01

Анализ добротности вынужденных колебаний дробного линейного осциллятора

© Р.И. Паровик

Институт космофизических исследований и распространения радиоволн ДВО РАН, 684034 Камчатский край, с. Паратунка, Россия Камчатский государственный университет им. Витуса Беринга, 683032 Петропавловск-Камчатский, Россия e-mail: romano84@mail.ru

Поступило в Редакцию 6 июня 2019 г. В окончательной редакции 2 декабря 2019г. Принято к публикации 27 января 2020 г.

> С помощью метода гармонического баланса получены аналитические формулы для расчета амплитудночастотной и фазово-частотной характеристик, а также добротности вынужденных колебаний дробного линейного осциллятора. Установлено, что исследуемые характеристики зависят от диссипативных свойств среды — эффектов памяти, которые описываются производными дробных порядков. Показано, что дробные порядки влияют на характер затухания колебательного процесса и связаны с его добротностью. Расчетные кривые характеристик вынужденных колебаний дробного линейного осциллятора показали, что дробные порядки можно рассматривать как управляющие параметры колебательного процесса в диссипативной среде.

> Ключевые слова: добротность, амплитудно-частотная характеристика, фазово-частотная характеристика, дробные производные, память.

DOI: 10.21883/JTF.2020.07.49436.233-19

Введение

Дробные осцилляторы характеризуют колебательные процессы в диссипативных средах и рассматриваются в рамках дробной динамики [1]. С математической точки зрения дробные осцилляторы можно описать с помощью интегродифференциальных уравнений с разностными ядрами — степенными функциями памяти, которые характеризуют наследственные свойства среды, или с помощью производных дробных порядков [2]. Введение дробных производных в модельное уравнение позволяет учесть динамическую память (гистерезис), которая возникает в наследственной механике в результате диссипации энергии деформации при наличии вязкоупругости [3], а также в магнитном поле [4] или в электронике [5].

Особый интерес представляет анализ вынужденных колебаний дробных осцилляторов с целью установления связи между их характеристиками и свойствами среды — порядками дробных производных.

В работе [6] были исследованы вынужденные колебания дробного линейного осциллятора. Была выведена аналитическая формула, которая связывает порядок дробной производной в инерциальном члене с добротностью *Q*. Показано, что при больших значениях добротности результаты расчета в рамках классической и дробной моделей осциллятора практически неразличимы.

Продолжением работы [6] является настоящая работа, в которой мы исследовали дробный линейный осциллятор с учетом вязкого трения и внешнего гармонического воздействия, с помощью метода гармонического баланса получили аналитические формулы для расчета амплитудно-частотной и фазово-частотной характеристик (АЧХ и ФЧХ), а также добротности, и показали, что дробные порядки производных можно рассматривать как управляющие параметры колебательного процесса в диссипативной среде.

Модель дробного линейного осциллятора

Рассмотрим следующее модельное интегродифференциальное уравнение точечного осциллятора:

$$m_{\beta} \int_{0}^{t} K_{1}(t-\tau) \ddot{x}(\tau) d\tau + \lambda \int_{0}^{t} K_{2}(t-\tau) \dot{x}(\tau) d\tau + \sigma_{0}^{\beta} x(t) = F \cos(\omega t), \qquad (1)$$

где $K_1(t-\tau)$ и $K_2(t-\tau)$ — разностные ядра, характеризующие память (свойство среды), λ — коэффициент трения, x(t) — функция смещения, σ_0^{β} — частота собственных колебаний, f и ω — амплитуда и частота внешних гармонических колебаний, m_{β} — масса точечного осциллятора, $1 < \beta < 2$ — параметр, характеризующий степень влияния памяти в колебательной среде.

Уравнение (1) описывает точечный линейный осциллятор, который учитывает эффекты памяти как в инерциальной составляющей, так и в составляющей, отвечающей за демпфирование.

