Метастабильные состояния в структурах с квантовыми ямами на основе InGaN/GaN, легированных Sm, Eu, Eu + Sm

© М.М. Мездрогина[¶], Ю.В. Кожанова*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Санкт-Петербургский государственный политехнический университет, 195021 Санкт-Петербург, Россия

(Получена 4 июня 2012 г. Принята к печати 15 июня 2012 г.)

На основании измерений спектров микрофотолюминесценции структур с квантовыми ямами на основе InGaN/GaN \langle Sm \rangle , InGaN/GaN \langle Eu \rangle показано, что воздействие магнитного поля приводит к реализации ванфлековского парамагнетизма для Eu³⁺ и Sm³⁺. После измерений спектров микрофотолюминесценции структур с квантовыми ямами на основе InGaN/GaN, легированных Sm, Eu + Sm, при высоком уровне возбуждения (более 10^{23} фотон/(см²·c)), в магнитных полях, во вновь измеренных спектрах макрофотолюминесценции отсутствовали линии излучения из квантовых ям, имеющиеся в ранее измеренных спектрах макрофотолюминесценции несценции. Это свидетельствует о наличии фотоиндуцированных дефектов. Отжиг исследованных структур InGaN/GaN \langle Sm \rangle , InGaN \langle Eu + Sm \rangle приводит к уменьшению концентрации фотоиндуцированных дефектов.

1. Введение

Структуры с множественными квантовыми ямами (MQW) на основе InGaN/GaN интенсивно исследуются в настоящее время вследствие широкого использования их в качестве светоизлучающих приборов, в перспективе — в качестве структур для светодиодов и в качестве материала для фотонных кристаллов. Известно, что при использовании структур для светодиодов следует учитывать воздействие больших интенсивностей возбуждения, что может приводить к изменению механизмов формирования спектров излучения и изменению деградационной стойкости структур. Исследование воздействия магнитных полей на формирование спектров излучения актуально при использовании структур как материала для фотонных кристаллов.

В результате интенсивных исследований механизмов формирования спектров излучения в структурах с MQW на основе InGaN/GaN показано, что основной вклад в излучение вносят локализованные состояния различных типов. Кроме того, в формировании спектров излучения участвуют ансамбли метастабильных состояний [1,2], обладающих различными временами жизни локализованных на них носителей. Показано, что наличие встроенных полей способствует пространственному разделению носителей, т. е. локализации и делокализации носителей на флуктуациях границ, появление которых вызвано различными причинами. Были исследованы метастабильные состояния в структурах на основе несвязанных квантовых ям InGaN/GaN.

Структуры с MQW на основе InGaN/GaN, легированные редкоземельными металлами (P3M), имеющие сочетание атомных характеристик поведения электронов в редкоземельных ионах, с одной стороны, и коллективного поведения носителей в наноструктурах, с другой стороны, являются перспективным объектом исследований не только с теоретической, но и с практической точек зрения.

Цель работы — исследование влияния интенсивной засветки при измерениях микрофотолюминесценции (микроФЛ), а также последующего отжига на формирование спектра макрофотолюминесценции (макроФЛ) структур с MQW на основе InGaN/GaN, легированных Eu, Sm, Eu + Sm.

2. Эксперимент

В качестве объекта исследований использовали структуры с множественными квантовыми ямами, полученные методом разложения металлорганических смесей. Структуры представляют собой набор из 5 квантовых ям GaN/In_xGa_{1-x}N (0.1 < x < 0.4), выращенных на подложке из сапфира. Ширина квантовых ям составляет ~ 2.0–2.5 нм, с барьером шириной ~ 7 нм [1,2]. В данной работе исследовались структуры с большой величиной интенсивности излучения, малой величиной полной ширины спектральной линии на полувысоте FWHM (FWHM = 30–60 мэВ), с максимумом длины волны излучения λ = 410–440 нм.

При легировании данных структур РЗМ Еu, Sm, Eu + Sm использовался метод диффузии, как в работе [3]. Максимальная концентрация легирующей примеси не превышала концентрацию фоновых примесей. Состав и относительная концентрация фоновых примесей определялись с помощью рентгеновской флуоресценции на установке X-Apt M при T = 300 K.

Локальное окружение, зарядовое состояние примесей Еи и Sm определялось с помощью мёссбауэровской спектроскопии на спектрометре SM 4201TERLAB при T = 300 K. Зарядовое состояние Eu в исследованных структурах было в основном Eu³⁺, малая часть примеси Еи имела зарядовое состояние Eu²⁺. Другая примесь — Sm имела лишь одно зарядовое состояние — Sm³⁺.

[¶] E-mail: Margaret.M@mail.ioffe.ru

При измерении спектров микроФЛ использовался лазер с $\lambda = 266$ нм, диаметр пятна 2 мкм, мощность 5 мВт, плотность возбуждения $W = 8 \cdot 10^{23} \phi$ отон $\cdot c/cm^2$ – высокий уровень возбуждения для микроФЛ. Низкий уровень возбуждения обеспечивался значением плотности ($W = 3.52 \cdot 10^{22}$ фотон $\cdot c/cm^2$, а высокий — величиной 3.52 · 10²³ фотон · с/см². При измерениях спектров макроФЛ высокий уровень возбуждения достигался при $W = 3.52 \cdot 10^{20}$ фотон $\cdot c/cm^2$. Таким образом, высокий и низкий уровни возбуждения при измерениях микроФЛ отличались на один порядок величины, а при измерениях макроФЛ при высоком уровне возбуждения по сравнению с высоким уровнем возбуждения при измерениях микроФЛ — на 3 порядка. Число электронно-дырочных пар для микроФЛ составляет $N_{eh} \approx 10^{16}$, для макро- $\Phi \Pi - 10^{13}$.

