¹⁷ Термическая устойчивость карбинофуллеренов С₃₈, С₆₂ и С₆₄

© А.И. Подливаев^{1,2}

¹ Национальный исследовательский ядерный университет "МИФИ",

Москва, Россия

² Научно-исследовательский институт проблем развития научно-образовательного потенциала молодежи, Москва, Россия

E-mail: AIPodlivayev@mephi.ru

Поступила в Редакцию 30 января 2020 г. В окончательной редакции 30 января 2020 г. Принята к публикации 30 января 2020 г.

> Методом молекулярной динамики изучена термическая устойчивость недавно предсказанных карбинофуллеренов С₃₈, С₆₂ и С₆₄. Определены каналы их распада и температурные зависимости времени жизни. Найдены значения энергий активации и частотных факторов в законе Аррениуса. Обнаружены новые изомеры карбинофуллеренов С₃₈ и С₆₂ более термодинамически устойчивые, чем исходные карбинофуллерены.

Ключевые слова: углерод, карбин, карбинофуллерены, молекулярная динамика.

DOI: 10.21883/FTT.2020.06.49361.014

1. Введение

Открытие двумерного углеродного материала графена [1], одномерных нанотрубок [2] и карбина [3], а также фуллеренов [4] и других нульмерных структур [5-8] вызвало интерес к синтетическим углеродным структурам низкой размерности. Особенности межатомного взаимодействия углеродных аллотропов таковы, что комбинации нульмерных структур способны образовывать одно, двух и трехмерные термически устойчивые кристаллы. Исходные нульмерные структуры при этом, являясь элементами новых кристаллов, сохраняют свою форму. Так фуллерены С₆₀ образуют трехмерное вещество фуллерит [9,10]. Одним из примеров одномерной синтетической структуры являются пиподы [11,12] — цепочки фуллеренов, помещенных в углеродную нанотрубку. В работе [13] для фуллеренов С20 экспериментально показано наличие в газовой фазе заряженных комплексов $(C_{20})_k^+$ с k = 2-13. Согласно расчетам, проведенных в рамках модели сильной связи углеродный кластер С8, имеющий форму куба, способен формировать трехмерную [14], двумерную [15] и одномерную [16] структуры (поликубаны) с сильной ковалентной связью.

Карбинофуллерены [17] (некоторые представители этой группы изображены на рис. 1) выделяются среди других нульмерных структур упругостью — способностью к восстановлению при сильной деформации. Данная особенность обусловлена тем, что кабинофуллерены являются замкнутыми структурами, состоящими из длинных карбиновых цепочек, атомы в которых имеет двух соседей и находятся в состоянии *sp*-гибридизации (см. рис. 1). При деформации карбинофуллерена изменяются не столько длины ковалентных углеродуглеродных связей в цепочках, сколько углы между ними. Вследствие этих особенностей цепочки карбинофуллеренов (C_{20})_k, k = 2-4 не только термически устойчивы, но и выдерживают критическую деформацию $\delta = 21-23\%$ [18]. Цепочки карбин-карбинофуллеренов (карбинофуллерены C₂₀ в них разделены атомами углерода) C_{k-1}(C₂₀)_k, k = 2-4 также устойчивы и выдерживают аномально высокую критическую деформацию $\delta = 26-30\%$ [19].

Необходимым условием термической устойчивости синтетических кристаллов, состоящих из нульмерных углеродных структур является термическая устойчивость этих нульмерных структур в исходном (изолированном) состоянии. Так для фуллерена C_{60} энергия термического дефектообразования по данным различных источников лежит в интервале 6-8 eV [20-25]. Энергия активации распада классического фуллерена C_{20} , полученная в рамках ортогональной модели сильной связи $\sim 7 \text{ eV} [26]$, а энергия активации распада карбинофуллерена C_{20} (см. рис. 1, *a*), полученная в рамках неортогональной модели сильной связи составляет 2.6 eV [27].

В настоящей работе будет исследована термическая устойчивость карбинофуллеренов C_{38} , C_{62} и C_{64} . Эти структуры представлены на рис. 1, b-d. Будут определены каналы их распада (или отжига в более устойчивые изомеры), а также найдены значения соответствующих энергий активации и частотных факторов в законе Аррениуса.

