Транспортные процессы с участием атомов углерода между поверхностью и объемом родия при образовании и разрушении графена

© Е.В. Рутьков, Е.Ю. Афанасьева, Н.Р. Галль

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: rutkov@ms.ioffe.ru

Поступила в Редакцию 30 января 2020 г. В окончательной редакции 10 февраля 2020 г. Принята к публикации 10 февраля 2020 г.

Исследованы равновесные транспортные процессы с участием атомов углерода между поверхностью родиевого образца и его объемом, определяющие кинетику фазового перехода, вызывающего образование и разрушение графена. Найдена разность энергий активации растворения атомов углерода E_{s1} и энергии активации выделения E_{1s} из объема на поверхность $\Delta E=0.7$ эВ. Определена температурная зависимость критического покрытия $N_{eq}=N_{eq}(T)$ в слое хемосорбированного углерода, при котором происходит двумерный фазовый переход и образуются островки графена: например, при T=1800 К $N_{eq}=7.7\cdot10^{14}$ см $^{-2}$, а при T=1000 К $N_{eq}=3.1\cdot10^{14}$ см $^{-2}$.

Ключевые слова: графен, углерод, фазовый переход, родий.

DOI: 10.21883/FTP.2020.06.49384.9360

1. Введение

Родиевые образцы часто используют для образования графеновых пленок и для изучения различных свойств таких пленок, в частности, при изучении процессов интеркалирования графена различными атомами и молекулами с целью создания изолирующего слоя между графеном и металлом [1–8].

В наших работах [4,9-11] подробно изучена физическая картина при напылении углерода на поверхность Rh(111). Показано, что вначале углерод активно растворяется в объеме нагретого металла и после достижения предельной растворимости на поверхности происходит фазовый переход первого рода типа конденсации и образуются графеновые островки. При дальнейшем поступлении атомов углерода островки растут по площади, сливаются и образуется сплошной слой графена, однородный по работе выхода с $e\varphi = 4.3 \, \mathrm{sB} \, [4]$. Ранее мы определили предельную растворимость углерода в родии [9,11], а с учетом контроля за поверхностной концентрацией углерода, например, методом электронной оже-спектроскопии (ЭОС), имелась возможность следить за полным балансом углерода между поверхностью и объемом образца в абсолютных концентрациях.

Цель настоящей работы — во-первых, определение энергетических параметров, отвечающих за транспортные процессы между поверхностью и объемом родия с участием атомов углерода в условиях равновесия при образовании и разрушении графена. Во-вторых, определение важнейшей характеристики фазового перехода — равновесной поверхностной концентрации

углерода, при которой зарождаются островки графена — аналог давления насыщенного пара в системе жидкость—пар.

2. Методика эксперимента

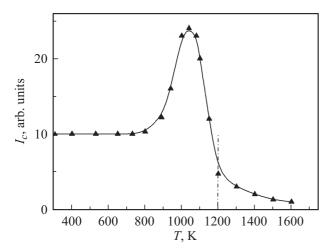
Опыты проводились в сверхвысоковакуумном ожеспектрометре высокого разрешения ($\Delta E/E \leq 0.1\%$) с регистрацией оже-спектров непосредственно при высоких температурах образца, что имело принципиальное значение, так как изменение температуры приводило к резкому изменению физической картины в слое углерода на поверхности [9–11]. Для абсолютной калибровки интенсивности оже-сигнала углерода рядом с рабочей родиевой лентой помещали иридиевую ленту с одним слоем графена с $N_{\rm C}=N_{\rm Cm}=3.86\cdot 10^{15}\,{\rm cm}^{-2}.$

В установке имелся специальный модуль для применения метода термоэлектронной эмиссии и поверхностной ионизации (ТЭПИ) [12,13]. Относительную площадь островков графена определяли разработанным нами способом — зондированием поверхности потоком молекул CsCl: на участках поверхности, свободных от островков, происходит диссоциация молекул и атом цезия десорбируется только в виде иона Cs+, что легко регистрируется, в то же время на островках графена диссоциация отсутствует [9,12]. Поэтому измеряемый ток I^+ ионов цезия позволяет определить относительную площадь островков графена s_0 : $s_0 = (1 - I^+/I_0^+)$, где I_0^+ — ионный ток с чистой поверхности родия.

