Электропроводность FeGaInSe₄ на переменном токе

© Н.Н. Нифтиев¹, Ф.М. Мамедов^{2,¶}, М.Б. Мурадов³

¹ Азербайджанский государственный педагогический университет,

Az-1000 Баку, Азербайджан

² Институт катализа и неорганической химии им. академика М. Нагиева Национальной академии наук Азербайджана,

Аz-1143 Баку, Азербайджан

³ Бакинский государственный университет,

Az-1148 Баку, Азербайджан

[¶] E-mail: namiq7@bk.ru

Поступила в Редакцию 14 января 2020 г. В окончательной редакции 4 февраля 2020 г. Принята к публикации 14 февраля 2020 г.

Приведены результаты исследования частотных и температурных зависимостей электропроводности кристаллов FeGaInSe₄ на переменном электрическом токе. Установлено, что при исследуемых температурах в интервале частот $f = 5 \cdot 10^4 - 10^6$ Гц для электропроводности выполняется закономерность $\sigma \propto f^s$ ($0.1 \le s \le 1.0$). Из температурных зависимостей проводимости определены энергии активации. Показано, что в кристалле FeGaInSe₄ зависимость электропроводности от частоты можно объяснить при помощи мультиплетной модели, а значит, проводимость в этих кристаллах определяется зонно-прыжковым механизмом.

Ключевые слова: электропроводность, зонно-прыжковый механизм, кристаллы FeGaInSe4.

DOI: 10.21883/FTP.2020.06.49378.9346

1. Введение

В настоящее время тройные халькогенидные соединения привлекают все больший интерес в связи с тем, что они обладают комплексом исключительно важных свойств и находят широкое применение в различных областях новой техники. В этом плане вызывает интерес группа тройных соединений $A^{II}B_2^{III}X_4^{VI}$ (A — Mn, Fe, Co, Ni; B — Ga, In; X — S, Se, Te) [1–12]. Эти соединения перспективны для создания на их основе лазеров, модуляторов света, фотодетекторов и других функциональных устройств, управляемых магнитным полем. На основе этих материалов созданы фоточувствительные структуры [7–9], на основе кристаллов FeIn₂Se₄ получены гетеропереходы [10], соединение FeIn₂S4 синтезировано в виде нанокристаллов [11].

В настоящей работе приводятся результаты исследования частотных и температурных зависимостей электропроводности кристаллов FeGaInSe₄ на переменном электрическом токе.

2. Методика эксперимента и обсуждение результатов

При соотношении 1:1 кубической структуры FeGa₂Se₄ (пр. гр. $F\overline{4}3m$) и тригональной структуры FeIn₂Se₄ (пр. гр. R3m) получены слоистые полумагнитные полупроводники состава FeGaInSe₄. Методом Ритвельда на основе порошковой дифрактограммы уточнена кристаллическая структура FeGaInSe₄ и установлено, что вещество кристаллизуется в тригональной решетке (пр. гр. R3m, постоянные решетки a = 3.9290 Å, c = 38.542 Å) [12,13]. Результаты элементного анализа (таблица) и рентгеновского спектра флюоресценции кристаллов FeGaInSe₄ (рис. 1) хорошо согласуются с химической формулой. Для измерения электрических свойств из полученных кристаллов вырезались крупноблочные пластинки толщиной ~ 0.1 мм, а нанесением серебряной пасты на противоположные поверхности были изготовлены конденсаторы. Измерения сопротивления проводились с помощью цифровых измерителей иммитанса E7-20 (диапазон частот $f = 25-10^6$ Гц). На образец подавалось измерительное напряжение 1 В.

На рис. 2 приведены зависимости проводимости от частоты для кристаллов FeGaInSe₄. Видно, что электропроводность в области низких частот сначала остается почти постоянной, затем с ростом частоты увеличивается. Для кристаллов FeGaInSe₄ в интервале частот $5 \cdot 10^4 - 10^6$ Гц с увеличением частоты электропроводность растет по закону

$$\sigma \propto f^s \qquad (0.1 \le s \le 1.0). \tag{1}$$

При температуре 294 K в интервале частот $5 \cdot 10^4 - 10^6$ Гц показатель степени равен 0.15-0.91,

Результаты эле	ементного	анализа к	ристаллов	FeGal	InSe.
----------------	-----------	-----------	-----------	-------	-------

Элемент	Массовая концентрация, %	Атомная концентрация, %		
Fe Ga	9.27 12.91	13.21 14.74		
Se	57.47	57.94		
Итог	100.00	100.00		

Рис. 1. Рентгеновский спектр флюоресценции кристалла FeGaInSe₄.

Рис. 2. Зависимости электропроводности от частоты измерений при температурах *T*, K: *I* — 294, *2* — 333.