2. Методы расчета

Динамическое моделирование цепочек проводилось в рамках микроканонического ансамбля [28], в котором сумма потенциальной и кинетической энергия сохраняется при движении атомов. В качестве исходной выбиралась равновесная атомная конфигурация (см. рис. 1, *b*, *c*, *d*). Начальные скорости атомов подчинялись распределению Максвелла с различными температура-

Рис. 1. Карбинофуллерены C₂₀ (*a*), C₃₈ (*b*), C₆₂ (*c*), C₆₄ (*d*).

ми. Роль температуры в микроканоническом ансамбле играет так называемая микроканоническая температура *T_m*, определяемая по формуле [29,30]

$$\langle E_{kin}\rangle = \frac{1}{2}\,k_B T_m(3n-6),$$

где $\langle E_{kin} \rangle$ — усредненная по времени кинетическая энергия системы, n — число атомов в ней, k_B — постоянная Больцмана. Полагается, что значения полного импульса и момента импульса системы равны нулю. Этот подход известен как "теория ограниченного теплового резервуара" (finite heat bath theory) [31,32]. В рамках этой теории среднее время жизни τ изолированной системы определяется следующим приближенным аналогом формулы Аррениуса с поправкой Клотца (Klots) первого порядка [31,32]:

$$\tau^{-1}(T_m) \approx A \exp\left(-E_a/(k_B T^*)\right),\tag{1}$$

где A — частотный фактор, E_a — энергия активации, $T^* = T_m - E_a/2C$, $C = (3n - 6)k_B$ — микроканоническая теплоемкость.

Межатомные взаимодействия описывались в рамках неортогональной модели сильной связи [33], менее точной чем методы *ab initio*, но существенно превосходящей их по скорости счета. При этом данная модель демонстрирует хорошее согласование с более строгими методиками, основанными на теории функционала плотности, для исследованных ранее систем, содержащих атомы углерода в состояниях с различными типами гибридизации [34,35]. Кроме того, она успешно применялась для исследования термической и механической устойчивости кластеров C_{20} , графеновых и других углеродных систем (см. работы [36–41] и ссылки в них).

Для найденных межатомных сил уравнения движения Ньютона решались численно методом скоростей Верле (аналог метода Штёрмера второго порядка точности) с шагом по времени 0.3 fs. После термического распада каждого карбинофуллерена (или его отжига в более устойчивый изомер) методом градиентного спуска определяется равновесная конфигурация и энергия связи новой атомной структуры при нулевой температуре.

Рис. 2. Изомеры карбинофуллерена C_{38} : C_{38}^1 (*a*), C_{38}^2 (*b*), C_{38}^3 (*c*). Символами C0 отмечены атомы, имевшие в исходном карбинофуллерене *sp*³-гибридизацию, C1–3 — имевшие *sp*-гибридизацию.

3. Результаты и их обсуждение

3.1. Карбинофуллерен С₃₈

Карбинофуллерен C_{38} (см. рис. 1, *b*) может быть представлен как карбинофуллерен C_{20} (см. рис. 1, *a*), два полюсных атома которого соединены 18-атомной карбиновой цепочкой. При этом полюсные атомы, образующие ковалентные связи с тремя своими соседями (*sp*²-гибридизация электронных орбиталей) в кластере C_{20} увеличивают степень гибридизации до *sp*³, образуя дополнительную связь с крайними атомами длинной карбиновой цепочки.

Величина энергии связи E_b карбинофуллерена C_{38} (определяемая как разность между полной энергией равновесного кластера и энергией составляющих изолированных атомов углерода) равна -255.579 eV(-6.73 eV/atom). В дальнейшем энергия связи в исходных карбинофуллеренах будет обозначаться символом $E0_b$, а переменной E_b будет обозначаться энергия образующихся изомеров. Для карбинофуллерена C_{20} величина $E0_b = -133.649 \text{ eV}$ (-6.68 eV/atom) [27]. Более низкая удельная энергия (потенциальная энергия в расчете на один атом) свидетельствует о том, что карбинофуллерен C_{38} термодинамически более устойчив, чем карбинофуллерен C_{20} .

