Формирование двухфазной структуры в металлоорганическом перовските CH₃NH₃Pbl₃

© Д.В. Амасев¹, В.Г. Михалевич¹, А.Р. Тамеев^{2,3}, Ш.Р. Саитов⁴, А.Г. Казанский^{4,¶}

¹ Институт общей физики им. А.М. Прохорова Российской академии наук,

119991 Москва, Россия

² Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук,

119071 Москва, Россия

³ Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук,

620137 Екатеринбург, Россия

⁴ Московский государственный университет им. М.В. Ломоносова,

119991 Москва, Россия

[¶] E-mail: kazanski@phys.msu.ru

Поступила в Редакцию 28 января 2020 г. В окончательной редакции 5 февраля 2020 г. Принята к публикации 5 февраля 2020 г.

> Исследовано влияние отжига пленки металлоорганического перовскита $CH_3NH_3PbI_3$ на его электрические, фотоэлектрические и оптические свойства. Показано, что отжиг при температуре $T_a > 140^{\circ}C$ приводит к формированию двухфазной структуры, состоящей из перовскита и иодида свинца, относительное содержание которых зависит от условий отжига, в частности от температуры. Формирование PbI_2 в структуре перовскита приводит к уменьшению проводимости и фотопроводимости материала. Проведенные исследования указывают на возможность формирования планарных структур, состоящих из полупроводниковых материалов с различными величинами запрещенных зон: 1.6 эВ ($CH_3NH_3PbI_3$) и 2.4 эВ (PbI_2).

Ключевые слова: перовскиты, модификация отжигом, двухфазные пленки, фотопроводимость.

DOI: 10.21883/FTP.2020.06.49382.9358

1. Введение

В последние годы металлоорганические полупроводники со структурой перовскита привлекают к себе внимание в связи с большими возможностями создания на их основе эффективных тонкопленочных солнечных элементов. Одним из наиболее популярных материалов среди класса металлоорганических полупроводников является метиламмоний иодида свинца (CH₃NH₃PbI₃, MAPI). Структура этого металлоорганического полупроводника сформирована из атомов свинца, иода и органической молекулы метиламмония (CH₃NH₃). Исследования показали, что в ряде случаев в сформированной пленке МАРІ присутствует PbI₂. Присутствие PbI₂ в фотоактивном слое солнечного элемента (пленке перовскита) может быть вызвано как технологическими условиями получения материала [1], так и отжигом структуры при умеренной температуре (~150°С) [2,3].

Было показано, что наличие PbI_2 в составе пленки перовскита влияет на параметры солнечных элементов, созданных на его основе. В частности, увеличение доли PbI_2 в фотоактивном слое до 7.5 мол% может привести к некоторому увеличению эффективности солнечного элемента. Увеличение эффективности структур авторы [4] объясняли тем, что наличие PbI_2 в составе фотоактивных слоев способствует увеличению размеров микрокристаллов, формирующих их, и уменьшению темпа безызлучательной рекомбинации носителей заряда в пленках. При этом в указанных работах проводился в основном анализ влияния PbI_2 на параметры структуры, созданной на основе перовскита. В то же время представляет интерес исследование влияния присутствующего в пленке MAPI иодида свинца (PbI_2) на электрические и фотоэлектрические характеристики самой пленки.

Известно, что освещение пленки МАРІ [5,6], нахождение во влажной атмосфере [7] или нагрев до умеренных температур [3] приводит к выделению PbI_2 в структуре пленки МАРІ. В представленной работе для формирования PbI_2 в пленке использовался температурный отжиг. Поэтому было исследовано влияние температуры отжига пленки металлоорганического перовскита $CH_3NH_3PbI_3$ на его электрические и фотоэлектрические свойства.

2. Исследованные образцы и методика эксперимента

В работе исследованы тонкие пленки перовскита $CH_3NH_3PbI_3$, толщиной 350-400 нм, осажденные на стеклянную подложку с использованием одноступенчатого метода. Исходный раствор, используемый для получения пленок $CH_3NH_3PbI_3$, был изготовлен смешиванием компонентов метиламмония иодида CH_3NH_3I (MAI) и иодида свинца PbI_2 в мольном соотношении 1:1 в безводном растворе диметилформамида (DMF) [8]. Данный одноступенчатый метод изготовления перовскита $CH_3NH_3PbI_3$ при использованном нами соотношении PbI_2 и MAI приводит к образованию материала с прово-

димостью *n*-типа [9]. Исследования полученных пленок $CH_3NH_3PbI_3$ методом сканирующей электронной микроскопии показали, что пленки имеют микрокристаллическую структуру со средним размером микрокристаллов ~ 350 нм.