Образцами служили тонкие родиевые ленты размерами $50 \times 1 \times 0.02\,\mathrm{mm}$. Текстурированные и очищенные

высокотемпературным прогревом при $1800\,\mathrm{K}$ в атмосфере кислорода ($P(\mathrm{O}_2)\approx 1\cdot 10^{-5}\,\mathrm{Topp}$) образцы имели поверхность грани (111) с работой выхода $e\phi=5.0\,\mathrm{эB}$. Поверхность была однородна по работе выхода.

Для науглероживания родия использовали напуск паров бензола (C_6H_6) , что автоматически обеспечивало симметрию поступления углерода с двух сторон ленты [1-4].


Температура ленты определялась оптическим микропирометром в диапазоне $1100-1800\,\mathrm{K}$, а в области более низких температур — путем линейной экстраполяции зависимости температуры от тока накала ленты к комнатной температуре. Однородность температуры в средней части ленты ($\sim 40\,\mathrm{mm}$) была не хуже $\pm 5\,\mathrm{K}$. Анализируемый участок ленты в ее середине составлял $\sim 5\,\mathrm{mm}$.

3. Экспериментальные результаты

3.1. Транспортные процессы поверхность-объем в системе Rh-углерод

На рис. 1 показана зависимость интенсивности ожесигнала углерода $I_{\rm C}$ от температуры науглероженного при $T_{\rm c}=1200\,{\rm K}$ родия. Оже-сигнал регистрировался с нагретого образца. Как показано в наших работах [4,9], при $T>T_{\rm c}$ на поверхности родия присутствует только хемосорбированный углеродный "газ", находящийся в равновесии с атомами углерода, растворенными в объеме родия.

При $T < 1200 \, \mathrm{K}$ интенсивность оже-сигнала родия резко возрастает — на поверхности в углеродном слое происходит двумерный фазовый переход и образуются графеновые островки, скорость роста которых с понижением температуры в области $1000-1200 \, \mathrm{K}$ увеличивается (рис. 1). При образовании островков графена резко увеличивается и термоэлектронная эмиссия с образца, так как работа выхода островков графена

Рис. 1. Зависимость оже-сигнала углерода от температуры науглероженного при $T_c = 1200 \,\mathrm{K}$ родиевого образца.

4.3 эВ, а работа выхода родия с углеродным "газом" на поверхности 5.0 эВ. Поэтому термоэлектронная эмиссия "чувствует" зарождение островков графена, имеющих площадь $\sim 0.01\%$. При $T < 800\,\mathrm{K}$ объемная диффузия углерода в родии замораживается и рост островков графена прекращается. Подставка $I_{\mathrm{C}} = 10\,\mathrm{eg}$. при $T < 800\,\mathrm{K}$ связана с неизбежным быстрым выделением углерода из объема ленты при ее охлаждении, когда температура уменьшается от высоких значений до низких.

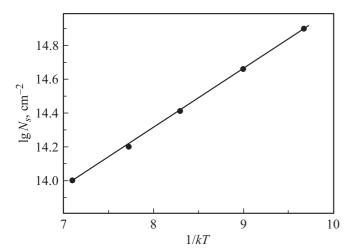
Рассмотрим экспериментальные данные в области 1200—1600 К (рис. 1). Воспользуемся физической моделью и уравнениями, описывающими транспортные процессы с участием углерода между поверхностью и объемом образца, приведенными в работах [9,12]:

$$\nu_1 = N_s C \exp(-E_{s1}/kT),$$

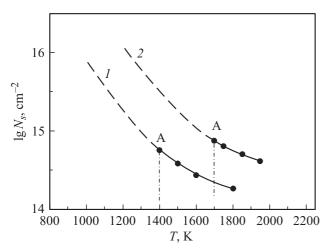
$$\nu_2 = N_1 D \exp(-E_{1s}/kT),$$
(1)

где v_1 и v_2 — потоки растворения и выделения, N_s — концентрация атомов углерода на поверхности, N_1 — концентрация диффундирующих атомов в примыкающей к поверхности плоскости междоузлий, C и D — соответствующие предэкспоненциальные множители, E_{s1} — энергия активации растворения, E_{1s} — энергия активации выделения.

