 2) режим параллель/точка — падающий на зеркало параллельный пучок частиц фокусируется в фокальной плоскости зеркала. Результаты этих исследований показывают, что в двухэлектродном зеркале вращательной симметрии может быть достигнута времяпролетная фокусировка частиц по энергии при высокой времяпролетной дисперсии зеркала по массам как в телескопическом режиме, так и в режиме параллель/точка. Однако в двухэлектродном зеркале невозможна времяпролетная фокусировка по энергии выше первого порядка, что ограничивает их практическое применение для повышения разрешающей способности ВПМР. Это приводит к необходимости более детального изучения фокусирующих свойств высокодисперсионных зеркал вращательной симметрии на основе многоэлектродных систем, имеющих большее разнообразие в распределении поля.

В настоящей работе путем численных расчетов исследованы дисперсионные свойства трехэлектродных электростатических зеркал вращательной симметрии для различных режимов их работы при выполнении условий времяпролетной фокусировки по энергии до третьего порядка включительно.

1. Расчетные формулы для исследования электростатических зеркал

1.1. Время пролета

В задачах времяпролетной фокусировки пучков заряженных частиц особый интерес представляют времяпролетные хроматические аберрации (ВПХА). Это связано с тем, что в электронно-оптических системах с прямой оптической осью времяпролетные геометрические аберрации эффективно уменьшаются простым диафрагмированием этих пучков. ВПХА при этом остаются без изменений и накладывают принципиальные ограничения на качество времяпролетной фокусировки. По этой причине в дальнейшем ограничимся рассмотрением этих аберраций.

Для изучения времяпролетных хроматических аберраций зеркала достаточно рассмотреть движение частиц вдоль его главной оптической оси и определить зависимость времени пролета частиц от их начальных энергий.

Введем цилиндрическую систему координат r, ψ , z, в которой ось z совмещена с главной оптической осью зеркала. Согласно [7], время пролета иона заряда q и массы m, движущегося вдоль оптической оси зеркала zот начальной плоскости $z = z_0$ до произвольной плоскости z = const, с учетом величин до третьего порядка малости может быть записано в виде

$$t = T + \Delta t. \tag{1}$$

Здесь

$$T = -\frac{1}{v_0} \left(z + z_0 - 2z_T^{(0)} \right) \tag{2}$$

— время пролета центрального (движущегося вдоль оси *z* с нулевым разбросом энергий) иона,

$$\Delta t = \frac{1}{v_0} \sum_{k=1}^{3} \left(\frac{\varepsilon}{\Phi_0}\right)^k D_{t\varepsilon}^{(k)} \tag{3}$$

— суммарная ВПХА зеркала, ε — начальный разброс энергий ионов, $\Phi = \Phi(z)$ — осевое распределение электростатического потенциала, $v_0 = \sqrt{-2q\Phi/m}$ — скорость центрального иона, а

$$D_{t\varepsilon}^{(k)} = (-1)^{k+1} \frac{(2k-1)!!}{(2k)!!} \left(z + z_0 - 2z_T^{(k)} \right) \quad (k = 1, 2, 3)$$
(4)

— коэффициент ВПХА *k*-го порядка. Величины $z_T^{(0)}$ и $z_T^{(k)}$ (k = 1, 2, 3), определяющие, как это видно из (2) и (4), положения эффективной плоскости отражения зеркала и его плоскостей времяпролетной фокусировки *k*-го порядка соответственно, являются функциями лишь осевого распределения потенциала $\Phi = \Phi(z)$ зеркала [7].

Здесь и далее нижним индексом "0" отмечены значения величин в начальной (предметной) плоскости $z = z_0$.

1.2. Условия времяпролетной фокусировки

Как видно из (4), условие времяпролетной фокусировки ионов по энергии k-го порядка $\left(D_{\iota\varepsilon}^{(k)}=0\right)$ определяется равенством

$$z + z_0 = 2z_T^{(k)}, (5)$$

которое означает, что времяпролетная фокусировка достигается, если плоскости $z = z_0$ (предметная плоскость) и z = const (плоскость времяпролетного изображения) расположены симметрично относительно плоскости $z = z_T^{(k)}$ (k = 1, 2, 3).

При выполнении условия

$$z_T = z_T^{(1)} = z_T^{(2)} = z_T^{(3)}$$
(6)

одновременно с (5) все коэффициенты ВПХА равны нулю $\left(D_{t\varepsilon}^{(1)} = D_{t\varepsilon}^{(2)} = D_{t\varepsilon}^{(3)} = 0\right)$, т.е. в плоскости $z = z_T$ реализуется времяпролетная фокусировка ионов по энергии до третьего порядка включительно.