Необходимо отметить, что функции памяти могут быть произвольными и выбираются, исходя из свойств среды. Известно, что существуют два предельных случая: когда функции памяти являются δ-функциями и когда они являются функциями Хевисайда. В первом случае можно говорить об отсутствии памяти в динамической системе, а во втором случае — о полном ее наличии [7].

Мы же будем рассматривать промежуточный случай, когда функции памяти имеют степенной вид. В этой ситуации динамическая система постепенно "теряет память" о первоначальном воздействии силы, что приводит к диссипации энергии. Степенные распределения очень часто встречаются в различных областях знаний [8].

Пусть функции памяти в уравнении (1) имеют вид

$$K_{1}(t-\tau) = \frac{(t-\tau)^{1-\beta}}{\Gamma(2-\beta)}, \qquad K_{2}(t-\tau) = \frac{(t-\tau)^{-\gamma}}{\Gamma(1-\gamma)}, \\ 1 < \beta < 2, \qquad 0 < \gamma < 1.$$
(2)

Скейлинговые параметры β и γ в соотношениях (2) характеризуют интенсивность диссипации энергии в колебательной среде. Если подставить представления (2) в модельное уравнение (1) и, учитывая определения производных дробных порядков в смысле Герасимова—Капуто [9,10]

$$\partial_{0t}^{\beta} x(\tau) = \frac{1}{\Gamma(2-\beta)} \int_{0}^{t} \frac{\ddot{x}(\tau)d\tau}{(t-\tau)^{\beta-1}},$$

$$\partial_{0t}^{\gamma} x(\tau) = \frac{1}{\Gamma(1-\gamma)} \int_{0}^{t} \frac{\dot{x}(\tau)d\tau}{(t-\tau)^{\gamma}},$$
(3)

приходим к следующему уравнению:

$$\partial_{0t}^{\beta} x(\tau) + \lambda \partial_{0t}^{\gamma} x(\tau) + \omega_0^{\beta} x(t) = f \cos(\omega t), \qquad (4)$$

где $\lambda = \Lambda/m_{\beta}, f = F/m_{\beta}, \omega_0^{\beta} = \sigma_0^{\beta}/m_{\beta}.$

Уравнение (4) описывает наследственный процесс вынужденных колебаний с учетом трения. В предельном случае, когда $\beta = 2$, $\gamma = 1$ у, уравнение (4) переходит в классический гармонический осциллятор с трением и внешним гармоническим воздействием.

Для уравнения (4) в работе автора [11] были исследована задача Коши, получено ее аналитическое решение в терминах обобщенной функции Райта, построены и исследованы осциллограммы и фазовые траектории при различных значениях β и γ . В работе [12] исследованы точки покоя.

Характеристики дробного линейного осциллятора

В дальнейшем объектом нашего исследования будут установившиеся колебания дробного осциллятора (4). С помощью метода гармонического баланса мы выведем аналитические формулы для расчета амплитуды и фазы установившихся колебаний, а также добротности дробного осциллятора (4). Решение уравнения (4), согласно методу гармонического баланса, ищем в виде [13]

$$x(t) = A\cos(\omega t + \delta) = A\cos(u).$$
 (5)

С учетом (3) уравнение (4) перепишем в виде

$$\frac{1}{\Gamma(2-\beta)} \int_{0}^{t} \frac{\ddot{x}(\tau)d\tau}{(t-\tau)^{\beta-1}} + \frac{\lambda}{\Gamma(1-\gamma)} \int_{0}^{t} \frac{\dot{x}(\tau)d\tau}{(t-\tau)^{\gamma}} + \omega_{0}^{\beta}x(t) = f\cos(\omega t).$$
(6)