Опыты показывают, что для систем металл-углерод характерно, когда $E_{s1} > E_{1s}$. Например, в работе [14] изучали растворение углерода в монокристалле W(100) и показали, что $E_{s1} = 5.0\,\mathrm{эB}$, что намного превышает энергию активации объемной диффузии равную $E_{\mathrm{dif}} = 2.56\,\mathrm{эB}$. В работе [15] энергия растворения углерода в Mo(100) $E_{s1} = 3.9\,\mathrm{эB}$ (малые покрытия), хотя энергия активации объемной диффузии $E_{\mathrm{dif}} = 1.78\,\mathrm{эB}$. Поэтому можно ожидать, что и в нашем случае $E_{s1} \gg E_{1s}$ и соответственно при равновесии $N_s \gg N_1$.


Ранее мы определили предельную растворимость n_C (ат%) углерода в родии [9]. Для нашего опыта на рис. 1 $T_{\rm c}=1200\,{\rm K}$ и $n_C=2.3\cdot 10^{-2}\,{\rm at}\%$.

Зная толщину ленты, нетрудно подсчитать, что в каждом слое междоузлий будет $N_1=2\cdot 10^{11}\,\mathrm{at\cdot cm^{-2}}$. В то же время калибровка оже-сигнала углерода $I_{\rm C}$ по отношению к эталону — один слой графена на $\mathrm{Ir}(111)$ с $N_{\rm Cm}=3.86\cdot 10^{15}\,\mathrm{at\cdot cm^{-2}}$ дает значение $N_s=8\cdot 10^{14}\,\mathrm{at\cdot cm^{-2}}$ при $T_{\rm c}=1200\,\mathrm{K}$. Столь большая разница N_s и N_1 соответствует тому, что $E_{s1}\gg E_{1s}$.


В условиях равновесия $\nu_1 = \nu_2$ и систему уравнений (1) можно привести к виду:

$$N_s/N_1 = D/C \exp[(E_{s1} - E_{1s})/kT]$$
$$= D/C \exp(\Delta E/kT). \tag{2}$$

В наших опытах можно считать, что при изменении температуры общее количество углерода в объеме ленты остается неизменным — добавка углерода за счет его перехода с поверхности в объем металла пренебрежительно мала, т.е. $N_1 = \text{const} \neq f(T)$. Поэтому из

Рис. 2. Зависимость поверхностной концентрации хемосорбированного углерода N_s на Rh(111) в координатах $\lg N_s$ от температуры образца в координатах 1/kT. Температура науглероживания $T_{\rm c}=1200\,{\rm K}$.

Рис. 3. Зависимость равновесного покрытия хемосорбированным углеродом Rh(111) от температуры образца для разных температур науглероживания: $I-T_{\rm c}=1400\,{\rm K},\ 2-1700\,{\rm K}.$ Пунктир — данные, рассчитанные по формуле (2).

зависимости $\ln N_s = f(1/kT)$ можно найти ΔE . На рис. 2 представлена эта зависимость (для удобства в координатах $\lg N_s$). Наклон графика дает величину $\Delta E = 0.7$ эВ, а зная N_s и N_1 , можно найти отношение $D/C \approx 1$.

Зная ΔE , можно рассчитать концентрацию поверхностного покрытия при любых температурах, соответствующих активной объемной диффузии ($T > 1000 \, \mathrm{K}$) при разных температурах науглероживания $T_{\rm c}$ в условиях равновесия (рис. 3). На этом рисунке показаны экспериментальные кривые и расчетные (пунктир) для двух температур науглероживания $T_{\rm c} = 1400$ и 1700 К.

Можно ожидать, что энергия E_{1s} будет близка к энергии активации объемной диффузии $E_{\rm dif}$. Оценим эту энергию из следующих соображений. Из рис. 1 видно, что при $T<800\,{\rm K}$ диффузия атомов углерода по

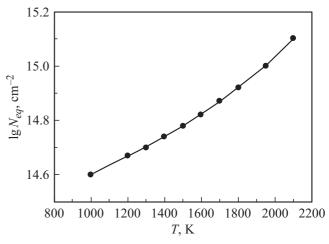
объему резко замораживается. В работе [11] показано, что для системы Ni(111)—углерод объемная диффузия замораживается в близком к родию диапазоне температур 700—800 К. Поскольку для Ni(111) величина $E_{\rm dif}=1.5$ эВ [16,17], то и для родия разумно считать, что величина будет близка к 1.5 эВ. В этом случае $E_{s1}=\Delta E+E_{\rm dif}\approx 2.3$ эВ.