Измерения спектра микроФЛ в магнитном поле проводили в геометрии Фарадея, магнитное поле создавалось сверхпроводящим соленоидом. Величину напряженности внешнего магнитного поля варьировали от 0 до 5 Тл, температуру измерения — от 4.2 до 78 К. Измерения спектров макроФЛ проводились на экспериментальной установке, собранной на базе дифракционного спектрометра СДЛ-2 с обратной линейной дисперсией 1.3 нм/мм. В качестве источника излучения, возбуждающего фотолюминесценцию, использовалось несколько типов лазеров. Для возбуждения фотолюминесценции в стационарном режиме:

1) непрерывный He–Cd-лазер с длиной волны излучения $\lambda = 3250$ Å и мощностью излучения 15 мВт (межзонное возбуждение GaN);

2) импульсный азотный лазер типа ЛГИ-21 с длительностью импульса $\tau = 7$ нс на полуширине импульса, частотой следования 100 Гц, средней мощностью 3 мВт и длиной волны излучения $\lambda = 3371$ Å. Плотность энергии в импульсе при расфокусированном пучке составляла ~ 10 кВт/см².

Для корректного сравнения спектров излучения разных образцов контролируемые параметры — угол падения луча, интенсивность возбуждающего света, температура (300, 77 K) были постоянными.

Отжиг структур проводился после измерений спектров микроФЛ, затем макроФЛ. После отжига вновь измеряли спектры макроФЛ. Режимы отжига: температура отжига $T_a = 1020 - 1040^{\circ}$ С, время отжига — $t_a = 1$ ч, атмосфера — Аг.

Далее структуры обозначены:

— нелегированные структуры InGaN/GaN — образец 1;

— легированные Eu с максимальной концентрацией примеси структуры InGaN/GaN \langle Eu \rangle — образец 2;

— легированные Eu структуры и затем протравленные с целью уменьшения концентрации легирующей примеси InGaN/GaN (Eu) — образец 3;

— легированные Sm структуры InGaN/GaN — образец 4;

— легированные Eu + Sm с равными концентрациями примесей, с одинаковыми постростовыми режимами отжига структуры InGaN/GaN \langle Eu + Sm \rangle — образец 5;

— структуры InGaN/GaN \langle Eu + Sm \rangle с различными концентрациями примесей Eu и Sm — образец 6 вследствие изменения режима постростовой обработки.

3. Экспериментальные данные

На рис. 1 представлен спектр макроФЛ при T = 77 К, возбуждение He—Cd-лазером для нелегированной (образец 1, рис. 1, кривая 1), для легированной Eu структуры InGaN/GaN (образец 2, рис. 1, кривая 2). На вставке вид мёссбауэровского спектра легированной Eu структуры (образец 2). Из рис. 1 видно, что легирование структуры InGaN/GaN европием привело к изменению вида спектра ФЛ: уменьшению интенсивности излучения, сдвигу максимума длины волны излучения в длинноволновую область спектра. На мёссбауэровском спектре структуры видно, что большая часть примеси Eu находится в зарядовом состоянии 3⁺, но в то же время часть примеси Eu находится в зарядовом состоянии 2⁺.

В работах [1,4] показано, что в структурах $In_xGa_{1-x}N/GaN$ пространственное расположение легирующей примеси Eu — в слое *n*- GaN.

Известно, что примесный ион Eu [5] в зарядовом состоянии Eu²⁺ в полупроводниковой матрице *n*-GaN

Рис. 2. Влияние напряженности магнитного поля (*B*), температуры измерений (*T*) на вид спектра микрофотолюминесценции структуры 1, $\lambda = 266$ нм; *a*, *b* — при низком, *c* — при высоком уровне возбуждения и температурах *T*, K: *a*, *c* — 4.5; *b* — 78; в магнитном поле *B*, Тл: *a*, *b* — 0 (кривые 1), 3 (кривые 2) и 5 (кривые 3), *c* — *B*, Тл: 0 (кривая 1), 5 (кривая 2).

проявляет магнитные свойства. Вид кривой и величина намагниченности зависят от величины напряженности внешнего приложенного магнитного поля. Так как бо́льшая часть примеси находится в зарядовом состоянии 3⁺, то увеличение напряженности магнитного поля должно приводить к появлению магнитного момента примеси, следовательно, к изменению механизма миграции носителей.