Для проведения электрических и фотоэлектрических измерений в планарной конфигурации контактов на поверхность пленки методом термического напыления были нанесены контакты из золота. Расстояние между контактами составляло 0.2 мм.

В работе исследовалось влияние температуры отжига (T_a) на темновую проводимость σ_d и фотопроводимость $\Delta \sigma_{\rm ph} = \sigma_{\rm ph} - \sigma_d$ (где $\sigma_{\rm ph}$ — проводимость при освещении) пленки металлоорганического перовскита МАРІ. Измерения спектральных зависимостей фотопроводимости проводились при комнатной температуре после отжига пленки в вакууме при заданной температуре отжига T_a в течение 10 мин. Температура при последовательных отжигах повышалась от 60 до 160°C. Все измерения выполнялись в вакууме при остаточном давлении ~ 10^{-3} Па и при приложенном к образцу напряжении в области линейности вольт-амперной характеристики.

3. Результаты экспериментов и их обсуждение

На рис. 1 показаны спектральные зависимости фотопроводимости пленки перовскита, нормированные на число падающих квантов (N) после последовательных отжигов пленки при различных температурах. Как видно из рисунка, при температурах отжига $T_a \leq 120^{\circ}$ С спектральные зависимости фотопроводимости близки по характеру. В области энергий квантов < 1.6 эВ наблюдается резкое экспоненциальное уменьшение фотопроводимости, что свидетельствует о наличии в исследованных пленках CH₃NH₃PbI₃ запрещенной зоны шириной ~ 1.6 эВ. При энергиях квантов hv > 1.6 эВ фотопроводимость слабо зависит от энергии падающих квантов. Из рисунка видно, что при $T_a \leq 120^{\circ}$ С с ростом T_a в области $h\nu > 1.6$ эВ наблюдается лишь небольшое уменьшение фотопроводимости и формирование некоторой особенности при hv > 2.25 эВ.

Наиболее резкое изменение характера спектральной зависимости и величины фотопроводимости происходит после отжига пленки при $T_a = 140^{\circ}$ С. Наблюдается существенное уменьшение величины фотопроводимости во всем исследованном спектральном диапазоне. При этом в области энергий квантов hv > 2.25 эВ формируется "второй край" фотопроводимости. Примечательно, что после отжига при $T_a = 160^{\circ}$ С происходит изменение цвета пленки, расположенной между контактами, с темно-коричневого на желтый. Согласно [3], высокотем-пературный отжиг приводит к термическому разложению МАРІ на МАІ и PbI₂. Таким образом, наблюдаемое изменение спектральных зависимостей фотопроводимости пленки перовскита после ее отжига при $T_a = 140^{\circ}$ С

Рис. 1. Спектральные зависимости фотопроводимости при комнатной температуре, нормированные на число падающих квантов, для пленки перовскита, отожженной при температурах $T_a = 60$ (1), 80 (2), 100 (3), 120 (4), 140 (5), 160°С (6).

связано с изменением состава пленки и формированием в ее структуре иодида свинца PbI₂, ширина запрещенной зоны которого составляет 2.4 эВ [1].

Характер спектральных зависимостей фотопроводимости указывает на то, что в формировании фотопроводимости исследованной пленки после ее отжига при 140 и даже при 160°С принимают участие как содержащийся в пленке перовскит CH₃NH₃PbI₃ с шириной запрещенной зоны 1.6 эВ, так и иодид свинца PbI₂ с шириной запрещенной зоны 2.4 эВ. Как видно из рисунка, после отжига пленки при $T_a = 140^{\circ}$ С уменьшение фотопроводимости происходит в большей степени при энергиях квантов < 2.25 эВ. Однако наличие фотопроводимости в области hv = 1.6 - 2.25 эВ указывает на вклад CH₃NH₃PbI₃ в генерацию неравновесных носителей заряда в сформированной двухфазной пленке. В то же время большее на 1.5-2 порядка величины значение фотопроводимости при hv > 2.4 эВ по сравнению с фотопроводимостью при hv < 2.25 эВ указывает на определяющую роль иодида свинца в переносе и генерации при $h\nu > 2.4$ эВ неравновесных носителей заряда в пленке, отожженной при $T_a = 140$ и 160°С. Таким образом, можно предположить, что в двухфазном материале, сформированном после отжига исходной пленки перовскита при $T_a = 160^{\circ}$ С, генерация неравновесных носителей заряда происходит как в перовските, так и в иодиде свинца. Перенос же носителей заряда, по-видимому, осуществляется по иодиду свинца (PbI₂). При этом вклад CH₃NH₃PbI₃ в фотопроводимость может быть связан с близостью энергетических положений краев зон проводимости CH₃NH₃PbI₃ и PbI₂ [1]. Уменьшение фотопроводимости полученного двухфазного материала во всем исследованном спектральном диапазоне может быть связано как с увеличением концентрации центров рекомбинации и соответственно уменьшением времени жизни, так и с уменьшением подвижности неравновесных носителей заряда.

