14,15 Лазерная нанофлюидика жидких кристаллов

© Izabela Śliwa¹, А.В. Захаров^{2,¶}

¹ Poznan University of Economics and Business, Poznan, Poland ² Институт проблем машиноведения РАН, Санкт-Петербург, Россия [¶] E-mail: izabela.sliwa@ue.poznan.pl, alexandre.zakharov@yahoo.ca

Поступила в Редакцию 13 января 2020 г. В окончательной редакции 13 января 2019 г. Принята к публикации 14 января 2019 г.

> Численными методами, в рамках нелинейного обобщения классической теории Эриксена–Лесли, допускающей учет термомеханических вкладов как в выражение для сдвигового напряжения, так и в уравнение баланса энтропии, описано несколько сценариев формирования гидродинамических течений в наноразмерных планарно-ориентированных жидкокристаллических (ПОЖК)-каналах. В результате формирования как градиента температуры ∇T , в изначально однородно прогретом ПОЖК-канале под действием сфокусированного лазерного излучения, так и градиента поля директора $\nabla \hat{\mathbf{n}}$, под действием статического электрического поля, естественно возникающего на границе раздела ЖК-фаза/твердое тело, и в результате взаимодействия ∇T и $\nabla \hat{\mathbf{n}}$, в наноразмерном ПОЖК-канале может окончательно сформироваться вихревой поток.

Ключевые слова: физика жидких кристаллов, нанофлюидика, термомеханические силы.

DOI: 10.21883/FTT.2020.06.49359.002

1. Введение

Интерес со стороны исследователей к нанофлюидике, то есть, области физики жидкостей в нанолитровых объемах $(1 nl = 10^{-12} m^3)$, продиктован многообещающими приложениями этих систем в биологии [1], оптоэлектронике [2] и различных сенсорах и датчиках [3], в основу которых положены анизотропные молекулярные жидкости и жидкокристаллические (ЖК) материалы. Часто манипуляции такими наноразмерными анизотропными молекулярными системами в сверхтонких капиллярах и каналах осуществляются с помощью внешнего электрического поля [4]. Этот метод транспортировки нанолитровых объемов одинаково применим как для молекулярных жидкостей, так и для манипулирования нанолитровыми объемами ЖК-материалов. Отличительной особенностью ЖК-систем от анизотропных молекулярных жидкостей является то, что при определенных термодинамических условиях в ЖК-системах формируется ориентационное упорядочение молекул, которое описывается полем директора $\hat{\mathbf{n}}$ [5]. Было показано, что взаимодействие градиентов поля директора $\nabla \hat{\bm{n}}$ и температуры ∇T ответственно за возникновение термомеханической силы (ТМС), которая, в свою очередь, ответственна за формирование устойчивого гидродинамического потока v ЖК-материалов в тонких и сверхтонких каналах и капиллярах [6]. Величина этого потока пропорциональна сдвиговой составляющей термомеханического вклада σ_{zx}^{tm} в тензор напряжения (TH) $v \sim \frac{d}{n} \sigma_{zx}^{tm}$, где η — сдвиговая вязкость ЖК-материала, а d — ширина ЖК-канала. Таким образом, необходимым

и достаточным условием возникновения направленного потока ЖК-материала в сверхтонких каналах и капиллярах под действием ТМС является наличие градиентов поля директора $\nabla \hat{\mathbf{n}}$ и температуры ∇T . Если локальный градиент температуры в объеме ЖК-фазы легко формируется с помощью лазерного излучения, то градиент поля директора удается сформировать, например, посредством гибридной ориентации ЖК-фазы, в которой ориентация поля директора на одной из поверхностей планарная, а на другой — гомеотропная. Все это указывает на то, что существует возможность немеханической транспортировки нанолитровых объемов ЖК-материала под действием сфокусированного лазерного излучения. В случае однородно-ориентированной ЖК-фазы, когда ориентация поля директора на ограничивающих поверхностях либо планарная, либо гомеотропная, направленное течение ЖК-фазы под действием градиента температуры отсутствует. В этом случае чтобы инициировать горизонтальное течение ЖК-фазы, необходимо деформировать однородно ориентированную ЖК-среду, с тем чтобы создать градиент поля директора. Этим фактором, который позволит деформировать планарноориентированную ЖК-полость, заключенную между двумя ограничивающими поверхностями, может служить перпендикулярно направленное электрическое поле. Таким полем может являться электростатическое поле двойного электрического слоя, естественно возникающего на границе раздела ЖК-фаза/твердое тело. Поскольку ЖК представляет собой слабый электролит, в котором число ионов практически равно числу катионов, то в пристенном слое на границе раздела ЖК-фаза/твердое тело возникает двойной электрический слой с плотностью заряда σ . Электрическое поле, создаваемое этим зарядом, пронизывает ЖК-фазу на расстояние порядка длины дебаевской экранировки λ_D [7] и способно деформировать пристенные слои однородно-ориентированной ЖК-полости. При этом возникает вопрос: какой должна быть плотность заряда двойного электрического слоя, для того чтобы осуществить деформацию ЖК-фазы и тем самым инициировать горизонтальный поток ЖК-материала в тонком капилляре или канале.