Влияние увеличения напряженности магнитного поля на вид спектра микро ФЛ в диапазоне 380 < λ < 460 нм структуры 1 представлено на рис. 2, *a*, *b* при температурах 4.5 и 78 K соответственно, при низких уровнях возбуждения. Как видно из рис. 2, а, полоса излучения состоит из 2 пиков: $\lambda \approx 410$ и 416 нм. Было показано, что в структурах с MQW InGaN/GaN, аналогичных по дизайну и архитектуре исследуемым в данной работе, пик $\lambda \approx 416$ нм соответствует излучению из ямы, ближайшей к p-n-переходу, а излучение с $\lambda \approx 410$ нм появляется вследствие наличия остальных ям [6]. При увеличении напряженности магнитного поля вид спектра микроФЛ структуры 1 при $T = 4.5 \,\mathrm{K}$ не меняется. При увеличении температуры измерения до T = 78 K (рис. 2, b) в той же области спектра (380 < λ < 460 нм) и увеличении напряженности приложенного магнитного поля для структуры 1 при том же низком уровне возбуждения $(W = 3.52 \cdot 10^{22} \phi$ отон · с/см²) наблюдается уменьшение интенсивности излучения пика $\lambda \approx 410$ нм, незначительное увеличение интенсивности излучения $\lambda \approx 416$ нм, при этом положение максимума и величина FWHM существенно не меняются. Таким образом, при низком уровне возбуждения изменения температуры измерения и магнитного поля не внесли существенных изменений в формирование спектра излучения структуры 1.

На рис. 2, с представлены зависимости вида спектра ФЛ структуры 1 от изменения напряженности магнитного поля при высоком уровне возбуждения до $W = 3.52 \cdot 10^{23}$ фотон $\cdot c/cm^2$ и изменении напряженности магнитного поля, при температуре T = 4.5 K. Видно, что увеличение интенсивности возбуждения (более чем на порядок величины) приводит к существенному изменению вида спектра микроФЛ: существенному увеличению интенсивности излучения; положение максимума смещается в длинноволновую область $\lambda = 416$ нм, т.е. возрастает интенсивность излучения вклада ямы, ближайшей к *p*-*n*-переходу, с одновременным увеличением вклада остальных ям в формирование спектра излучения. Спектр становится неоднородно уширенным с наличием 2 максимумов. Увеличение величины напряженности магнитного поля от 0 до 5 Тл привело к уменьшению интенсивности излучения (14%), при этом вид спектра микроФЛ практически не изменился.

Для структуры 2 на рис. 3, *а* приведены зависимости изменения вида спектра микроФЛ (интенсивности излучения и величины FWHM) при варьировании величины напряженности магнитного поля и температуры измерения при высоком уровне возбуждения *W* до $3.52 \cdot 10^{23}$ фотон · с/см². Увеличение напряженности магнитного поля до B = 5 Гл при T = 4.0 К приводит к уменьшению интенсивности излучения (21%). Величина FWHM при этом практически не меняется.

Увеличение температуры до T = 78 К и увеличение напряженности магнитного поля до 5 Тл привели к более существенному уменьшению интенсивности излучения (34.6%) и уменьшению величины FWHM. Это обстоятельство связано с тем, что примесные центры Еи играют основную роль в формировании спектра ФЛ (уменьшение концентрации центров излучательной рекомбинации, приводящее к уменьшению величины FWHM). При увеличении температуры измерения от

Рис. 3. Влияние напряженности магнитного поля *B* на вид спектра микрофотолюминесценции ($\lambda = 266$ нм) структуры 2: на интенсивность излучения и величину FWHM (*a*), и только на интенсивность излучения (*b*, *c*) при высоком уровне возбуждения и температурах 4.0 и 78 К. *a* — в области спектра $380 < \lambda < 460$ нм. *B*, Тл и FWHM, мэВ: *I* — 0 и 15.7, *2* — 3 и 15.1, *3* — 5 и 15.4, *4* — 0 и 15.1, *5* — 5 и 12.1; температура, К: 4.0 (*I*-3) и 78 (*4*, 5); *b* — то же, что на рис. 3, *a*, только для интенсивности излучения в области спектра $680 < \lambda < 760$ нм. *B*, Тл: *I*, *4* — 0, *2* — 3, *3* — 5, *5* — 4; температура К: 4.0 (*I*-3) и 78 (*4*, 5). *c* — то же, что на рис. 3, *b*, в области спектра $680 < \lambda < 760$ нм. *B*, Тл: *I*, *3* — 0; *2*, *4* — 4; температура, К: 4.0 (*I*, 2) и 78 (*3*, 4).

T = 4.0 K до T = 78 K наличие магнитного поля приводит к более существенному уменьшению интенсивности излучения — 21 и 34.6%, по всей вероятности, вследствие взаимодействия примесных центров, являющихся пара-и ферромагнитными, с носителями из квантовых ям. Одновременно с изменениями величины интенсивности излучения (по сравнению с нелегированной структурой 1) в легированной Еu структуре 2 InGaN/GaN наблюдается незначительное увеличение максимума длины волны излучения до $\lambda = 417.65$ нм, т.е. по сравнению с нелегированной структурой наблюдается сдвиг максимума в длинноволновую область спектра. Интенсивность излучения полосы $\lambda \approx 410$ нм меньше, чем в нелегированной структуре при том же уровне возбуждения.