Тогда первое слагаемое в (4) с учетом представления (3) можно представить в виде

$$\begin{split} \frac{1}{\Gamma(2-\beta)} \int_{0}^{r} \frac{\ddot{x}(\tau)d\tau}{(t-\tau)^{\beta-1}} &= \frac{1}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta} \ddot{x}(t-v)dv \\ &= -\frac{A\omega^{2}}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta} \cos(\omega(t-v)+\delta)dv = -\frac{A\omega^{2}}{\Gamma(2-\beta)} \\ &\times \int_{0}^{t} v^{1-\beta} [\cos(\omega(t-v))\cos(\delta) - \sin(\omega(t-v))\sin(\delta)]dv \\ &= -\frac{A\omega^{2}\cos(\delta)}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta}\cos(\omega(t-v))dv \\ &+ \frac{A\omega^{2}\sin(\delta)}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta}\sin(\omega(t-v))dv \\ &= -\frac{A\omega^{2}\cos(\delta)}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta} [\cos(\omega t)\cos(\omega v) \\ &+ \sin(\omega t)\sin(\omega v)]dv + \frac{A\omega^{2}\sin(\delta)}{\Gamma(2-\beta)} \\ &\times \int_{0}^{t} v^{1-\beta} [\sin(\omega t)\cos(\omega t) - \cos(\omega t)\sin(\omega t)]dv \\ &= -\frac{A\omega^{2}\cos(\delta)\cos(\omega t)}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta}\cos(\omega v)dv \\ &- \frac{A\omega^{2}\cos(\delta)\sin(\omega t)}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta}\sin(\omega v)dv \\ &+ \frac{A\omega^{2}\sin(\delta)\sin(\omega t)}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta}\sin(\omega v)dv \\ &= \left[\sin(\delta)\sin(\omega t) - \cos(\delta)\cos(\omega t)\right] \frac{A\omega^{2}}{\Gamma(2-\beta)} \\ &\times \int_{0}^{t} v^{1-\beta}\cos(\omega v)dv - \left[\sin(\delta)\cos(\omega t) + \cos(\delta)\sin(\omega t)\right] \\ &\times \int_{0}^{t} v^{1-\beta}\cos(\omega v)dv - \left[\sin(\delta)\cos(\omega t) + \cos(\delta)\sin(\omega t)\right] \\ &\times \frac{A\omega^{2}}{\Gamma(2-\beta)} \int_{0}^{1} v^{1-\beta}\sin(\omega v)dv = \frac{-A\omega^{2}\cos(\omega)}{\Gamma(2-\beta)} \\ &\times \int_{0}^{t} v^{1-\beta}\cos(\omega v)dv - \left[\sin(\delta)\cos(\omega t) + \cos(\delta)\sin(\omega t)\right] \\ &\times \frac{A\omega^{2}}{\Gamma(2-\beta)} \int_{0}^{1} v^{1-\beta}\sin(\omega v)dv = \frac{-A\omega^{2}\cos(\omega)}{\Gamma(2-\beta)} \\ &\times \int_{0}^{t} v^{1-\beta}\cos(\omega v)dv - \frac{A\omega^{2}\sin(\omega)}{\Gamma(2-\beta)} \int_{0}^{t} v^{1-\beta}\sin(\omega v)dv. \end{aligned}$$

Журнал технической физики, 2020, том 90, вып. 7

В случае установившихся колебаний при $t \to \infty$ интегралы в (7) можно записать так [14]:

$$\int_{0}^{1} v^{1-\beta} \cos(\omega v) dv \approx \frac{\Gamma(2-\beta)}{\omega^{2-\beta}} \sin((\beta-1)\pi/2)$$
$$= -\frac{\Gamma(2-\beta)}{\omega^{2-\beta}} \cos(\beta\pi/2),$$
$$\int_{0}^{1} v^{1-\beta} \sin(\omega v) dv \approx \frac{\Gamma(2-\beta)}{\omega^{2-\beta}} \cos((\beta-1)\pi/2)$$
$$= -\frac{\Gamma(2-\beta)}{\omega^{2-\beta}} \sin(\beta\pi/2).$$