Исследование этих новых состояний будет проведено в рамках нелинейного обобщения классической теории Эриксена-Лесли [8,9] с учетом балансов массы, импульсов и моментов, действующих на единицу объема ЖК-материала, а также с учетом баланса энтропии [10]. Численными методами будут исследованы различные гидродинамические режимы формирования течений в наноразмерных планарно-ориентированных ЖК-полостях, заключенных между двумя параллельными границами, под действием градиента температуры и электростатического поля, естественно возникающего на границе раздела ЖК-фаза/твердое тело.

2. Основные уравнения

Рассмотрим длинный прямоугольный ЖК-канал с размерами L и d ($L \gg d$), ограниченный твердыми горизонтальными и вертикальными поверхностями. Допустим, что директор планарно ориентирован на всех поверхностях. Рассмотрим систему координат, отсчитываемую от нижней ограничивающей поверхности ЖК-канала так, что ось Х и орт і совпадают с направлением директора на нижней (верхней) ограничивающей поверхности $(\hat{\mathbf{i}} \parallel \hat{\mathbf{n}}_{z=-d})$, в то время как ось Z и орт $\hat{\mathbf{k}}$ направлены ортогонально ($\hat{\mathbf{k}} \perp \hat{\mathbf{n}}_{z=-d}$), а орт $\hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{i}}$. Будем предполагать, что переориентация поля директора $\hat{\mathbf{n}} = (n_x, 0, n_z) = \sin \theta \mathbf{i} + \cos \theta \mathbf{k}$ под действием градиента температуры ∇T , формирующегося за счет сфокусированного лазерного излучения и плотности заряда двойного электрического слоя σ , осуществляется в плоскости XZ. Здесь $\theta \equiv \theta(x, z, t)$ — полярный угол, образованный директором $\hat{\mathbf{n}}$ и ортом \mathbf{k} .

В случае когда нематик находится в контакте с твердой ограничивающей поверхностью, то имеет место избирательная адсорбция ионов. Так например, положительные ионы притягиваются поверхностью, в то время как отрицательные ионы (катионы) отталкиваются. Принимая во внимание тот факт, что ЖК-фаза обычно содержит практически равное количество ионов и катионов (слабый электролит), то находясь в контакте с твердой ограничивающей поверхностью образуется двойной электрический слой с плотностью заряда σ . Электростатическое поле **E**, инициируемое плотностью электрического заряда σ , проникает в объем ЖК-фазы на глубину порядка дебаевской длины экранировки $\lambda_{\rm D} = \sqrt{\frac{\epsilon\epsilon_0 k_B T}{2e^2 n_{eq}}}$ и может быть рассчитано в рамках теории Пуассона–Больцмана как [7]

$$\mathbf{E}(x,z) = E_x \mathbf{i} + E_z \mathbf{k},\tag{1}$$

где компоненты электрического поля имеют вид

И

$$E_{x} = E_{0} \left[\exp\left(-\frac{x}{\lambda_{\rm D}}\right) - \exp\left(-\frac{L-x}{\lambda_{\rm D}}\right) \right]$$
$$E_{z} = E_{0} \left[\exp\left(-\frac{z}{\lambda_{\rm D}}\right) - \exp\left(-\frac{d-z}{\lambda_{\rm D}}\right) \right].$$