Плоскость $z = z_T^{(1)}$ называют главной плоскостью времяпролетной фокусировки зеркала [4]. С учетом (5) можно записать (2) в виде

$$T = \frac{2}{v_0} \left(z_T^{(0)} - z_T^{(1)} \right).$$
 (7)

Равенство (7) определяет интервал времени между моментами пересечения плоскости $z = z_T^{(1)}$ ионами до

и после отражения зеркалом. Этот интервал времени называют временным интервалом фокусировки зеркала. Зависимость временного интервала фокусировки от массы определяет величину его времяпролетной дисперсии по массам [4]

$$D_{tm} = m \frac{\partial T}{\partial m} = \frac{T}{2} = \frac{L}{v_0},\tag{8}$$

где

$$L = \frac{1}{2} v_0 T \tag{9}$$

— эффективное дрейфовое расстояние зеркала.

Как известно, предельная разрешающая способность масс-рефлектрона с электростатическим зеркалом равна

$$R = \frac{T}{2\Delta t_i},\tag{10}$$

где Δt_i — временной разброс пакета ионов в первичном временном фокусе.

С учетом равенств (8), (9) можно записать равенство (10) в виде

$$R = \frac{D_{tm}}{\Delta t_i} = \frac{L}{\Delta z_i},\tag{11}$$

где $\Delta z_i = v_0 \Delta t_i$ — ширина пакета ионов в первичном временном фокусе.

1.3. Уравнения траекторий

Согласно [7], уравнения параксиальной траектории и ее наклона к оптической оси z для частицы, движущейся от начальной плоскости $z = z_0$ до произвольной плоскости z = const (после отражения зеркалом), можно записать в виде

$$r = -\frac{2\sqrt{\Phi_0}}{\Phi'_u} \left[r'_0(p_0g + pg_0) - r_0(p'_0g + pg'_0) \right], \quad (12)$$

$$r' = -\frac{2\sqrt{\Phi_0}}{\Phi'_u} \left[r'_0(p_0g' + p'g_0) - r_0(p'_0g' + p'g'_0) \right].$$
(13)

Здесь p = p(z) и g = g(z) — линейно независимые частные решения параксиального уравнения

$$\Phi r'' + \frac{1}{2} \Phi' r' + \frac{1}{4} \Phi'' r = 0.$$
 (14)

При этом p = p(z) является аналитической функцией, а g = g(z) может быть представлено в виде

$$g = \sqrt{\Phi}q,\tag{15}$$

где q = q(z) — аналитическая функция, удовлетворяющая уравнению

$$\Phi q'' + \frac{3}{2} \Phi' q' + \frac{3}{4} \Phi'' q = 0, \qquad (16)$$

следующему из (14) и (15).

Журнал технической физики, 2020, том 90, вып. 7

Функции p = p(z) и q = q(z) удовлетворяют следующим начальным условиям:

$$p_u = q_u = 1, \quad p'_u = q'_u = -\frac{\Phi''_u}{2\Phi'_u}.$$
 (17)

1197

Здесь и далее штрихи обозначают дифференцирование по z, а нижним индексом "u" отмечены значения величин в плоскости поворота ионов $z = z_u$ зеркала.

1.4. Режимы работы зеркала

Как видно из (12), положение гауссовой плоскости изображения $z = z_G$ (условие стигматичной пространственной фокусировки — режим точка в точку) определяется равенством

$$p_0g(z_G) + p(z_G)g_0 = 0. (18)$$

Откуда с учетом (12) получим

$$\frac{p(z_G)}{p_0} = -\frac{g(z_G)}{g_0} = \frac{r}{r_0} = M,$$
(19)

где *М* — линейное увеличение зеркала.

Положение фокальной плоскости $z = z_F$ (условие фокусировки параллельных пучков частиц — режим параллель/точка), как это видно из (12), определяется равенством

$$p_0'g(z_F) + p(z_F)g_0' = 0.$$
⁽²⁰⁾

Откуда с учетом (12) следует

$$\frac{p(z_F)}{p'_0} = -\frac{g(z_F)}{g'_0} = \frac{r}{r'_0} = f_0,$$
(21)

где *f*₀ — фокусное расстояние предметного пространства зеркала.

Коллиматорный режим работы зеркала (условие параллельности в пространстве изображений ионного пучка, исходящего из точечного источника $(r_0 = 0)$ — режим точка/параллель) определяется, как это видно из (13), равенством

$$p_0g' + g_0p' = 0. (22)$$

С учетом (13) из (22) следует, что

$$\frac{p_0}{p'} = -\frac{g_0}{g'} = \frac{r_0}{r'} = f,$$
(23)

где f — фокусное расстояние пространства изображений, которое связано с фокусным расстоянием предметного пространства f_0 соотношением

$$f = f_0, \tag{24}$$

следующим из (12) и (13).