Моделирование динамики кластера проводилось при температурах $T_m = 1300-3200$ К. В процессе эволюции кластера изменялась гибридизация sp^3 одного из двух полюсных атомов (на рис. 1, *b* представлен как C0), при этом наблюдалось образование трех различных изомеров (обозначаемых далее как C_{38}^1 , C_{38}^2 и C_{38}^3). Структура изомеров C_{18}^1 , C_{38}^2 и C_{38}^3 представлена на рис. 2, *a*, *b* и *c* соответственно. Частоты возникновения изомеров C_{38}^1 , C_{38}^2 и C_{38}^3 при термическом распаде исходного карбинофуллерена, а также изменение энергии связи $\delta E = E_b - E0_b$ равны соответственно 45, 40, 15% и -0.62, -0.70, -0.37 eV. Отрицательные значения величины δE свидетельствуют о том, что образовавшиеся под воздействием температуры изомеры энергетически более выгодны, чем исходный карбинофуллерен С₃₈. В этом случае, видимо, правильнее говорить не о процессе распада, а об отжиге данной структуры.

На рис. 2, a видно, что изомер C_{38}^1 образуется следующим образом: крайний атом 6-атомной цепочки С3 отрывается от полюсного атома СО и образует ковалентную связь с крайним атомом С1 18-атомной цепочки. При этом гибридизация sp³ электронной системы полюсного атома C0 изменяется на sp^2 , а гибридизация крайнего атома С1 18-атомной цепочки изменяется с sp на sp². Похожая трансформация наблюдается при образовании изомера С³₃₈, только оторвавшийся атом СЗ присоединяется не к крайнему атому 18-атомной цепочки, а к ближайшему атому соседней 6-атомной цепочки С2 (см. рис. 2, c). Изомер С³₃₈ образуется при отрыве крайнего атома СЗ 6-атомной цепочки от полюсного атома без его присоединения к другим атомам (см. рис. 2, b), а 6-атомная цепочка цепочка, к которой принадлежит атом СЗ распрямляется. Соотношение энергий δE всех трех изомеров свидетельствует о высокой жесткости 6-атомной цепочки. Действительно, максимальная кривизна цепочек в изомере С³₃₈ приводит к заметному повышению его потенциальной энергии по сравнению с изомерами C¹₃₈ и C²₃₈. Несмотря на различный уровень напряженности ковалентных связей в обнаруженных изомерах, энергия всех изомеров, имеющих в своем составе один атом с sp^3 -гибридизацией ниже, чем энергия исходного карбинофуллерена, содержащего два таких атома. Эта тенденция для кластеров С38 вполне соответствует выводу, сделанному в работе [17] об энергетической невыгодности карбинофуллеренов, содержащих большое количество атомов с *sp*³-гибридизацией.

На рис. 3 представлена температурная зависимость времени жизни карбинофуллерена С₃₈. Регрессионный анализ данных "численного эксперимента" дает следую**Рис. 3.** Зависимость времени жизни τ карбинофуллерена С₃₈ от обратной температуры T^* (см. текст). Точки — результаты численного счета. Пунктирная линия — линейная аппроксимация методом наименьших квадратов.

щие значения энергии активации и частотного фактора распада: $E_a = 1.13 \pm 0.15 \text{ eV}$, $A = (5.3 \pm 1.0) \cdot 10^{13} \text{ s}^{-1}$. Для времени распада кластера по формуле (1) получим $\tau \sim 2 \cdot 10^{60} \text{ s}$ при $T_m = 77 \text{ K}$, $\tau \sim 1.8 \cdot 10^5 \text{ s}$ при $T_m = 300 \text{ K}$, $\tau \sim 10^{-8} \text{ s}$ при $T_m = 1000 \text{ K}$ и т.д.

