Impact of Carrier Gas on the GaN Layers Properties Grown on (001) and (11n) GaAs Substrates by AP-MOVPE: Comparative Study

© J. Laifi^{1,3}, A. Bchetnia^{2,3}

 ¹ Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
² Department of Physics, College of Science, Qassim University, Saudi Arabia
³ Unité de Recherche sur les Hétéro-Epitaxies et Applications, Faculté des Sciences de Monastir 5019, Université de Monastir, Tunisia E-mail: jlaifi@ju.edu.sa

Received February 1, 2020 Revised February 10, 2020 Accepted February 10, 2020

The impact of carrier gas on the GaN layers properties grown by atmospheric pressure metal-organic vapor-phase epitaxy (AP-MOVPE) on (001) and (11*n*) GaAs substrates were investigated. The Arrhenius plots of growth rate deduced from laser reflectometry measurements give an activation energy of $E_{a1} = 0.045$ eV when the H₂ was used as the carrier gas. In the case of using N₂ as the carrier gas, the results give $E_{a2} = 0.081$ eV as a value of activation energy, which is approximately 2 times greater than E_{a1} . Scanning electron microscopy results show that when N₂ is used, the resulting material quality is low, but the use of H₂ is successful to prevent the cracking of GaN layers and results in improvement of crystalline properties. From the X-ray diffraction result, we conclude that both (001) and (113) GaAs substrate orientations as well as the use of H₂ as the carrier gas favors the GaN growth with cubic structure, whereas the GaN hexagonal structure is favored for growth on (112) and (111) GaAs substrates orientations with N₂. Cathodoluminescence measurements show that a mechanism of phase transformation occurs when the growth temperature rise from 800 to 900°C.

Keywords: cubic GaN, hexagonal GaN, (hkl) GaAs, carrier gas.

Full text of the paper will appear in journal SEMICONDUCTORS.