В длинноволновой области спектра (680 < λ < 770 нм) увеличение напряженности магнитного поля при T = 4.0 К не приводит к какому-либо изменению вида спектра микроФЛ (рис. 3, b), хотя спектр представляет собой 4 полосы излучения. Наиболее интенсивные из них — полосы излучения с максимумом $\lambda_{\text{max}} = 696.708$ нм, вероятно, связанные с наличием излучения внутрицентровых переходов f - f, характерных для Eu³⁺. Предположение, сделанное в работе [4], о том, что в достаточно совершенных структурах с MQW на основе InGaN/GaN в процессе миграции возбуждения происходит перенос неравновесных носителей на атомные уровни ${}^5D_2 - {}^5D_0$ иона Eu, подтверждается и данными измерений микроФЛ при высоком уровне возбуждения.

Увеличение температуры измерения до T = 78 K приводит к существенному изменению вида спектра — уменьшению интенсивности излучения — вне зависимости от величины напряженности магнитного поля (рис. 3, b), хотя величина интенсивности излучения незначительно увеличивается в диапазоне 720 < λ < 760 нм. В более длинноволновой области спектра 790 < λ < 860 нм при T = 4.0 К (рис. 3, c, кривая 1 - B = 0, кривая 2 - B = 5 Тл) спектр микроФЛ неоднородно уширен, увеличение напряженности магнитного поля приводит к изменению вида спектра, к уменьшению интенсивности излучения. При увеличении температуры измерения до 78 К (рис. 3, с), увеличение напряженности магнитного поля не приводит к изменению вида спектра микроФЛ, но приводит к уменьшению интенсивности излучения.

Таким образом, для легированной структуры 2 InGaN/GaN $\langle Eu \rangle$ в спектре микроФЛ имеется интенсивное излучение в коротковолновой области спектра $\lambda_{max} = 417.65$ нм. В длинноволновой области спектра $680 < \lambda < 770$ нм, с вероятным наличием излучения внутрицентровых 4f-переходов примесного иона Eu, с наличием излучения в длинноволновой области $790 < \lambda < 860$ нм, интенсивность излучения незначительно зависит от температуры измерения T = 4.0 или 78 К.

Спектры микроФЛ (380 < λ < 450 нм) структур InGaN/GaN (Eu) 3 (с целью уменьшения концентрации примесного иона с протравленным слоем Eu) при

T = 4.6 К приведены на рис. 4. Для структуры 3 увеличение напряженности магнитного поля до 5 Тл приводит к уменьшению интенсивности излучения (14%). Максимум длины волны излучения сдвигается в длинноволновую область спектра ($\lambda = 425$ нм) по сравнению с длиной волны максимума излучения нелегированной структуры 1 более чем на 10 нм и одновременно появляется с меньшей интенсивностью полоса с $\lambda = 433$ нм. При увеличении температуры измерения до T = 78 К в спектре микроФЛ структуры 3 InGaN/GaN/Eu/ (рис. 4, *a*) наблюдается уменьшение интенсивности излучения, вид

Рис. 4. Влияние напряженности магнитного поля (*B*) на вид спектра микроФл ($\lambda = 266$ нм) структуры 3: интенсивность излучения и величину FWHM, в области спектра $380 < \lambda < 460$ нм при высоком уровне возбуждения и температурах 4.6 (*a*) и 78 K (*b*). *B*, Тл, FWHM, мэВ: (*a*) *1* — 0 и 13.3, *2* — 3 и 13.1, *3* — 5 и 12.7. (*b*) *1* — 0 и 13.4, *2* — 3 и 13.1, *3* — 5 и 13.6.

Физика и техника полупроводников, 2013, том 47, вып. 4

Рис. 5. Спектры макроФЛ нелегированной (образец 1) и легированной Sm структуры 4 InGaN/GaN, возбуждение He–Cdлазером ($\lambda = 325$ нм), T = 78 K: a — в области спектра $380 < \lambda < 460$ нм, $\lambda_{max} = 436.4$ нм, b — спектр макроФЛ для длинноволновой области $680 < \lambda < 760$ нм, c — мёссбауэровские спектры легированной Sm двух различных областей структуры 4 (T = 295 K).

спектра микро ФЛ при этом не меняется, а уменьшение интенсивности излучения при увеличении напряженности магнитного поля до 5 Тл составляет 10%. При увеличении температуры, изменении напряженности магнитного поля величина FWHM меняется незначительно. По сравнению с видом спектра микроФЛ структуры 2 InGaN/GaN/Eu> (рис. 3, *a*, в той же области спектра) с большей концентрацией Еu видно, что уменьшение концентрации Eu привело к существенному изменению вида спектра: увеличению интенсивности излучения, сдвигу λ_{max} в длинноволновую область спектра, появлению полосы $\lambda = 433$ нм.

Влияние других легирующих примесей: Sm, Eu + Sm представлено на следующих рисунках.

На рис. 5 представлен спектр макроФЛ легированной Sm структуры 4 InGaN/GaN $\langle Eu \rangle$ при T = 78 K, возбуждение непрерывным He–Cd-лазером; рис. 5, a в коротковолновой области спектра с характерной для излучения из квантовых ям полосой излучения с $\lambda_{max} = 436.3$ нм. На рис. 5, b — спектр ФЛ для длинноволновой области спектра, на рис. 5, c представлен вид мёссбауэровских спектров легированных Sm двух областей структуры 4.