Кинетическая устойчивость отдельного карбинофуллерена C₂₀ выше, чем у карбинофуллерена C₃₈ (энергия активации распада карбинофуллерена C₂₀, полученная в рамках неортогональной модели сильной связи [33] составляет 2.6 eV [27]). Однако энергия активации распада

C0

карбинофуллерена C_{38} существенно выше аналогичных величин для цепочек карбинофуллеренов C_{20} и цепочек карбинофуллеренов C_{20} , разделенных атомами углерода равны (величины этих энергий равны, соответственно 0.15-0.48 и 0.29-0.31 eV [18,19] в зависимости от длины цепочек). Карбинофуллерен C_{38} можно рассматривать как элемент цепочек карбинофуллеренов C_{20} , разделенных 18-ю атомами углерода. При таком подходе приведенные выше соотношение энергий активаций косвенно свидетельствуют о том, что от цепочек карбинофуллеренов C_{20} , разделенных большим количеством атомов углерода (исключающих слияние соседних карбинофуллеренов) можно ожидать высокой термической устойчивости.

3.2. Карбинофуллерен С₆₂

Карбинофуллерен C₆₂ (см. рис. 1, *c*) состоит из двух sp^2 -гибридизованных (полюсных) атомов, расположенных на оси симметрии кластера, один из которых обозначен на этом рисунке как C1. С каждым из полюсных атомов связаны по три sp^3 -гибридизованных атома (два из них обозначены как C0 и C2), к каждому из которых, в свою очередь, присоединены две 8-и и одна двухатомная карбиновая цепочки. Величина энергии связи карбинофуллерена C₆₂ $E0_b = -410.615 \, \text{eV}$ ($-6.62 \, \text{eV}/\text{atom}$).

Моделирование динамики кластера C₆₂ проводилось при температурах $T_m = 850-2050$ К. Также как при отжиге карбинофуллерена C₃₈ в процессе эволюции кластера C₆₂ число *sp*³-гибридизованных атомов уменьшалось. Наблюдалось равновероятное образование двух различных изомеров (обозначаемых ниже как C¹₆₂ и C²₆₂). Структура изомеров C¹₆₂ и C²₆₂ представлена на рис. 4, *a* и *b* соответственно. Изменения энергии связи $\delta E = E_b - E0_b$ для изомеров C¹₆₂ и C²₆₂ равны соответственно, -2.31 и -0.45 eV. Также как и в случае с карбинофуллереном C₃₈, в C₆₂ величины δE имеют

b

Рис. 4. Изомеры карбинофуллерена C_{62} : C_{62}^1 (*a*), C_{62}^2 (*b*).

Рис. 5. То же, что на рис. 3, для карбинофуллерена С₆₂.

отрицательные значения, т.е. образовавшиеся под воздействием температуры изомеры энергетически более выгодны, чем исходный карбинофуллерен C₆₂.

Изомер С¹₆₂ получается из исходного карбинофуллерена при разрыве связей между атомами СО-С1 и С2-С3 и образованием новой связи между атомами С1-С3. После этой трансформации исходно sp³-гибридизованные атомы C0 и C2 становятся *sp*²-гибридизованными, а новых атомов с *sp*³-гибридизацией не возникает (см. рис. 4, a). Изомер C_{62}^2 образуется из исходного карбинофуллерена при разрыве связи между sp³-гибридизованным атомом C0 и прилежащим к нему sp-гибридизованным крайним атомом 8-атомной цепочки С4 с последующим образованием ковалентной связи между оторвавшимся атомом и ближайшим атомом С5 соседней 8-атомной цепочки (см. рис. 4, b). При этой трансформации исходно *sp*³-гибридизованный атом С0 становится sp^2 -гибридизованным, а новых атомов с *sp*³-гибридизацией не возникает как и в случае с предыдущим изомером. Более низкая потенциальная энергия изомеров C_{62}^1 и C_{62}^2 по сравнению с исходным С62 также подтверждает вывод, сделанный в работе [17] об энергетической невыгодности карбинофуллеренов, содержащих большое количество атомов с sp³-гибридизацией.

На рис. 5 представлена температурная зависимость времени жизни карбинофуллерена C₆₂. Статистический анализ дает следующие значения энергии активации и частотного фактора распада: $E_a = 0.444 \pm 0.062$ eV, $A = (2.8 \pm 0.4) \cdot 10^{13} \text{ s}^{-1}$. Для времени распада кластера по формуле (1) получим $\tau \sim 4 \cdot 10^{15}$ s при $T_m = 77$ K, $\tau \sim 10^{-6}$ s при $T_m = 300$ K, $\tau \sim 10^{-11}$ s при $T_m = 1000$ K и т.д.