а при температуре 333 К при тех же частотах изменяется в диапазоне 0.11–0.53. Видно, что при более низкой температуре значение *s* в исследуемом частотном диапазоне изменяется больше. В кристаллах FeGaInSe₄ механизм зависимости роста электропроводности от частоты можно объяснить следующим образом: известно, что, если в кристаллах и аморфных полупроводниках зависимость изменения электропроводности от частоты $\omega = 2\pi f$ будет подчиняться закономерности $\sigma(\omega) \propto \omega^s$ (0.1 $\leq s \leq 1.0$), то можно предположить существование прыжкового механизма проводимости [14]. На основе дебаевского анализа частотной зависимости проводимости в [14] теоретически исследованы частотная и температурная зависимости проводимости и получены следующие выражения:

$$\sigma(\omega)_T \propto \omega \left\{ \ln\left(\frac{\nu_f}{\omega}\right) \right\}^4 \propto \omega^s, \quad s \le 1,$$
 (2)

$$\sigma(T)_{\omega} \propto T^{-1} \exp\left(\frac{T}{T_0}\right),$$
 (3)

где ν_f — частота фонона, T_0 — характеристическая температура. Согласно (3), при вышеизложенном меха-

низме проводимости при температурах $T > T_0$ температурная зависимость электропроводности в координатах $\ln(\sigma T) - T$ должна давать прямую линию. На рис. 3 приведена экспериментальная зависимость $\ln(\sigma T) - T$ при 106 Гц. Видно, что зависимость линейная, чему соответствует прыжковый механизм проводимости. Отметим, что соединение типа АВ2Х4 обладает некоторыми свойствами (например эффект переключения, токовая неустойчивость и т.д.), характерными для аморфных веществ [15,16], а также установлено, что эти кристаллы являются компенсированными полупроводниками [17,18]. В целом токого рода вещества можно рассматривать как разупорядочные системы, поэтому для кристалла FeGaInSe₄ предположение о прыжковом механизме проводимости естественно. В соединениях типа AB₂X₄ природа локальных уровней может быть такой: образование антиструктурных дефектов на основе взаимозамещения катионов (Ав и ВA); нарушение периодического расположения стехиометрических пустот; нарушение дальнего порядка; наличие неконтролируемых примесей. Вероятность образования антиструктурных дефектов на основе взаимозамещения катионов в соединениях FeGaInSe4 мала, потому что ионные радиусы Fe и Ga(In) существенно отличаются друг от друга (Fe — 0.80 Å, Ga — 0.62 Å, In — 0.92 Å). Нам кажется, что дефекты в FeGaInSe₄ возникают из-за нарушения периодического расположения стехиометрических пустот. В некоторых работах проблемы прыжковой проводимости в разупорядоченных системах рассматриваются с точки зрения кластерного приближения [19,20]. В кристаллах FeGaInSe4 изменение электропроводности в зависимости от частоты можно объяснить при помощи мультиплетной модели [21], так как в кристаллах существуют кластеры, содержащие локализованные состояния с близкой энергией и перескок электронов осуществляется между ними. С повышением частоты сначала одни, а затем другие заряженные частицы не успевают за время четверти периода приложенного напряжения достигнуть мест локализации и, непрерывно

Рис. З. Температурная зависимость $\ln(\sigma T)$ для кристаллов FeGaInSe4 при 10^6 Гц.

Физика и техника полупроводников, 2020, том 54, вып. 6

Рис. 4. Температурные зависимости электропроводности для кристаллов FeGaInSe₄ на переменном токе при значениях частоты f, Гц: $1 - 2 \cdot 10^5$, $2 - 5 \cdot 10^5$, $5 - 10^6$.

следуя за изменением электрического поля, дают вклад уже в проводимость.

На рис. 4 приведены температурные зависимости электропроводности кристаллов FeGaInSe₄ на переменном токе при различных значениях частоты. В исследуемой температурной области электропроводность обусловлена активационным механизмом, при этом проводимость описывается соотношением [14]

$$\sigma = \sigma_0 \exp(-\Delta E/kT), \qquad (4)$$

где ΔE — энергия активации, k — постоянная Больцмана. Видно, что в интервале частот $5 \cdot 10^4 - 10^6$ Гц зависимость $\lg \sigma = f (10^3/T)$ состоит из двух прямых с различными наклонами. По наклонам этих зависимостей определены энергии активации, значения которых в низкотемпературной области изменяются в интервале 0.083 - 0.016 эВ, а в высокотемпературной — это интервал 0.29 - 0.10 эВ. Отсюда следует, что величина энергии активации есть функция частоты. Зависимость энергии активации от частоты можно объяснить с помощью прыжкового механизма [14]. Также, согласно (4), видно, что в кристаллах FeGaInSe₄ температурная зависимость электропроводности имеет активационный характер и, значит, в соединении FeGaInSe₄ проводимость определяется зонно-прыжковыми механизмами.

