02;13

Влияние температуры мишени на образование нанорельефа при облучении газовыми кластерными ионами

© Д.С. Киреев¹, А.Е. Иешкин¹, А.А. Шемухин²

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ² Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова, Москва, Россия E-mail: dmtr.kireeff6497@yandex.ru

Поступило в Редакцию 28 августа 2019 г. В окончательной редакции 31 января 2020 г. Принято к публикации 6 февраля 2020 г.

> Проведено исследование нанорельефа, формирующегося на поверхности меди под действием наклонного пучка кластерных ионов при различных дозах обучения и температурах мишени. Образующийся нанорельеф с увеличением дозы развивается в упорядоченную волнообразную структуру. Обнаружено, что при увеличении температуры мишени происходит сглаживание исходной шероховатости. Указаны механизмы, ответственные за формирование топографии поверхности, и сделаны оценки их эффективности.

> Ключевые слова: кластерные ионы, распыление, нанорельеф, самоорганизация, атомно-силовая микроскопия.

DOI: 10.21883/PJTF.2020.09.49362.18021

Современные технологии, применяемые при производстве элементов и устройств электроники, оптики, сенсорики, предъявляют высокие требования к состоянию поверхности материалов, в частности к имеющемуся на поверхности рельефу. Эти требования варьируются в зависимости от типа прикладных задач. Например, быстрый рост степени интеграции в электронных схемах значительно влияет на требования к планарности поверхности полупроводниковых структур на всех этапах создания микросхем и высокому качеству кристалличности интерфейсных слоев [1]. Одним из способов достижения высокого уровня гладкости поверхности различных материалов является использование ионных пучков. В частности, хорошо зарекомендовала себя в этой области технология ускоренных газовых кластерных ионов [2-4].

Известно, что сглаживание шероховатостей кластерными ионами происходит при нормальном падении ионного пучка на поверхность. Напротив, наклонное падение пучка может приводить к развитию поверхностного нанорельефа [5]. Появление волнообразного рельефа на кремнии было продемонстрировано в [6], аналогичный рельеф на золоте исследован в [7]. Обзор имеющихся на настоящий момент данных, касающихся формирования волн при наклонном падении кластерных ионов, приведен в [8]; там обсуждаются возможности использования этого явления, например, для создания сенсорных структур на основе плазмонного резонанса.

Несмотря на то что существует большое количество работ, направленных на исследование возможности сглаживания и модификации поверхности с помощью пучков ускоренных кластерных ионов, на данный момент процессы формирования рельефа на облучаемой поверхности не изучены в достаточной степени. В частности, неизвестна роль температуры облучаемой мишени. В настоящей работе описан нанорельеф, формирующийся на поверхности меди при облучении кластерными ионами аргона в случае наклонного падения при комнатной температуре и нагреве мишени.

Облучение проводилось на ускорителе газовых кластерных ионов МГУ им. М.В. Ломоносова. Более подробно параметры данной установки и основные механизмы формирования кластерных ионов описаны в [9]. В качестве рабочего газа, из которого формировались кластерные ионы, использовался аргон особой чистоты. Поток кластерных ионов генерировался при адиабатическом расширении рабочего газа через сверхзвуковое сопло и последующей ионизации образовавшихся нейтральных кластеров. Полученные ионы ускорялись напряжением 10 kV. Процессы, происходящие при столкновении с мишенью атомарных и легких кластер-

Рис. 1. Схема эксперимента.

Рис. 2. РЭМ-изображения поверхности меди при облучении дозами $1.2 \cdot 10^{16}$ (*a*) и $4.2 \cdot 10^{16}$ ion/cm² (*b*) при комнатной температуре. На вставках приведены двумерные фурье-образы изображений, полученные методом БПФ. Стрелкой показано направление падения пучка кластерных ионов.

ных ионов, имеющих сравнительно высокую энергию на составляющий атом, коренным образом отличаются от случая тяжелых кластерных ионов [10]. Поэтому ускоренный ионный пучок проходил через область постоянного магнитного поля, и на мишень попадали кластерные ионы, состоящие более чем из 70 атомов аргона. Средний размер кластерных ионов, попадающих на мишень, контролировался времяпролетной системой и составлял 1200 атомов аргона на элементарный заряд.