В работе [4] было показано, что нелегированные структуры InGaN/GaN, имеющие большую интенсивность излучения, малую величину FWHM (28 < FWHM < 82 мэВ), как правило, имеют малые величины интенсивности излучения в длинноволновой желто-зеленой области спектра (500 < λ < 600 нм). Структура 4, исследуемая в данной работе, имеет интенсивную полосу излучения в этой области, что связано с влиянием легирования РЗИ на формирование спектров макроФЛ. В длинноволновой области спектра (680 < λ < 720 нм) имеется полоса излучения с $\lambda_{max} = 688.5$ нм, что можно связать с рекомбинацией типа "глубокий донор"-"мелкий акцептор". Имеется, с незначительной интенсивностью, излучение с $\lambda_{max} = 715.2$ нм, что соответствует внутрицентровым 4*f*-переходам Sm: ${}^{4}G_{5/2} - {}^{6}H_{11/2}$.

На рис. 5, с представлены два мёссбауэровских спектра Sm^{3+} , измеренных в разных областях структуры 4, незначительно отличающихся друг от друга вследствие различия пространственного распределения и типа структурных неоднородностей, как правило, имеющихся в структурах с MQW на основе InGaN/GaN [4].

На мёссбауэровских спектрах (неоднородно уширенных, см. рис. 5) виден один максимум, соответствующий зарядовому состоянию Sm³⁺, симметрия локального окружения близка к тетраэдрической.

Ранее было показано, что пространственное расположение легирующих примесей РЗИ находится в барьерном слое GaN структур с MQW на основе InGaN/GaN [7].

Как правило, интенсивность излучения с $\lambda_{\max} = 715.2$ нм, соответствующая внутрицентровым 4*f*-переходам Sm, значительно больше в слоях GaN, выращенных MOCVD, а в слоях, выращенных методом

хлорид-гидридного эпитаксиального роста (HVPE), с большей концентрацией дефектов, интенсивность излучения с данной длиной волны была незначительной. Таким образом, РЗИ можно рассматривать как оптический зонд, характеризующий совершенство структуры, в частности, барьерного слоя *n*-GaN.

Влияние увеличения напряженности магнитного поля при низком уровне возбуждения (W = $= 10^{22}$ фотон $\cdot c/cm^2$) на спектра микроФЛ вид в диапазоне (380 < λ < 460) нм легированной Sm структуры InGaN/GaN(Sm) (образец 4) представлено на рис. 6 при T = 4.5 К. Как видно из рис. 6 (кривая 1), вид спектра ФЛ структуры 4 в отсутствие магнитного поля состоит из двух полос излучения с 2 пиками: $\lambda_1 = 432$ нм с большей величиной интенсивности излучения и $\lambda_2 = 441.6$ нм с существенно меньшей величиной интенсивности излучения. Таким образом, по сравнению со

Рис. 6. Влияние напряженности магнитного поля при низком уровне возбуждения на вид спектра ($\lambda = 266$ нм) микроФЛ (380 < λ < 460 нм) структуры InGaN/GaN(Sm) 4, *B*, Тл: кривая I - 0, кривая 2 - 5 при T = 4.6 К.

Рис. 7. Влияние уровня возбуждения и напряженности магнитного поля при T = 4.6 K на вид спектра ($\lambda = 266$ нм) микроФЛ структуры InGaN/GaN \langle Sm \rangle 4 при большом уровне интенсивности возбуждения. *B*, Тл: кривая 1 - 0, кривая 2 - 5.

спектром макроФЛ структуры в спектре микроФЛ при увеличении напряженности магнитного поля имеет место сдвиг в коротковолновую область спектра на 4.4 нм и появление второго пика излучения с $\lambda_2 = 441.6$ нм.

В структуре 4 не наблюдается изменения в положении λ_{\max} при варьировании напряженности магнитного поля (0 < B < 5 Тл). В то же время величина интенсивности излучения (I) увеличивается при возрастании напряженности магнитного поля до B = 5 Тл, а величина FWHM не существенно меняется. Таким образом, при данном уровне возбуждения и температуре измерения T = 4.6 К изменения напряженности магнитного поля привели к увеличению I в спектре микроФЛ структуры 4.

На рис. 7 представлены зависимости вида спектра микроФЛ той же структуры InGaN/GaN(Sm) 4 при большем уровне интенсивности возбуждения (W = $= 0.7 \cdot 10^{23}$ фотон $\cdot c/cm^2$), при таком же уровне, как в предыдущем случае, изменения напряженности магнитного поля (0 < B < 5 Tл), при T = 4.6 K. Видно, что увеличение интенсивности возбуждения приводит к существенному изменению вида спектра микроФЛ: существенному увеличению I, изменению положения λ_{max} : $\lambda_1 = 425$ нм и $\lambda_2 = 430$ нм, с практически равными интенсивностями излучения. По сравнению с видом спектра микроФЛ при меньшем уровне возбуждения имеет место еще больший сдвиг излучения в коротковолновую область спектра, что может быть проиллючтрировано сопоставлением значений для длин волн излучения. при макроФЛ = 436.4 нм, для микроФл малом уровне возбуждения 432 и 441.6 нм и при увеличении интенсивности возбуждения в микроФЛ — 425 и 430 нм.