3.3. Карбинофуллерен С₆₄

Карбинофуллерен C₆₄ (см. рис. 1, d) состоит из четырех sp^2 -гибридизованных (полюсных) атомов, соединенных шестью 10-атомными карбиновыми цепочками. Величина энергии связи карбинофуллерена C₆₄ $E0_b = -438.40 \text{ eV} (-6.85 \text{ eV/atom}).$

Моделирование динамики кластера C_{64} проводилось при температурах $T_m = 1850 - 3400$ К. Наблюдалось образование единственного изомера, структура которого представлена на рис. 6 и по форме напоминает ложку. Изомер образуется из исходного карбинофуллерена при разрыве связи между *sp*²-гибридизованным полюсным атомом и прилежащим к нему *sp*-гибридизованным край-

Рис. 6. Изомер, образующийся при распаде карбинофуллерена С₆₄.

Рис. 7. То же, что на рис. 3, для карбинофуллерена С₆₄.

ним атомом 10-атомной цепочки, Изменения энергии связи $\delta E = E_b - E0_b$ при образовании данного изомера равна, 1.62 eV. Энергия положительна — образовавший изомер менее термодинамически стабилен, чем исходный кабинофуллерен C₆₄.

На рис. 7 представлена температурная зависимость времени жизни карбинофуллерена С₆₄. Статистический анализ дает следующие значения энергии активации и частотного фактора распада: $E_a = 1.80 \pm 0.23$ eV, $A = (3.5 \pm 0.6) \cdot 10^{14} \text{ s}^{-1}$. Для времени распада кластера по формуле (1) получим $\tau \sim 5 \cdot 10^{15}$ s при $T_m = 300$ K и $\tau \sim 3 \cdot 10^{-6}$ s при $T_m = 1000$ K.

4. Заключение

В настоящей работе термическая устойчивость карбинофуллеренов C₃₈, C₆₂ и C₆₄ изучена путем компьютерного моделирования на наносекундной временной шкале в широком диапазоне температур. Определены температурные зависимости времен жизни τ этих кластеров до момента их распада. Установлено, что карбинофуллерены C₃₈ C₆₂ и C₆₄ достаточно устойчивы при температуре жидкого азота: для наименее устойчивого из них карбинофуллерена C₆₂ $\tau \sim 10^7$ лет. При комнатной температуре T = 300 К времена жизни карбинофуллеренов C₆₂, C₃₈ и C₆₄ равны, соответственно, 1 μ s, двое суток и 10⁸ лет.

Показано, что после распада (отжига) карбинофуллерены C₃₈ и C₆₂ переходят в изомеры с более низкой энергией. Карбинофуллерен C₆₄ напротив, при распаде повышает свою энергию.

Полученные результаты свидетельствуют о том, что из трех исследованных карбинофуллеренов наиболее перспективным элементом для создания карбинофуллерита с высокой термической устойчивостью и упругостью является карбинофуллерен С₆₄.

Благодарности

Автор благодарен ушедшему от нас Леониду Артуровичу Опенову, вместе с которым начинал работу над карбинофуллереновой тематикой.

Финансирование работы

Работа поддержана Российским фондом фундаментальных исследований (грант № 18-02-00278–а) и выполнена при поддержке Министерства науки и высшего образования РФ в рамках Программы повышения конкурентоспособности Национального исследовательского ядерного университета "МИФИ".