Рис. 2. Температурные зависимости проводимости для пленки перовскита, отожженной при температурах $T_a = 60$ (1), 80 (2), 100 (3), 120 (4), 140 (5), 160°С (6).

На существенное уменьшение подвижности в исследованных пленках перовскита, отожженных при высоких температурах, указывает изменение проводимости пленок при их отжиге. На рис. 2 показано влияние последовательного отжига при различных температурах на температурную зависимость проводимости $\sigma_d(T)$ исследованной пленки перовскита. Измерения проводились при понижении температуры после отжига пленки в вакууме при T_a в течение 10 мин.

Как видно из рис. 2, вид температурных зависимостей близок к активационному. При этом по характеру изменения полученные зависимости можно разделить на два класса: зависимости, полученные для пленки, отожженной при температурах $T_a \leq 120^{\circ}$ С, и для пленки, отожженной при бо́льших температурах (140 и 160°С). В первом случае на температурных кривых проводимости можно выделить область вблизи температуры $T = 330 \,\mathrm{K}$ (показана вертикальной штриховой линией), при которой наблюдается некоторое изменение энергии активации проводимости (E_a) от $\sim (0.51 - 0.52)$ эВ при меньших температурах до ~ (0.41-0.44) эВ при больших температурах. Это может быть связано с фазовым переходом в структуре перовскита при указанной температуре [10]. Из рисунка также видно, что увеличение температуры отжига до $T_a = 120^{\circ}$ С приводит к некоторому уменьшению проводимости. В то же время после отжига при $T_a = 140^{\circ}$ С наблюдается резкое уменьшение проводимости. При этом температурные зависимости проводимости, полученные после отжига при $T_a = 140$ и 160°С, близки между собой. Величина энергии активации из этих зависимостей близка к значению энергии активации, полученной для "низкотемпературной" области в случае пленки, отожженной при $T_a \leq 120^{\circ}$ С, и составляет 0.54-0.55 эВ. Отметим также, что на температурных зависимостях проводимости, полученных после отжига при 140 и 160°С, не

3 Физика и техника полупроводников, 2020, том 54, вып. 6

наблюдается двух явно выраженных участков с разными энергиями активации.

Наблюдаемое некоторое уменьшение проводимости после отжига пленки при $T_a \leq 120^{\circ}$ С можно объяснить формированием широкозонного PbI2 на границах раздела микрокристаллов перовскита [3] и соответственно уменьшением подвижности носителей заряда. В то же время, как и в случае представленных выше спектральных зависимостей фотопроводимости, резкое уменьшение величины проводимости после отжига пленки при $T_a = 140^{\circ}$ С можно объяснить существенным увеличением доли PbI₂ в составе исследованного материала в результате отжига пленки. Проводимость в исследованном материале определяется концентрацией и величиной подвижности носителей заряда. Как видно из рис. 2, отжиг исследованной пленки перовскита приводил к уменьшению величины проводимости более чем на порядок. При этом энергия активации температурной зависимости существенно не изменялась. Известно, что энергия активации температурных зависимостей проводимости неупорядоченных полупроводников в основном определяется положением уровня Ферми относительно уровня протекания носителей заряда. В свою очередь положение уровня Ферми определяет концентрацию "свободных" носителей заряда. Полученные результаты указывают на то, что в результате отжига не происходит существенного изменения положения уровня Ферми относительно уровня протекания в сформированной двухфазной пленке. В этом случае вызванное отжигом уменьшение проводимости может быть связано с уменьшением подвижности носителей заряда в сформированном в результате отжига двухфазном материале, основную долю в котором составляет иодид свинца PbI₂.

Заметим, что представленная выше интерпретация полученных результатов основывалась на предположении об однородной структуре пленки по ее толщине и поверхности после ее отжига. В то же время, согласно [3], выделение с поверхности пленки при отжиге перовскита молекул метиламмония может привести к неоднородному по толщине двухфазному составу пленки. Возможность этого следует из рис. 3, на котором показан исследованный образец после отжига при $T_a = 160^{\circ}$ С.

Рис. 3. Фотография образца после его отжига при $T_a = 160^{\circ}$ С.