Таким образом, при увеличении интенсивности возбуждения формирование спектра микроФЛ: положение линий, увеличение интенсивности излучения определяются не только вкладом ямы, ближайшей к *p*-*n*переходу, но и вследствие вклада остальных ям в формирование спектра, что приводит к возрастанию интенсивности излучения. Спектр микроФЛ становится неоднородно уширенным с наличием 2 пиков с практически одинаковой интенсивностью излучения. Увеличение интенсивности возбуждения и увеличение величины напряженности магнитного поля от 0 до 5 Тл не привело к уменьшению интенсивности излучения, как имело место в случае структур, легированных Еи, которые были рассмотрены выше. При сравнении вида спектров микроФЛ (рис. 6 и 7) при разных уровнях возбуждения, но при одинаковых изменениях напряженности магнитного поля (0 < B < 5 Тл) и одинаковой температуре измерений (T = 4.6 K), видно, что увеличение интенсивности возбуждения дополнительно приводит к большему значению величины FWHM: 54 мэВ (рис. 6) и 107 мэВ (рис. 7).

Увеличение величины FWHM: 54 и 107 мэВ свидетельствует о том, что становится более неоднородным профиль потенциального барьера [8], определяющий процессы миграции носителей.

Для легированной Eu + Sm (концентрации РЗИ примесей равны) структуры 5 — InGaN/GaN $\langle Eu + Sm \rangle$ на

рис. 8 приведены зависимости изменения вида спектра микроФЛ (интенсивности I и величины FWHM) при варьировании величины напряженности магнитного поля при малом уровне возбуждения, равном $W = 10^{22} \phi$ отон · с/см². Увеличение напряженности магнитного поля до B = 5 Тл при T = 4.6 К (рис. 8, кривая 2) приводит к некоторому увеличению интенсивности излучения. Величина FWHM увеличивается, меняется положение максимума излучения по сравнению с положением λ_{max} для структуры 4 (λ_{max} сдвигается в длинноволновую область, спектр становится неоднородно уширенным с тремя максимумами излучения: $\lambda_1 = 432$ нм, $\lambda_2 = 442$ нм, $\lambda_3 = 459$ нм по сравнению с легированной одной примесью — Sm структурой 4 (рис. 5), величина I несущественно меняется (ср. кривые 1 и 2 на рис. 8) при тех же изменениях величины напряженности магнитного поля 0 < B < 5 Tл).

Рис. 8. Влияние напряженности магнитного поля на вид спектра микроФЛ ($\lambda = 266$ нм) структуры 5 InGaN/GaN (Eu + Sm) при низком уровне возбуждения, T = 4.6 К. *B*, Тл: кривая 1 - 0, кривая 2 - 5.

Рис. 9. Влияние напряженности магнитного поля на вид спектров микроФЛ структуры 5 в длинноволновой области спектра. *В*, Тл: кривая *1* — 0, кривая *2* — 5.

Физика и техника полупроводников, 2013, том 47, вып. 4

Рис. 10. Влияние напряженности магнитного поля на вид спектров микроФЛ ($380 < \lambda < 450$ нм) структуры InGaN/GaN (Eu + Sm) 6 при *T* = 4.6 К. *B*, Тл: кривая *I* — 0, кривая *2* — 5.

В длинноволновой области спектра увеличение напряженности магнитного поля приводит к незначительному уменьшению интенсивности излучения для линий: $\lambda_1 = 754 \text{ нм}, \lambda_2 = 776 \text{ нм}, \lambda_3 = 798 \text{ нм}$ (кривые *1* и *2* на рис. 9). Спектры микроФЛ (380 < λ < 450 нм) структур InGaN/GaN/Eu + Sm) 6 при (0 < *B* < 5 Тл) *T* = 4.6 К приведены на рис. 10. Структура 6 отличалась от структуры 5 тем, что концентрация Еu была больше концентрации Sm, а суммарная концентрация примесей не превышала *C* > 5 · 10¹⁸ см⁻³.

Для структуры 6 увеличение напряженности магнитного поля до 5 Тл (рис. 10, кривая 2) приводит к незначительному уменьшению интенсивности излучения (5%). Максимум длины волны излучения по сравнению с положением максимума длины волны излучения в предыдущей структуре 5 сдвигается в коротковолновую область спектра ($\lambda_1 = 378$ нм, $\lambda_2 = 388$ нм, $\lambda_3 = 399$ нм), т.е. состоит из трех пиков. Наибольшая интенсивность у полосы излучения с пиком $\lambda = 378$ нм, несколько меньшая у полосы $\lambda_2 = 388$ нм. Данные линии излучения в слоях n-GaN связаны с появлением полосы, характерной для донорно-акцепторной рекомбинации при легировании РЗИ [3]. Полосу излучения с пиком λ₃ = 399 нм приписывают излучению оборванных связей Ga-Ga. Таким образом, изменение концентраций легирующих примесей в процессе постростовой обработки: увеличение концентации Еи и суммарной концентрации примесей Eu + Sm при увеличении концентрации Eu, суммарной концентрации примесей Eu + Sm привело к существенному изменению вида спектра микроФЛ: к сдвигу λ_{max} в коротковолновую область спектра и, вероятно, к пространственному положению примеси в барьерном слое *n*-GaN, к отсутствию линий излучения, характерных для MQW на основе структур InGaN/GaN.

В длинноволновой области спектра структуры 6, легированной Eu + Sm, с увеличенной концентрацией Eu по сравнению с концентрацией Sm и с изменением суммарной концентрации примесей имеются 3 полосы излучения ($\lambda_1 = 735$ нм, $\lambda_2 = 757$ нм, $\lambda_3 = 778$ нм), на интенсивность которых не влияют изменения напряженности магнитного поля (рис. 11).