С учетом этих соотношений получим

$$\frac{1}{\Gamma(2-\beta)} \int_{0}^{\cdot} \frac{\ddot{x}(\tau)d\tau}{(t-\tau)^{\beta-1}}$$

$$\approx A\omega^{\beta} \left(\cos(u)\cos(\beta\pi/2) - \sin(u)\sin(\beta\pi/2)\right). \tag{8}$$

Аналогично второе слагаемое в (4) будет иметь вид

$$\frac{\lambda}{\Gamma(1-\gamma)} \int_{0}^{1} \frac{\dot{x}(\tau)d\tau}{(t-\tau)^{\gamma}} \approx \lambda a \omega^{\gamma} \\ \times \left(\cos(\gamma \pi/2) \cos(u) - \sin(\gamma \pi/2) \sin(u) \right).$$
(9)

С учетом (8), (9) и (5) уравнение (6) перепишем в виде

$$A\omega^{\beta} \left(\cos(u) \cos(\beta \pi/2) - \sin(u) \sin(\beta \pi/2) \right) + \lambda A\omega^{\gamma} \left(\cos(\gamma \pi/2) \cos(u) - \sin(\gamma \pi/2) \sin(u) \right) + \omega_{0}^{A} A \cos(u) = f \cos(\omega t).$$
(10)

Примем во внимание, что $\dot{x}(t) = -A\omega \sin(u)$, $\ddot{x}(t) = -A\omega^2 \cos(u)$ поэтому уравнение (10) можно представить в следующей форме:

$$m\ddot{x}(t) + p\dot{x}(t) + s^2 x(t) = f\cos(\omega t), \qquad (11)$$

где

$$\begin{split} m &= -\omega^{\beta-2}\cos(\beta\pi/2),\\ p &= \omega^{\beta-1}\sin(\beta\pi/2) + \lambda\omega^{\gamma-1}\sin(\gamma\pi/2),\\ s^2 &= \omega_0^\beta + \lambda\omega^\gamma\cos(\gamma\pi/2). \end{split}$$

Отметим, что уравнение (11) представляет собой классический линейный осциллятор с трением и внешним гармоническим воздействием, для которого известны соотношения для АЧХ и ФЧХ характеристик:

$$A = \frac{f}{\sqrt{U^2 + W^2}}, \qquad \delta = \arctan\left(-\frac{W}{U}\right), \qquad (12)$$

где $U = s^2 - \omega^2 m$, $W = \omega p$.

Журнал технической физики, 2020, том 90, вып. 7

Формулы (12) для АЧХ и ФЧХ можно переписать следующим образом:

$$A = \frac{f}{\sqrt{\omega^{2\beta} + \omega_0^{2\beta} + \lambda \omega^{\gamma} (\lambda \omega^{\gamma} + 2\omega^{\gamma} \cos((\beta - \gamma)\pi/2) + 2\omega_0^{\beta} \cos(\gamma\pi/2)) + 2\omega_0^{\beta} \omega^{\beta} \cos(\beta\pi/2)}},$$
(13)

$$\delta = \arctan\left(-\frac{\left(\omega^{\beta}\sin(\beta\pi/2) + \lambda\omega^{\gamma}\sin(\gamma\pi/2)\right)}{\omega_{0}^{\beta} + \lambda\omega^{\gamma}\cos(\gamma\pi/2) + \omega^{\beta}\cos(\beta\pi/2)}\right).$$

Отметим, что в частном случае в (13), когда $\beta = 2\gamma$, $\lambda = 2b^{\gamma}$, мы приходим к формулам (14) и (15) из работы [15] с учетом $\phi = 0$. Также заметим, что при $\lambda = 0$ в (13) мы приходим к формулам (4) и (7), полученным в работе [6].