Как видно из фотографии (рис. 3), в областях, которые были покрыты золотыми контактами, в результате отжига цвет пленки не изменился. Это может свидетельствовать о том, что в этих местах в результате отжига не произошло существенного выделения иодида свинца из пленки и соответственно изменения состава пленки. Наличие перовскита под контактами и возможность существования "обогащенного" перовскитом слоя вблизи подложки может привести к наблюдаемому вкладу перовскита в фотопроводимость пленок, отожженных при высоких температурах. Возможность реализации данного эффекта требует дальнейших исследований.

4. Заключение

В работе исследовано влияние отжига пленки металлоорганического перовскита CH₃NH₃PbI₃ на его электрические, фотоэлектрические и оптические свойства. Показано, что отжиг при $T_a > 140^{\circ}$ С приводит к формированию двухфазной структуры, состоящей из перовскита и иодида свинца, относительное содержание которых зависит от условий отжига, в частности от его температуры. Формирование PbI₂ в структуре перовскита приводило к уменьшению проводимости и фотопроводимости материала. Это указывает на то, что отмеченное в работах [1,3] улучшение параметров солнечных элементов на основе CH₃NH₃PbI₃ при введении в него PbI₂, повидимому, не связано с улучшением фотоэлектрических параметров самого фотоактивного слоя. Проведенные исследования указывают на возможность формирования планарных тонкопленочных структур, состоящих из полупроводниковых материалов с различными величинами запрещенных зон: 1.6 эВ (CH₃NH₃PbI₃) и 2.4 эВ (PbI₂).

Финансирование работы

Работа проведена при финансовой поддержке РФФИ (проект 18-32-00417 — эксперимент), РНФ (проект 18-13-00409 — анализ результатов).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Cao, C. Stoumpos, C. Malliakas, M. Katz, O. Farha, J. Hupp, M. Kanatzidis. Appl. Mater., 2, 091101 (2014).
- [2] Q. Chen, H. Zhou, T. Song, S. Luo, Z. Hong, H. Duan, L. Dou, Y. Liu, Y. Yang. Nano Lett., 14, 4158 (2014).
- [3] T. Du, C. Burgess, J. Kim, J. Zhang, J. Durrant, M. McLachlan. Sustainable Energy & Fuels, 1, 119 (2017).
- [4] Y. Kim, N. Jeon, J. Noh, W. Yang, J. Seo, J. Yun, A. Ho-Baillie, S. Huang, M. Green, J. Seidel, T. Ahn, S. Seok. Adv. Energy Mater., 6, 1502104 (2016).

- [5] J. Barb'e, M. Newman, S. Lilliu, V. Kumar, H. Ka, H. Lee, C. Charbonneau, C. Rodenburg, D. Lidzey, W. Tsoi. J. Mater. Chem. A, 6, 23010 (2018).
- [6] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang. J. Mater. Chem. A, 2, 18508 (2014).
- [7] R. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, E. Katz, J. Phys. Chem. Lett., 6, 326 (2015).
- [8] D. Saranin, V. Mazov, L. Luchnikov, D. Lypenko, P. Gostishev, D. Muratov, D. Podgorny, D. Migunov, S. Didenko, M. Orlova, D. Kuznetsov, A. Tameev, A. Di Carlo. J. Mater. Chem. C, 6, 6179 (2018).
- [9] Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, J. Huang. Appl. Phys. Lett., 105, 163508 (2014).
- [10] T. Baikie, Y. Fang, J. Kadro, M. Schreyer, F. Wei, S. Mhaisalkar, M. Graetzel, T. White. J. Phys. Chem. A, 1, 5628 (2013).

Редактор Л.В. Шаронова

Formation of two-phase structure in CH₃NH₃Pbl₃ organometallic perovskite

D.V. Amasev¹, V.G. Mikhalevich¹, A.R. Tameev^{2,3}, S.R. Saitov⁴, A.G. Kazanskii⁴

¹ Prokhorov General Physics Institute, Russian Academy of Sciences,
¹19991 Moscow, Russia
² Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences,
¹19071 Moscow, Russia
³ Postovsky Institute of Organic Synthesis of the Ural Branch, Russian Academy of Sciences,
620137 Ekaterinburg, Russia
⁴ Lomonosov Moscow State University,
119991 Moscow, Russia

Abstract The effect of annealing of an organometallic perovskite $CH_3NH_3PbI_3$ film on its electrical, photoelectric, and optical properties is studied. It was shown that annealing at the temperature $T_a > 140^{\circ}C$ leads to formation of a two-phase structure consisting of perovskite and lead iodide, the relative content of which depends on the annealing conditions, in particular on its temperature. PbI_2 formation in the perovskite structure leads to a decrease in the conductivity and photoconductivity of the material. Our studies indicate the possibility of forming planar structures consisting of semiconductor materials with various values of the band gap: 1.6 eV ($CH_3NH_3PbI_3$) and 2.4 eV (PbI_2).