Образцы были вырезаны из чистой поликристаллической меди в виде прямоугольных пластин размером $20 \times 10 \times 1.5$ mm. Поверхность полировалась свободным абразивом и очищалась в органических растворителях в ультразвуковой ванне. Среднеквадратичная остаточная шероховатость составляла 3-5 nm. При облучении кластерными ионами образец закреплялся на поверхности нагревателя, нормаль к поверхности которого составляла угол 50° к линии падения ионного пучка. Выбор угла обусловлен тем, что, согласно [7], наиболее эффективно рельеф развивается при углах падения кластеров в диапазоне 40-65°. Перед мишенью располагалась диафрагма диаметром 3 mm, изготовленная из титановой фольги (рис. 1). При проведении эксперимента каждый из образцов нагревался до температуры 400°С, затем при этой температуре осуществлялось его облучение с выбранной дозой, после чего образец остужался до комнатной температуры, смещался относительно диафрагмы и облучался с той же дозой при комнатной температуре. Температура мишени контролировалась термопарой. Облучение проводилось в вакууме, уровень которого составлял 2 · 10⁻³ Ра при нагреве мишени и 4 · 10⁻⁴ Ра в отсутствие нагрева. Дозы облучения измерялись интегратором тока и в приближении однозарядных ионов равнялись 1.2 · 10¹⁶ и $4.2\cdot 10^{16}\,cm^{-2}$.

Рельеф поверхности перед облучением и после него контролировался с помощью растрового электронного микроскопа (РЭМ) ZEISS Ultra 55 и атомно-силового

микроскопа (ACM) NT-MDT Solver Pro в полуконтактном режиме.

РЭМ-изображения области, облученной при комнатной температуре, приведены на рис. 2. На вставках представлены двумерные фурье-образы аналогичных изображений при меньшем увеличении, полученные методом быстрого преобразования Фурье (БПФ). При дозе облучения $1.2 \cdot 10^{16} \, \mathrm{cm}^{-2}$ на поверхности наблюдается слабо развитый рельеф, образованный зернами с характерным размером 15-20 nm. БПФ демонстрирует некоторую степень его упорядоченности в плоскости падения пучка. С увеличением дозы облучения развивается хорошо выраженный волнообразный рельеф с волновым вектором, лежащим в плоскости падения пучка. Длина волны составляет 145 nm и соответствует максимуму фурьепреобразования. Заметно, что, как и в случае меньшей дозы облучения, рельеф имеет зернистую структуру. Области образцов, облученные при температуре 400°С, на РЭМ-изображениях выглядят гладкими вне зависимости от дозы, и эти изображения мы не приводим.

На рис. 3 представлены результаты исследования с помощью ACM поверхности образца, облученного дозой $4.2 \cdot 10^{16}$ cm⁻². Среднеквадратичные значения шероховатости, определенные по области размером $2 \times 2 \mu$ m, составляют 7.3 nm для комнатной температуры облучения и 0.7 nm для повышенной температуры. Последнее значение существенно ниже исходной величины шероховатости. Таким образом, ионная бомбардировка в таких условиях не только не приводит к развитию волнообразного рельефа, но и обеспечивает сглаживание поверхности.

Определенная по профилю АСМ-изображения характерная высота волнообразного рельефа от впадины до выступа равняется 15–20 nm, длина волны соответствует приведенному ранее значению 145 nm. Отметим, что длина волны наблюдаемого нами рельефа точно укладывается в закономерность, полученную в [6] для золота, облученного кластерами со средним размером

Рис. 3. АСМ-изображения поверхности меди при облучении дозой $4.2 \cdot 10^{16}$ ion/cm²: *a* — при комнатной температуре, *b* — при температуре 400°С. *c* — профиль волнообразного рельефа, образованного при комнатной температуре. Стрелками показано направление падения пучка кластерных ионов.

3000 атомов аргона и энергией 30 keV, т.е. со средней энергией в расчете на один атом кластера, близкой к нашей; среднеквадратичная шероховатость также близка к значению, указанному в этой работе.

Оценка эффективной толщины удаленного кластерами слоя вещества [11] с учетом зависимости коэффициента распыления от угла падения [12] дает значения 30-50 nm. Это незначительно превосходит глубину волнообразного рельефа. Таким образом, только зависимость коэффициента распыления от локальных угла падения и кривизны поверхности не может привести к формированию такого рельефа. Его формирование обеспечивается также за счет перераспределения вещества вдоль поверхности при диффузии и переосаждении распыленных атомов [13].