Добротность Q дробного линейного осциллятора (4) можно определить, согласно уравнению (9), из соотношения

$$Q = \frac{s}{p} = \frac{\sqrt{\omega_0 \beta} + \lambda \omega^{\gamma} \cos(\gamma \pi/2)}{\omega^{\beta - 1} \sin(\beta \pi/2) + \lambda \omega^{\gamma - 1} \sin(\gamma \pi/2)}.$$
 (14)

Из формулы (14) следует, что добротность Q зависит от дробных параметров β и γ .

В работе [6] была выведена формула при отсутствии трения ($\lambda = 0$), которая связывала дробный порядок производной в инерциальной составляющей колебательного процесса и его добротность. Далее было показано, что при уменьшении значений дробного показателя, добротность Q уменьшается и, следовательно, колебательный процесс быстрее затухает. Подтвердим с помощью формул (13) и (14) ранее полученные результаты и покажем, что при уменьшении значений дробного порядка производной в диссипативном члене происходит увеличении добротности Q.

Результаты расчетов характеристик

В аналитических формулах (13) и (14) для простоты мы положим: $\lambda = 0.15$, f = 0.5, $\omega_0^{\beta} = m_{\beta} = 1$. Результаты расчетов приведены на рис. 1–3.

На рис. 1 при фиксированном значении $\gamma = 1$ и различных значениях параметра β построены расчетные кривые АЧХ и ФЧХ дробного линейного осциллятора (4).

Кривые АЧХ или резонансные кривые характеризуются резонансной частотой ω_R и соответствующей ей максимальной амплитудой A_R , которые можно найти из решения уравнения $dA/d\omega = 0$ с учетом формулы (13). Из рис. 1, *a* а мы получим для кривой $1 - \omega_r = 0.994$, $A_R = 6.685$, для кривой $2 - \omega_R = 0.936$, $A_R = 2.177$, для кривой $3 - \omega_R = 0.7969$, $A_R = 1.218$. Из полученных значений ω_R следует, что резонансная частота смещается в область низших частот, а максимальная амплитуда, которая ей соответствует, уменьшается. Поэтому добротность Q определяет ширину резонансной кривой. И, следовательно, как видно на рис. 1, *a*, при

Рис. 1. АЧХ (*a*) и ФЧХ (*b*), полученные по формулам (13) при $\gamma = 1$, в зависимости от значений параметра β : кривая 1 - 2; кривая 2 - 1.8; кривая 3 - 1.6.

Рис. 2. АЧХ (*a*) и ФЧХ (*b*), полученные по формулам (13) при $\beta = 1.9$, в зависимости от значений параметра γ : кривая 1 - 1; кривая 2 - 0.4; кривая 3 - 0.2.

уменьшении значений параметра $\beta \to 1$, добротность Q уменьшается, и колебания быстрее затухают.

На рис. 1, b приведен фазовый сдвиг — запаздывание смещения x(t) по фазе от внешней силы в зависимости от различных значений β . В классическом случае ($\beta = 2$) предельная величина фазового сдвига при $\omega \to \infty$ составляет $-\pi$. При уменьшении значений $\beta \to 1$ величина фазового сдвига уменьшается. Необходимо отметить, что расчетные кривые АЧХ и ФЧХ перегруппировываются со временем в обратный порядок, что характерно для эффекта памяти.

На рис. 2 приведены расчетные кривые АЧХ и ФЧХ при фиксированном значении $\beta = 1.9$ и различных значениях параметра γ .

На рис. 2, а для резонансных кривых были рассчитаны по формуле (13) параметры ω_R и A_R : для кривой $1 - \omega_R = 0.974$, для кривой $2 - \omega_R = 1.001$, $A_R = 3.587$, для кривой $3 - \omega_R = 0.999$, $A_R = 3.918$. Мы видим, что резонансная частота ω_r принимает значения, близкие к единице, а максимальная амплитуда A_R увеличивается. Поэтому мы можем сделать вывод о том, что при $\gamma \to 0$ добротность Q увеличивается.

При фазовый сдвиг имеет примерно одинаковую величину (рис. 2, *b*).