3. Заключение

Приведены результаты исследования частотных и температурных зависимостей электропроводности кристаллов FeGaInSe₄ на переменном электрическом токе. Установлено, что при исследуемых температурах в интервале частот $5 \cdot 10^4 - 10^6$ Гц для электропроводности выполняется закономерность $\sigma \propto f^s$ ($0.1 \le s \le 1.0$). Из температурных зависимостей lg σ определены энергии активации. В кристалле FeGaInSe₄ изменение электропроводности в зависимости от частоты можно объяснить

при помощи мультиплетной модели, так как в кристаллах существуют кластеры, содержащие локализованные состояния с близкой энергией и перескок электронов осуществляется между ними. В кристаллах FeGaInSe₄ проводимость характеризуется зонно-прыжковым механизмом.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y. Hwang, J. Choi, Y. Ha, S. Cho, H. Park. Curr. Appl. Phys., 20, 212 (2020).
- [2] B.R. Myoung, J.T. Lim, C.S. Kim. J. Magn. Magn. Mater., 438, 121 (2017).
- [3] K. Takubo, T. Mizokawa, Y. Nambu, S. Nakatsuji. Phys. Rev. B, 79, 134422 (2009).
- [4] S. Lei, K. Tang, Z. Fang, Y. Qi, H. Zheng. Mater. Res. Bull., 41, 2325 (2006).
- [5] T. Torres, V. Sagredo, L.M. de Chalbaund, G. Attolini, F. Bolzoni. Phys. Condens. Matter, 384, 100 (2006).
- [6] C. Xiangying, Z. Zhongjie, Z. Xingfa, L. Jianwei, Q. Yitai. J. Cryst. Growth, 277, 524 (2005).
- [7] И.В. Боднарь, С.А. Павлюковец, В.Ю. Рудь, Ю.В. Рудь. ФТП, 43, 1553 (2009).
- [8] И.В. Боднарь, В.Ю. Рудь, Ю.В. Рудь. ФТП, 43, 1549 (2009).
- [9] И.В. Боднарь, В.Ю. Рудь, Ю.В. Рудь, Д.В. Ложкин. ФТП, 45, 941 (2011).
- [10] З.Д. Ковалюк, В.Н. Катеринчук, В.В. Нетяга, А.В. Заслонкин. Технология и конструирование в электронной аппаратуре, 5, 43 (2007).
- [11] H. Kim, A.P. Tiwari, E. Hwang, Y. Cho, H. Hwang, S. Bak, Y. Hong, H. Lee. Adv. Sci., 5 (7), 1800068 (2018). www.advancedsciencenews.com
- [12] Ф.М. Мамедов, С.З. Имамалиева, И.Р. Амирасланов, М.Б. Бабанлы. Конденсированные среды и межфазные границы, 20, 604 (2018).
- [13] F.M. Mammadov, I.R. Amiraslanov, S.Z. Imamaliyeva, M.B. Babanly. J. Phase Equilib. Diffus., 20, 787 (2019).
- [14] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, (1982) т. 1.
- [15] Н.Н. Нифтиев, О.Б. Тагиев, М.А. Алиджанов, М.Б. Мурадов. Украин. физ. журн., 47, 1054 (2002).
- [16] Н.Н. Нифтиев, М.А. Алиджанов, О.Б. Тагиев, М.Б. Мурадов. ФТП, 38, 550 (2004).
- [17] Н.Н. Нифтиев. ФТП, 38, 166 (2004).
- [18] Н.Н. Нифтиев. ФТП, 38, 522 (2004).
- [19] N. Bettger, V. Bruksin. Phys. Status Solidi B, 113, 9 (1982).
- [20] Б.И. Шкловский, А.Л. Эфрос. Электронная свойства легированных полупроводников (М., Наука, 1979).
- [21] В.В. Брыксин. ФТТ, 22, 2441 (1980).

Редактор Л.В. Шаронова

Electrical AC conductivity of FeGalnSe₄

N.N. Niftiyev¹, F.M. Mammadov², M.B. Muradov³

 ¹ Azerbaijan State Pedagogical University, Az-1000 Baku, Azerbaijan
² Institute of Catalysis and Inorganic Chemistry named after academician M. Nagiyev, Azerbaijan National Academy of Sciences, Az-1143 Baku, Azerbaijan
³ Baku State University, Az-1148 Baku, Azerbaijan

Abstract The results of studying frequency and temperature dependences of AC electrical conductivity in FeGaInSe₄ crystals are presented. It was found in the frequency interval $f = 5 \cdot 10^4 - 10^6$ Hz, the regularity $\sigma \propto f^s$ ($0.1 \le s \le 1.0$) holds for electrical conductivity. From the temperature dependences the activation energies were determined. It is shown that in the FeGaInSe₄ crystal, the frequency dependence of electrical conductivity can be explained using the multiplet model, which means that the conductivity in these crystals is characterized by a band-hop mechanism.