3.2. Определение критического покрытия N_{eq} , соответствующего двумерному фазовому переходу в системе Rh—углерод

Достижение предельной растворимости углерода в родии фиксируется по образованию новой фазы углерода на поверхности — островков графена, когда на поверхности достигается критическое покрытие N_{eq} . Из работы [9]:

$$\ln[n_C(a\tau\%)] = 5.06 - 10508/T. \tag{3}$$

Тогда концентрация углерода N_1 в каждой плоскости междоузлий площадью $1\,\mathrm{cm}^2$, в том числе и в плоскости, примыкающей к поверхности:


$$N_1 = 0.01N_{\rm Rh} \exp(5.06 - 10580/T),$$
 (4)

где $N_{\rm Rh}=2\cdot 10^{15}\,{\rm at\cdot cm^{-2}}$ — концентрация атомов родия в одной атомной плоскости для площади $1\,{\rm cm^2}.$

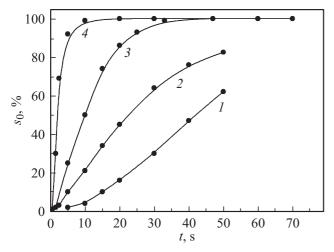
Используя уравнение (2), можно найти критическое покрытие N_{eq} , ответственное за фазовый переход в слое углерода:

$$N_{eq} = N_1 D/C \exp(\Delta E/kT)$$

= 0.01 $N_{\rm Rh} D/C \exp(\Delta E/kT + 5.06 - 10580/T)$. (5)

Пусть $T=1600\,\mathrm{K},~\Delta E=0.7\,\mathrm{9B},~D\approx C$ (см. выше). Тогда $N_{eq}=7.3\cdot 10^{14}\,\mathrm{ar\cdot cm^{-2}},~$ что отлично совпадает

Рис. 4. Зависимость критического покрытия хемосорбированным углеродом от температуры подложки, соответствующего фазовому переходу, приводящему к образованию графена на Rh(111).


с величиной, определенной прямым методом ЭОС для данной температуры. На графике рис. 4 приведены расчетные данные по формуле (5).

Видно, что величина N_{eq} слабо меняется с температурой, например, при $T=1800\,\mathrm{K}~N_{eq}\approx7.7\cdot10^{14}\,\mathrm{cm}^{-2}$, а при $T=1000\,\mathrm{K}~N_{eq}\approx3.1\cdot10^{14}\,\mathrm{cm}^{-2}$.

3.3. Кинетика роста графеновых островков на родии

На рис. 5 показана кинетика роста относительной площади островков графена на Rh(111) в зависимости от температуры образца для $T_{\rm c}=1400\,{\rm K}$. Видно, что скорость роста существенно увеличивается при понижении температуры. Например, если для образования $s_0=50\%$ при $T_1=1365\,{\rm K}$ требуется время $t_1=40\,{\rm c}$, то для $T_2=1255\,{\rm K}$ время гораздо меньше $t_2=2\,{\rm c}$. В этих опытах температура резко понижалась от $1800\,{\rm K}$ до необходимой в опыте.

Основным вкладом в скорость роста островков является уменьшение критического поверхностного покрытия с понижением температуры и, как следствие, появление множества "лишних", сверх критического покрытия, атомов углерода, которые охотно встраиваются в графеновые островки, резко увеличивая их площадь, — кривая 1 для $T_{\rm c}=1400\,{\rm K}$ на рис. 3. Точка "А" на этом рисунке соответствует фазовому переходу и образованию островков графена. Также показано, что с увеличением $T_{\rm c}$, т.е. с увеличением концентрации растворенного углерода, скорость роста островков должна существенно увеличиться. Например, для образования $s_0 = 50\%$ для $T_{\rm c} = 1400\,{\rm K}$ и $T = 1100\,{\rm K}$ требуется время несколько секунд, то для $T_c = 1200 \, \mathrm{K}$ и той же температуре требуется время несколько минут.

Рис. 5. Зависимость относительной площади графеновых островков s_0 от времени экспозиции науглероженного при $T_{\rm c}=1400~{\rm K}$ родия для разных температур образца T (K): I=1365, 2=1340, 3=1300, 4=1255.