Телескопический режим (падающий на зеркало параллельный пучок остается параллельным и после отражения), как это видно из (13), определяется равенством

$$p_0'g' + g_0'p' = 0. (25)$$

Рис. 1. Трехэлектродное зеркало вращательной симметрии: V_1, V_2, V_3 — потенциалы на электродах, d — диаметр цилиндра, l — длина среднего электрода, δ_z — ширина зазора между электродами.

При этом, как следует из (13) и (25):

$$\frac{p'}{p'_0} = -\frac{g'}{g'_0} = \frac{r'}{r'_0} = \gamma,$$
(26)

где γ — угловое увеличение зеркала, которое связано с его линейным увеличением M соотношением

$$M\gamma = -1, \tag{27}$$

следующим из (12) и (13).

Определим кардинальные элементы электронного зеркала. Для этого воспользуемся характерными для зеркала траекториями. Решение p = p(z) описывает траектории, прямые и обратные ветви которых совпадают, т.е. проходят через центр кривизны зеркала $z = z_C$, а решение g = g(z) — траектории, прямые и обратные ветви которых симметричны относительно оптической оси зеркала, т.е. проходят через вершину зеркала $z = z_V$ [4]. Таким образом, когда предмет и его изображение находятся в свободном от поля пространстве, функции p = p(z) и g = g(z) можно записать так

$$p = (z - z_C)p', \quad g = (z - z_V)g'.$$
 (28)

С учетом этих равенств из (20)-(21) следует, что положение фокуса зеркала и его фокусное определяются равенствами

$$z_F = \frac{1}{2}(z_V + z_C), \quad f = \frac{1}{2}(z_V - z_C).$$
 (29)

Как следует из (22), коллиматорный режим зеркала реализуется при выполнении очевидного условия

$$z_0 = z_F. \tag{30}$$

В свободном от поля пространстве телескопический режим зеркала определяется равенством

$$p' = 0$$
 или $g' = 0.$ (31)

Решая уравнение (18) с учетом (28), (29), можно записать уравнение пространственных изображений для зеркала в виде "уравнений Ньютона"

$$(z_0 - z_F)(z_G - z_F) = f^2.$$
(32)

При этом линейное увеличение зеркала равно

$$M = \frac{f}{z_0 - z_F} = \frac{z_G - z_F}{f}.$$
 (33)

1.5. Условия пространственно-времяпролетной фокусировки

Решая систему уравнений (4) и (32) с учетом (5), (6), получим соотношение

$$z_{1,2} = z_T \pm \sqrt{(z_T - z_C)(z_T - z_V)},$$
 (34)

определяющее положения взаимосопряженных плоскостей $z = z_1$ и $z = z_2$, для которых осуществляется пространственная и времяпролетная фокусировка одновременно.

При выполнении условия

$$z_T - z_C$$
 или $z_T - z_V$, (35)

из (34) следует, что

$$z_1 = z_2 = z_T,$$
 (36)

т.е. пространственно-времяпролетная фокусировка осуществляется в одной и той же плоскости $z = z_T$.

2. Расчет трехэлектродного зеркала вращательной симметрии

Рассматриваемое зеркало (рис. 1) состоит из трех соосных цилиндров равного диаметра d, находящихся под потенциалами V_1 , V_2 , V_3 .

Режим	V_2/V_1	$-V_{3}/V_{2}$	l/d	$-z_T/d$	L/d
p'=0	0.0539	7.87	0.632	4.65	5.50
$z_F = z_T$	0.0479	7.90	0.650	5.44	6.36
$z_C = z_T$	0.0432	7.92	0.666	6.23	7.22

Таблица 1. Характеристики трехэлектродного зеркала вращательной симметрии, обусловленные *p*-решением

Таблица 2. Характеристики трехэлектродного зеркала вращательной симметрии, обусловленные *g*-решением

Режим	V_2/V_1	$-V_{3}/V_{2}$	l/d	$-z_T/d$	L/d
g' = 0	0.00932	8.45	0.932	51.7	54.4
$z_F = z_T$	0.00919	8.46	0.935	52.7	55.4
$z_V = z_T$	0.00907	8.47	0.937	53.8	56.5

Осевое распределение электростатического потенциала зеркала описывается соотношением [8]

$$\Phi(z) = \frac{1}{2} \left[(V_1 + V_3) + \sum_{i=1}^{2} (V_{i+1} - V_i) U(z - z_i) \right], \quad (37)$$

где

$$U(z - z_i) = \operatorname{sign}(z - z_i) \times \left[1 - \sum_{s=1}^{\infty} \exp\left(-2\alpha_s |z - z_i|/d\right) / \prod_{m=1}^{\infty} (1 - \alpha_s^2 / \alpha_m^2)_{s \neq m} \right].$$
(38)

Здесь z_i — координата середины *i*-го зазора между электродами, α_s , α_m — корни функции Бесселя нулевого порядка. Принято, что положительное направление оси *z* совпадает с направлением движения падающих на зеркало ионов, а начало координат помещено в середине второго зазора (между вторым и третьим электродами).