На рис. 3 приведена поверхность, полученная по формуле (14) для добротности $Q(\beta, \gamma)$. Мы видим, что добротность будет увеличиваться при уменьшении

Рис. 3. Поверхность, характеризующая добротность Q дробного осциллятора (4), в зависимости от значений параметров β и γ , полученная по формуле (14).

параметра γ и уменьшаться при уменьшении параметра β , что подтверждает анализ расчетных кривых АЧХ и ФЧХ на рис. 1 и 2.

Заключение

В работе получены методом гармонического баланса аналитические формулы для расчета АЧХ, ФЧХ и добротности Q дробного линейного осциллятора (4). Эти характеристики колебательного процесса с памятью зависят от порядков β и γ дробных производных, которые входят в модельное уравнение (4). Анализ характеристик показал, что при уменьшении параметра $\beta \rightarrow 1$ происходит уменьшение добротности Q, а при уменьшении параметра $\gamma \rightarrow 0$, наоборот, происходит увеличение добротности Q. Параметры β и γ характеризируют интенсивность диссипации энергии колебательной системы. Поэтому, если мы рассматриваем колебательный процесс, в котором хотим учесть трение, то это можно сделать не только с помощью дополнительного слагаемого, отвечающего за демпфирование, но и с помощью дробной силы инерции с параметром β .

Финансирование работы

Работа выполнена при финансовой поддержке гранта президента РФ № МК-1152.2018.1.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- Petras I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Beijing and Springer-Verlag, Berlin Heidelberg: Springer, 2011. 218 p.
- [2] *Parovik R.I.* // Вестник Южно-Уральского гос. ун-та. Сер.: Математическое моделирование и программирование. 2018. Т. 11. № 2. С. 108–122.
- [3] Caputo M., Carcione J.M. // Rheol Acta. 2011. N 50.
 P. 107–115. DOI: 10.1007/s00397-010-0524-z
- Mankin R., Laas K., Laas T., Paekivi S. / Phys. Rev. E. 2018.
 Vol. 97. P. 012145. DOI: 10.1103/PhysRevE.97.012145
- [5] Kumar S., Gupta M., Kumar D. // Intern. J. Electron. 2019.
 Vol. 106. N 4. P. 581–598.
 DOI: 10.1080/00207217.2018.1545260
- [6] Pskhu A.V., Rekhviashvili S.S. // Tech. Phys. Lett. 2018.
 Vol. 44. N 12. P. 1218–1221.
 DOI: 10.1134/S1063785019010164
- [7] *Бутенков С.А.* // Известия Южного федерального ун-та. Техснические науки. 2011. Т. 121. № 8. С. 199–209.
- [8] Schroeder M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. NY:: W.H. Freeman, 1991.
- [9] Герасимов А.Н. // АН СССР. Прикладная математика и механика. 1948. Т. 12. С. 529–539.
- [10] *Caputo M.* Elasticit'a e dissipazione. Bologna: Zanichelli, 1969. 150 p.
- [11] Паровик Р.И. // Компьютерные исследования и моделирование. 2015. Т. 7. № 5. С. 1001–1022.
- Parovik R.I. Research of the stability of some hereditary dynamic system. IOP Conf. Series: J. Physics: Conf. Series. 2018. Vol. 1141. P. 012179.
 DOI: 10.1088/1742-6596/1141/1/012179
- [13] Li S., Niu J., Li X. // Chin. Phys. B. 2018. Vol. 27. N 12.
 P. 120502. DOI: 10.1088/1674-1056/27/12/120502
- [14] Kilbas A.A. Theory and Applications of Fractional Differential Equations / A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Amsterdam: Elsevier, 2006.
- [15] Olivar-Romero F., Rosas-Ortiz O. Fractional Driven Damped Oscillator. IOP Conf. Series: J. Physics: Conf. Series. 2017. N 839. P. 012010.
 DOI: 10.1088/1742-6596/839/1/012010