После вышеприведенных измерений микроФЛ были измерены спектры макроФЛ при температуре T = 78 К (рис. 12). В спектрах макроФЛ отсутствуют линии излучения из квантовых ям, имеющиеся в спектрах макроФЛ до измерений спектров микроФЛ в магнитных полях. После отжига в атмосфере аргона ($T = 1020^{\circ}$ С, время отжига 1 ч) в спектрах макроФЛ исследуемых структур вновь наблюдаются линии излучения, характерные для вышеупомянутых структур с MQW на основе InGaN/GaN, легированных Sm, Eu + Sm, рис. 9, кривая I - для структуры 4 (InGaN/GaN(Sm)), кривая 2 - 5 InGaN/GaN(Eu + Sm), кривая 3 - 6InGaN/GaN(Eu + Sm).

Рис. 11. Влияние напряженности магнитного поля (0 < B < 5 Tл) на вид спектра микроФЛ $(\lambda = 266 \text{ нм})$ в длинноволновой области спектра структуры 6 при T = 4.6 K. *В*, Тл: кривая 1 - 0, кривая 2 - 5.

Рис. 12. Вид спектра макроФЛ структур 4, 5 после отжига $T = 1020 - 1040^{\circ}$ С в атмосфере аргона. Условия: N₂-лазер, $\lambda = 337.1$ нм, T = 78 К.

4. Обсуждение результатов

Полученные в данной работе результаты влияния магнитного поля, интенсивности возбуждения, концентрации легирующих примесей на вид спектров микро-ФЛ структур с MQW InGaN/GaN следует рассматривать с точки зрения изменения механизма возбуждения вследствие влияния всех вышеперечисленных факторов. Увеличение напряженности магнитного поля и температуры приводят к изменениям: более существенному уменьшению интенсивности излучения в структуре 2 (InGaN/GaN(Eu)), чем в нелегированной структуре 1 (InGaN/GaN), и к большему увеличению интенсивности излучения в структуре 4 (InGaN/GaN \langle Sm \rangle), чем в структуре 5 (InGaN/GaN(Eu + Sm)), поскольку легирование одной из примесей — Еи (с зарядовым состоянием примеси Eu^{3+} и Eu^{2+}), как было показано выше, может приводить к уменьшению интенсивности излучения при увеличении напряженности магнитного поля, а легирования другой — Sm — к увеличению. Таким образом, имеет место суммарное воздействие на взаимодействие носителей заряда полупроводниковой матрицы и двух парамагнитных примесей. Кроме того, вследствие существенно большей величины ионных радиусов Sm, Eu, чем у всех остальных компонентов структур — Ga, In, N, а также вероятности воздействия кулоновского взаимодействия возникают дополнительные напряжения. При значительном увеличении напряженности магнитного поля вследствие возникновения магнитострикции может происходить изменение плотности локализованных состояний в запрещенной зоне. Таким образом, влияние изменения напряженности магнитного поля на вид спектров микроФЛ структур с MQW на основе InGaN/GaN при наличии в полупроводниковой матрице парамагнитной (Sm³⁺, Eu³⁺), а также магнитной примеси (в данном случае Eu²⁺, а также фоновой примеси — Fe) следует рассматривать как с точки зрения изменения зонной структуры полупроводника, так и с точки зрения магнитострикционных явлений (проявлений парамагнетизма).

Обращает на себя внимание тот факт, что в структуре 6 увеличение концентрации примеси Еи по отношению к Sm (при том же варьировании напряженности магнитного поля от 0 до 5 Tл) приводит к большему изменению вида спектров микроФЛ в коротковолновой области: практически полному уменьшению интенсивности излучения в области излучения из квантовых ям ($\lambda = 420-440$ нм). В результате подобного легирования спектр микроФЛ структуры с MQW на основе InGaN/GaN становится подобным спектру макроФЛ слоя *n*-GaN, легированного Eu [4].

Особое положение в длинноволновой области спектра в структуре 5: при увеличении напряженности магнитного поля наблюдаются уменьшение интенсивности излучения, значительно меньшее уменьшение наблюдается в структуре 6 в той же области спектра. Влияние отжига после измерений спектров микроФЛ на формирование спектров излучения макроФЛ исследуемых структур 4, 5, 6 можно связать с изменениями локального окружения редкоземельных ионов.

Известно, что наличие фотоиндуцированных дефектов в пленках аморфного гидрированного кремния а-Si: Н (эффект Стаблера-Вронского) обусловлен наличием слабо связанных кремний-водородных связей [9]. Отжиг пленок *a*-Si:Н приводит к первоначальной концентрации дефектов. Известно также, что присутствие нанокристаллитов Si также подавляет эффект Стаблера-Вронского [10]. В исследованных структурах все слои — барьерный GaN, слои ям InGaN — кристаллические. Кластеры InN, которые могут быть в данных структурах, по всей вероятности, также являются нанокристаллическими. Введение ионов Eu, Sm, Eu + Sm с величинами ионных радиусов, бо́льшими, чем у всех компонентов состава структур (Ga, In, N), может приводить при большой интенсивности возбуждения как к формированию разупорядочения, к появлению аморфно-подобной фазы, так и к увеличению концентрации кластеров InN, к увеличению концентрации каналов безызлучательной рекомбинации носителей. Отжиг при $T = 1020^{\circ}$ С способствует упорядочению кристаллической фазы, увеличению центров излучательной рекомбинации, появлению линий излучения, характерных для структур с MQW на основе InGaN/GaN, легированных РЗМ. Подобного рода эффекты известны как эффект переключения в халькогенидных стеклообразных полупроводниках.