4. Заключение

Таким образом, транспорт углерода между поверхностью и объемом металла действительно обеспечивает возможность для протекания фазового перехода на поверхности, приводящего к образованию или разрушению графена. Быстрота диффузии углерода в объеме и низкая суммарная концентрация поверхностного углерода по сравнению с его количеством, растворенным в объеме, делают "объемную" и "поверхностную" части фазового перехода практически независимыми друг от друга, что резко упрощает его рассмотрение.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Е.В. Рутьков, Н.Р. Галль. Письма ЖЭТФ, **100** (10), 708 (2014).
- [2] Е.В. Рутьков, А.В. Кузьмичев, Н.Р. Галль. Письма ЖЭТФ, 93 (3), 166 (2011).
- [3] Е.В. Рутьков, Н.Р. Галль. ФТП, 52 (9), 111 (2018).
- [4] Е.В. Рутьков, А.В. Кузьмичев, Н.Р. Галль. ФТТ, **53** (5), 1026 (2011).
- [5] А.Я. Тонтегоде, Ф.К. Юсифов. ЖТФ, 43, 1045 (1973).
- [6] N. Sicot, P. Leicht, A. Zusan, S. Bouvron, O. Zander, M. Weser, Yu.S. Dedkov, K. Horn, M. Fonin. ACS nano, 6 (1), 151 (2012). doi:10.1021/nn203169j
- [7] K. Gotterbarm, W. Zhao, O. Höfert, C. Gleichweit, C. Papp, H.-P. Steinrück. Phys. Chem. Chem. Phys., 15, 19625 (2013).
- [8] C. Romero-Muniz, A. Martín-Recio, P. Pou, J.M. Gomez-Rodríguez, Ruben Perez. Carbon, 101, 129 (2016).
- [9] E.V. Rut'kov, N.R. Gall. Physics and Applications of Graphene — Experiments (Rijeka, Croatia, In Tech., 2011) c. 209.
- [10] N.R. Gall, E.V. Rut'kov, A.Ya. Tontegode. Int. J. Mod. Phys., 11, 1865 (1997).
- [11] Н.Р. Галль, Е.В. Рутьков. Физика поверхности твердых тел. Графен и графит на поверхности твердых тел. Учеб. пособие (СПб., Изд-во Политехн. ун-та, 2013) с. 160.
- [12] A.Ya. Tontegode. Prog. Surf. Sci., 38, 201 (1991).
- [13] Э.Я. Зандберг, Н.И. Ионов. Поверхностная ионизация (М., Наука, 1969).
- [14] K.J. Rowlings, S.D. Foulias, B.J. Hopkins. Surf. Sci., 109, 513 (1981).
- [15] Е.В. Рутьков, А.Я. Тонтегоде, М.М. Усуфов. Изв. РАН. Сер. физ., **58**(10), 102 (1994).
- [16] E. Fromm, E. Gebhardt. *Gase und Kohlenstoff in Metallen* (Berlin, Springer Verlag, 1976).
- [17] Ф.А. Шанк. Структура бинарных сплавов (М., Металлургия, 1973).

Редактор Г.А. Оганесян

Atomic Carbon Transport between Rh Surface and Bulk in Graphene Formation and Destruction

E.V. Rut'kov, E.Y. Afanas'eva, N.R. Gall loffe Institute, 194021 St. Petersburg, Russia

Abstract Equilibrium transport of atomic carbon between Rh surface and bulk has been studied. This transport controls the kinetics of the phase transition resulting in graphene growth or destruction. The difference $\Delta E = 0.7\,\mathrm{eV}$ has been measured between the activation energy of atomic carbon dissolution E_{1s} and that of its segregation from the bulk to the surface E_{1s} . The temperature dependence of chemisorbed carbon critical cover $N_{eq} = N_{eq}(T)$ has been measured, that is the cover when 2D phase transition takes place and graphene islands start to grow. E.g., $N_{eq} = 7.7 \cdot 10^{14}\,\mathrm{cm}^{-2}$ at $T = 1800\,\mathrm{K}$, and $N_{eq} = 3.1 \cdot 10^{14}\,\mathrm{cm}^{-2}$ at $T = 1000\,\mathrm{K}$.