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science **306**, 666 (2004).
- [2] S. Iijima. Nature **354**, 56 (1991).
- [3] В.И. Касаточкин, А.М. Сладков, Ю.П. Кудрявцев, Н.М. Попов, В.В. Коршак. ДАН СССР 177, 358 (1967).
- [4] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature 318, 162 (1985).
- [5] D. Tománek, M.A. Schluter. Phys. Rev. Lett. 67, 2331 (1991).
- [6] C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho. Phys. Rev. B 47, 9878 (1993).
- [7] R.O. Jones, G. Seifert. Phys. Rev. Lett. 79, 443 (1997).
- [8] L.A. Openov, V.F. Elesin. Письма в ЖЭТФ 68, 695 (1998).
- [9] W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman. Nature 347, 354 (1990).
- [10] А.В. Елецкий, Б.М. Смирнов. УФН 165, 977 (1995).
- [11] A.A. Farajian, M. Mikami. J. Phys.: Condens. Matter 13, 8049 (2001).
- [12] K.S. Grishakov, K.P. Katin, M.M. Maslov. Diamond Rel. Mater. 84, 112 (2018).
- [13] R. Ehlich, P. Landenberger, H. Prinzbach. J. Chem. Phys. 115, 5830 (2001).
- [14] T. Yildirim, P.M. Gehring, D.A. Neumann, P.E. Eaton, T. Emrick. Phys. Rev. Lett. 78, 4938 (1997).
- [15] М.М. Маслов, К.П. Катин, А.И. Авхадиева, А.И. Подливаев. Хим. физика **33**, 27 (2014).
- [16] K.P. Katin, M.M. Maslov. Adv. Condens. Matter Phys. 2015, 754873 (2015).
- [17] Е.А. Беленков, И.В. Шахова. ФТТ 53, 2265 (2011).
- [18] А.И. Подливаев, Л.А. Опенов. ФТТ 61, 793 (2019).
- [19] Л.А.Опенов, А.И. Подливаев. ФТТ 61, 2521 (2019).
- [20] J.-Y. Yi, J. Bernholc. J. Chem. Phys. 96, 8634 (1992).
- [21] R.L. Murry, D.L. Strout, G.K. Odom, G.E. Scuseria. Nature 366, 665 (1993).
- [22] R.L. Murry, D.L. Strout, G.E. Scuseria. Int. J. Mass Spectrom. Ion Proc. 138, 113 (1994).
- [23] B.R. Eggen, M.I. Heggie, G. Jungnickel. Science 272, 87 (1996).
- [24] Y. Kumeda, D. J. Wales. Chem. Phys. Lett. 374, 125 (2003).
- [25] H.F. Bettinger, B.I. Yakobsen, G.E. Scuseria. J. Am. Chem. Soc. 125, 5572 (2003).
- [26] И.В. Давыдов, А.И. Подливаев, Л.А. Опенов. ФТТ 47, 751 (2005).
- [27] А.И. Подливаев, Л.А. Опенов. ФТТ 61, 604 (2019).
- [28] E.M. Pearson, T. Halicioglu, W.A. Tiller. Phys. Rev. A 32, 3030 (1985).
- [29] C. Xu, G.E. Scuseria. Phys. Rev. Lett. 72, 669 (1994).
- [30] J. Jellinek, A. Goldberg, J. Chem. Phys. 113, 2570 (2000).
- [31] C.E. Klots. Z. Phys. D 20, 105 (1991).
- [32] J.V. Andersen, E. Bonderup, K. Hansen. J. Chem. Phys. 114, 6518 (2001).
- [33] M.M. Maslov, A.I. Podlivaev, K.P. Katin. Mol. Simulation 42, 305 (2016).
- [34] K.P. Katin, M.M. Maslov. J. Phys. Chem. Solids 108, 82 (2017).

- [35] K.P. Katin, S.A. Shostachenko, A.I. Avhadieva, M.M. Maslov. Adv. Phys. Chem. 2015, 506894 (2015).
- [36] А.И. Подливаев, Л.А. Опенов. ФТТ 60, 160 (2018).
- [37] Л.А. Опенов, А.И. Подливаев. ФТТ 60, 795 (2018).
- [38] Л.А. Опенов, А.И. Подливаев. Письма в ЖЭТФ 109, 746 (2019).
- [39] А.И. Подливаев. Письма в ЖЭТФ 110, 692 (2019).
- [40] Л.А. Опенов, А.И. Подливаев. ФТП 53, 724 (2019).
- [41] И.Ю. Долинский, К.П. Катин, К.С. Гришаков, В.С. Прудковский, Н.И. Каргин, М.М. Маслов. ФТТ **60**, 816 (2018).

Редактор К.В. Емцев