соответственно, а $E_0 = \sigma/(\epsilon_0 \epsilon_a)$ — поверхностное электростатическое поле, ϵ_0 — диэлектрическая проницаемость вакуума, $\epsilon_a = (\epsilon_{\parallel} + 2\epsilon_{\perp})/3$ — диэлектрическая проницаемость ЖК-среды, ϵ_{\parallel} и ϵ_{\perp} — диэлектрические постоянные вдоль и поперек направления директора $\hat{\mathbf{n}}$ соответственно, $\epsilon = \epsilon_{\parallel} \cos^2 \theta_s + \epsilon_{\perp} \sin^2 \theta_s$, e — заряд протона, k_B — постоянная Больцмана, θ_s — значение угла между направлением директора $\hat{\mathbf{n}}_s$ на ограничивающей поверхности и ортом $\hat{\mathbf{k}}$ и n_{eq} — концентрация ионов в объеме ЖК-фазы.

Наша главная цель состоит в том, чтобы исследовать влияние локально формирующегося, с помощью лазерного излучения, градиента температуры ∇T в объеме ЖК-фазы и градиента поля директора $\nabla \hat{\mathbf{n}}$, формирующегося под влиянием электростатического поля Е, инициируемого плотностью электрического заряда σ , на характер гидродинамического потока в наноразмерном планарно-ориентированном ЖК (ПОЖК)канале. В нашем случае верхняя ограничивающая поверхность нагревается инфракрасным лазерным лучом, причем длительность и мощность лазерного импульса ограничена только тем условием, чтобы температура верхней ограничительной поверхности находилась в диапазоне температур, соответствующих существованию нематической фазы. В настоящей работе предлагается новый подход, описывающий механизм формирования сложного гидродинамического течения в наноразмерных ПОЖК-каналах под действием потока тепла

$$\lambda_{\perp} \left(\frac{\partial T(x, z, t)}{\partial z} \right)_{0 \le x \le L, z = d} = \mathbf{q}, \tag{2}$$

направленного ортогонально $\mathbf{q} = q\hat{\mathbf{k}}$ через верхнюю ограничивающую поверхность канала в ЖК-фазу, в то время как на остальных поверхностях ЖК-канала поддерживается постоянная температура

$$T_{0 \le x \le L, z=0} = T_{x=0, 0 < z < d} = T_{x=L, 0 < z < d} = T_w.$$
(3)

Здесь λ_{\perp} - коэффициенты теплопроводности ЖК-фазы в направлении, перпендикулярном направлению директора $\hat{\mathbf{n}}$.

Следует отметить, что планарная ориентация ЖК-канала предполагает, что на нижней, верхней и двух

боковых ограничивающих поверхностях выполнены следующие граничные условия для поля директора

$$(n_x)_{0 \le x < L, z = 0} = (n_x)_{0 \le x < L, z = d} = 1,$$

$$(n_x)_{x=0, 0 \le z < d} = (n_x)_{x=L, 0 \le z < d} = 1.$$
 (4)

В свою очередь, поле скорости $\mathbf{v} = u\hat{\mathbf{i}} + w\hat{\mathbf{k}}$ удовлетворяет условию прилипания

$$u_{0 \le x < L, z=0} = u_{0 \le x < L, z=d} = u_{x=0, 0 \le z < d} = u_{x=L, 0 \le z < d} = 0,$$

$$w_{0 \le x < L, z=0} = w_{0 \le x < L, z=d} = w_{x=0, 0 \le z < d} = w_{x=L, 0 \le z < d} = 0,$$

(5)

где $u \equiv v_x(x, z, t)$ и $w \equiv v_z(x, z, t)$ — компоненты вектора **v**.

Принимая во внимание тот факт, что ширина ЖК-канала варьируется в пределах нескольких сотен нанометров, будем считать, что плотность ЖК-фазы постоянна по сечению канала ($\rho = \text{const}$). Таким образом, мы имеем дело с несжимаемой ЖК-фазой, и условие несжимаемости $\nabla \cdot \mathbf{v} = 0$ принимает вид

$$u_{,x} + w_{,z} = 0,$$
 (6)

где $u_{,x} = \frac{\partial u}{\partial x}$.