5. Заключение

1. На основании результатов комплексных измерений: спектров микрофотолюминесценции структур с квантовыми ямами на основе InGaN/GaN \langle Sm \rangle , InGaN/GaN \langle Eu \rangle , определения концентрации, зарядового состояния легирующих примесей Eu, Sm показано, что воздействие магнитного поля приводит к реализации ван-флековского парамагнетизма для Eu³⁺, Sm³⁺.

2. Измерения спектров микроФЛ при варьировании напряженности внешнего магнитного поля и при введении парамагнитной и магнитной примесей Eu + Sm дают дополнительную информацию о механизмах формирования спектров излучения в структурах с квантовыми ямами InGaN/GaN \langle Eu \rangle , InGaN/GaN \langle Sm \rangle .

3. В длинноволновой области спектра в легированных Eu, Sm, Sm + Eu структурах InGaN/GaN влияние магнитного поля на вид спектров микроФЛ меньше, чем в коротковолновой области.

4. Увеличение суммарной концентрации Eu + Sm легирующей парамагнитной примеси Eu³⁺ по сравнению с концентрацией Sm³⁺ приводит к сдвигу длины волны излучения в коротковолновую область спектра. Изменение намагниченности может способствовать изменению механизма передачи возбуждения от полупроводниковой матрицы к редкоземельным ионам, что в свою очередь приводит к изменению пространственного расположения

Физика и техника полупроводников, 2013, том 47, вып. 4

примесей, к уменьшению концентрации центров излучательной рекомбинации в структурах и к излучению лишь из барьерного слоя *n*-GaN.

5. Отжиг исследованных структур InGaN/GaN \langle Eu \rangle , InGaN/GaN \langle Sm \rangle , InGaN/GaN \langle Eu + Sm \rangle приводит к уменьшению концентрации фотоидуцированных дефектов.

Список литературы

- B.B. Криволапчук, М.М. Мездрогина, В.В. Лундин. ФТТ, 47 (7), 1338 (2005).
- [2] В.В. Криволапчук, М.М. Мездрогина. ФТТ, **48** (11), 2067 (2006).
- [3] В.В. Криволапчук, М.М. Мездрогина, А.В. Наонов, С.Н. Родин. ФТТ, **45** (9), 1556 (2003).
- [4] В.В. Криволапчук, М.М. Мездрогина, Э.Ю. Даниловский, Р.В. Кузьмин. ФТТ, 51 (2), 2137 (2009).
- [5] Y.U. Hite, O.T. Thaler, R. Khawa, C.B. Abemchthy, S.J. Pearton, J.H. Park, J. Zavada. Appl. Phys. Lett., 89, 132 119 (2006).
- [6] А.А. Арендоренко, Е.Г. Ермошин, Ю.Н. Свешников, Н.Н. Цыпленков. *Тез. докл. 6-й Всеросс. конф. "Нитриды* галлия, индия, алюминия. Структуры, приборы" (СПб., 2008) с. 23.
- [7] М.М. Мездрогина, В.В. Криволапчук, В.Н. Петров, Ю.В. Кожанова, Э.Ю. Даниловский, Р.В. Кузьмин. ФТП, 43 (4), 467 (2009).
- [8] М.М. Мездрогина, Е.С. Москаленко, Ю.В. Кожанова. ФТТ 53 (8), 1596 (2011).
- [9] C.R. Wronski, J.M. Peare, J. Deny, V. Ylanos, R.W. Collins. Thin Sol. Films, 451–452, 470 (2004).
- [10] А.Г. Казанский, Е.И. Теруков, И.А. Форш, J.P. Kleider. ФТП, 44 (4) 513 (2010).
- [11] М.М. Мездрогина, А.С. Абрамов, Г.Н. Мосина, И.Н. Трапезникова. ФТП, **44** (5), 948 (2010).

Редактор Т.А. Полянская

Photoinduced defects in the MQW structures on the base InGaN/GaN, doped by Sm, Eu, Eu + Sm

Ioffe Physico-technical institute, Russian Academy of Science, 194021 St. Petersburg, Russia * State Polytechnical University, 195021 St. Petersburg, Russia

Abstract On the base of the measurements of microphotoluminescence spectra structures with quantum wells on the base InGaN/GaN, doped by Eu, Sm, Eu + Sm, it was found the realozation Van-Vleck paramagnetism for Eu, Sm as result the action of magnetic field. There were the absences the luminescence lines from quantum well after measurements microphotoluminescence spectra under high level excitation (10^{23} photon/cm²·s) in magnetic fields in structures with quantum wells InGaN/GaN, doped by Sm, Eu + Sm, which where in investigated structures before these measurements. It was proposed the existence of photoinduced defects. The decrease this effect was observed after annealing in argon under $T = 1020^{\circ}$ C, time of annealing was equal to 1 h.