В то же время поверхностная диффузия обеспечивает механизм сглаживания рельефа. Оценим изменение коэффициента поверхностной диффузии D_s при нагреве мишени. Считая, что коэффициент D_s равен произведению концентрации адатомов n_a на коэффициент их диффузии D_a [14], получаем

$$D_s = n_a D_a = n_a D_0 \exp\left(-\frac{E_m^a}{kT}\right),$$

где E_m^a — энергия миграции адатома. В условиях ионного облучения в приведенной выше формуле предэкспоненциальный множитель определяется в основном темпом генерации дефектов на поверхности и остается неизменным в условиях эксперимента. Подстановка значений энергии миграции [14] показывает, что изменение температуры от комнатной до 400°С приводит к увеличению коэффициента поверхностной диффузии на два порядка, что и обеспечивает сглаживание поверхности мишени при нагреве.

Таким образом, в работе проведено исследование нанорельефа, формирующегося при наклонном облучении мишени кластерными ионами, в зависимости от дозы облучения и температуры мишени. Показано, что при комнатной температуре на поверхности развивается рельеф, с увеличением дозы переходящий в упорядоченный волнообразный. Обнаружено, что с увеличением температуры мишени развития рельефа не происходит. Более того, происходит сглаживание исходной шероховатости. Усиление эффекта сглаживания поверхности при повышенной температуре можно использовать для более эффективной планаризации материалов кластерными ионами.

Благодарности

Авторы выражают благодарность А.А. Татаринцеву и А.С. Трифонову за помощь при микроскопическом исследовании образцов.

Финансирование работы

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 18-32-20193).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Шемухин А.А., Балакиин Ю.В., Черныш В.С., Голубков С.А., Егоров Н.Н., Сидоров А.И. // ФТП. 2014. Т. 48. В. 4. С. 535–538. DOI: 10.1134/S1063782614040265
- Yamada I, Matsuo J, Toyoda N, Kirkpatrick A. // Mater. Sci. Eng. R. 2001. V. 34. P. 231–295.
 DOI: 10.1016/S0927-796X(01)00034-1
- [3] Ieshkin A.E., Kireev D.S., Ermakov Yu.A., Trifonov A.S., Presnov D.E., Garshev A.V., Anufriev Yu.V., Prokhorova I.G., Krupenin V.A., Chernysh V.S. // Nucl. Instr. Meth. B. 2018.
 V. 421. P. 27–31. DOI: 10.1016/j.nimb.2018.02.019
- [4] Коробейщиков Н.Г., Николаев И.В., Роенко М.А. // Письма в ЖТФ. 2019. Т. 45. В. 6. С. 30–32. DOI: 10.21883/PJTF.2019.06.47496.17646
- [5] Sumie K., Toyoda N., Yamada I. // Nucl. Instr. Meth. B. 2013.
 V. 307. P. 290–293. DOI: 10.1016/j.nimb.2013.01.087
- [6] Lozano O., Chen Q.Y., Tilakaratne B.P., Seo H.W., Wang X.M., Wadekar P.V., Chinta P.V., Tu L.W., Ho N.J., Wijesundera D., Chu W.K. // AIP Adv. 2013. V. 3. P. 062107. DOI: 10.1063/1.4811171
- [7] Tilakaratne B.P., Chen Q.Y., Chu W.K. // Materials. 2017.
 V. 10. P. 1056. DOI: 10.3390/ma10091056
- [8] Toyoda N., Tilakaratne B., Saleem I., Chu W-K. // Appl. Phys. Rev. 2019. V. 6. P. 020901. DOI: 10.1063/1.5030500
- [9] Киреев Д.С., Данилов А.В., Иешкин А.Е., Черныш В.С. // Вестн. РГРТУ. 2018. № 66. С. 40–48. DOI: 10.21667/1995-4565-2018-66-4-2-40-48
- [10] Popok V.N. // Rev. Adv. Mater. Sci. 2014. V. 38. P. 7-16.
- [11] Seah M.P. // J. Phys. Chem. C. 2013. V. 117. P. 12622–12632.
 DOI: 10.1021/jp402684c
- [12] Kitani H., Toyoda N., Matsuo J., Yamada I. // Nucl. Instr. Meth. B. 1997. V. 121. P. 489–492.
- DOI: 10.1016/S0168-583X(96)00556-3 [13] Ieshkin A.E., Kireev D.S., Tatarintsev A.A., Chernysh V.S. //
- Nucl. Instr. Meth. B. 2019. V. 460. P. 165–168. DOI: 10.1016/j.nimb.2019.03.054
- [14] Елманов Г.Н., Залужный А.Г., Скрытный В.И., Смирнов Е.А., Яльцев В.Н. Физическое материаловедение. Т. 1. Физика твердого тела. М.: МИФИ. 2007. 636 с.