Рис. 2. Ход траекторий частиц в телескопическом режиме: a - p' = 0; b - g' = 0.

Рис. 3. Ход траекторий частиц в режиме параллель/точка ($z_T = z_F$): a - p-решение; b - g-решение.

Рис. 4. Ход траекторий частиц в режиме точка в точку: $a - z_T = z_C$; $b - z_T = z_V$.

Расчет зеркала производился следующим образом. Для заданных значений потенциала V_2 на втором (среднем) электроде и ширины l среднего электрода находились значения запирающего потенциала V_3 на третьем электроде, обеспечивающие выполнение условий времяпролетной фокусировки по энергии до третьего порядка включительно (6) для различных режимов работы зеркала.

В табл. 1 и 2 представлены соотношения геометрических и электрических параметров, определяющие различные режимы работы зеркала: 1) телескопический режим (p' = 0 или g' = 0); 2) режим параллель/точка $(z_F = z_T)$; 3) режим точка в точку $(z_C = z_T \text{ или } z_V = z_T)$.

Заметим, что в силу обратимости хода траекторий в зеркале коллиматорный режим реализуется при тех же условиях, что и режим параллель/точка.

В табл. 1 приведены результаты расчета, обусловленные *p*-решением, а в табл. 2 — результаты расчета, обусловленные *g*-решением.

Как видно из приведенных в таблицах данных, значения удельного эффективного дрейфового расстояния L/d (т.е. эффективного дрейфового расстояния в единицах характерного размера зеркала *d*-диаметра цилиндрического электрода), обусловленные решением g = g(z), значительно (почти на порядок) превышают его значения, обусловленные решением p = p(z), для всех режимов работы зеркала. Это связано с разной длиной пути ионов в зеркале и разной степенью торможения ионов на втором электроде зеркала.

Следует отметить, что безразмерная величина

$$\overline{L} = L/d \tag{39}$$

является функцией лишь осевого распределения электростатического потенциала.

С учетом (39) предельную разрешающую способность (11) можно записать в виде

$$R = \frac{L \cdot d}{\Delta z_i}.$$
 (40)

Как видно из (40), разрешающую способность массрефлектрона можно повысить либо увеличением \overline{L} при малых d, либо увеличением d при малых \overline{L} . В последнем случае мы приходим к росту габарита прибора в целом за счет увеличения его размера в поперечном направлении.

Ход траекторий частиц в трехэлектродном зеркале вращательной симметрии с времяпролетной фокусировкой по энергии до третьего порядка включительно для различных режимов его работы представлен на рис. 2–4.

Заключение

Результаты исследований показывают, что для всех рассмотренных режимов работы электростатического зеркала вращательной симметрии значения удельного эффективного дрейфового расстояния значительно отличаются в зависимости от того, каким решением обусловлены эти результаты. Это дает возможность использования высокодисперсионных зеркал вращательной симметрии для повышения разрешающей способности времяпролетных масс-рефлектронов без увеличения их общих размеров, а также для создания более компактных приборов при сохранении их разрешающей способности.

Финансирование работы

Работа выполнена при финансовой поддержке гранта № АР05132483 по программе Министерства образования и науки Республики Казахстан.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Каратаев В.И., Мамырин Б.А., Шмикк Д.В. // ЖТФ. 1971.
 Т. 41. Вып. 7. С. 1498–1501.
- [2] Назаренко Л.М., Секунова Л.М., Якушев Е.М. А.С. SU 1 725 289 A1, 1992.
- [3] *Явор М.И., Веренчиков А.Н.* // Научное приборостроение. 2004. Т. 14. № 2. С. 38–45.
- [4] Бимурзаев С.Б., Дауменов Т., Секунова Л.М., Якушев Е.М. // ЖТФ. 1983. Т. 53. С. 524–528.
- [5] Бимурзаев С.Б., Нурасылова О.С., Холодов И.А. // Вестник АУЭС. 2016. № 1. С. 36-43.
- [6] Бимурзаев С.Б., Саутбекова З.С. // Вестник АУЭС. 2018. № 4. С. 131–138.
- [7] Бимурзаев С.Б., Бимурзаева Р.С., Саркеев Б.Т. // РЭ. 1991.
 Т. 36. С. 2186-2195.
- [8] Бобыкин Б.В., Невинный Ю.А., Якушев Е.М. // ЖТФ. 1975.
 Т. 45. С. 2368–2372.