В нашем случае гидродинамические уравнения, описывающие эволюцию как поля директора $\hat{\mathbf{n}}$ и скорости **v**, так и поля температуры *T* могут быть получены из условия баланса угловых и линейных моментов, действующих на единицу объема ЖК-фазы [8,9], а также баланса энтропии [10]. Так, уравнение баланса угловых моментов имеет вид [7]

$$\mathbf{T}_{el} + \mathbf{T}_{elast} + \mathbf{T}_{vis} + \mathbf{T}_{tm} = \mathbf{0}, \tag{7}$$

где $\mathbf{T}_{el} = -\epsilon_0 \epsilon_a \mathbf{E} \times \hat{\mathbf{n}} (\mathbf{E} \cdot \hat{\mathbf{n}})$ — электрический, $\mathbf{T}_{elast} = \frac{\delta \mathscr{W}_F}{\delta \hat{\mathbf{n}}} \times \hat{\mathbf{n}}$ — упругий, $\mathbf{T}_{vis} = \frac{\delta \mathscr{R}^{vis}}{\delta \hat{\mathbf{n}}_{,t}} \times \hat{\mathbf{n}}$ — вязкий и $\mathbf{T}_{tm} = \frac{\delta \mathscr{R}^{tm}}{\delta \hat{\mathbf{n}}_{,t}} \times \hat{\mathbf{n}}$ — термомеханический вклады в баланс угловых моментов соответственно (детали вычислений даны в Приложении), в то время как уравнение Навье–Стокса для поля скорости **v** принимает вид [7]

$$\rho \, \frac{d\mathbf{v}}{dt} = \nabla \cdot \boldsymbol{\sigma},\tag{8}$$

где $\sigma = \sigma^{\text{elast}} + \sigma^{\text{vis}} + \sigma^{\text{tm}} - \mathscr{P}\mathscr{I}$ — полный тензор напряжения (TH), в то время как его упругий, вязкий и термомеханический вклады имеют вид $\sigma^{\text{el}} = -\frac{\partial \mathscr{W}_F}{\partial \nabla \hat{\mathbf{n}}} \cdot (\nabla \hat{\mathbf{n}})^{\text{T}}, \sigma^{\text{vis}} = \frac{\delta \mathscr{R}^{\text{vis}}}{\delta \nabla \mathbf{v}}$ и $\sigma^{\text{tm}} = \frac{\delta \mathscr{R}^{\text{tm}}}{\delta \nabla \mathbf{v}}$ соответственно, а $\hat{\mathbf{n}}_{,t} = \frac{d\hat{\mathbf{n}}}{dt}$ — материальная производная поля директора $\hat{\mathbf{n}}$. Здесь $\mathscr{R} = \mathscr{R}^{\text{vis}} + \mathscr{R}^{\text{tm}} + \mathscr{R}^{\text{th}}$ — полная диссипационная функция Рэлея, в то время как $\mathscr{W}_F = \frac{1}{2} [K_1 (\nabla \cdot \hat{\mathbf{n}})^2 + K_3 (\hat{\mathbf{n}} \times \nabla \times \hat{\mathbf{n}})^2]$ — представляет собой плотность упругой энергии, а K_1 и K_3 коэффициенты упругости продольного и поперечного

Физика твердого тела, 2020, том 62, вып. 6

изгибов соответственно. В свою очередь *P* представляет собой гидростатическое давление в планарноориентированном ЖК-канале.

В случае прогревания верхней ограничивающей поверхности инфракрасным лазерным лучом, изменения поля температуры T(x, z, t) удовлетворяют уравнению теплопроводности [10]

$$\rho C_P \, \frac{dT}{dt} = -\nabla \cdot \mathbf{q},\tag{9}$$

где $\mathbf{q} = -T \frac{\delta \mathcal{R}}{\delta \nabla T}$ — тепловой поток через верхнюю ограничивающую поверхность в ЖК-фазу, а C_P — коэффициент теплоемкости нематика.

Для того чтобы исследовать эволюцию поля директора $\hat{\mathbf{n}}$ (или полярного угла $\theta(x, z, t)$) к его равновесному распределению по сечению ПОЖК-канала $\hat{\mathbf{n}}_{eq}(x, z)$, а также поля скорости $\mathbf{v}(x, z, t)$, вызванную взаимодействием градиентов поля директора $\nabla \hat{\mathbf{n}}$ и температуры ∇T , мы рассмотрим безразмерные аналоги уравнений (7)–(9). Так, безразмерное уравнение баланса моментов может быть записано в виде (детали изложены в Приложении)

$$\begin{aligned} \theta_{,\tau} &= -\frac{L}{d} \left(1 + \gamma_{12} \cos 2\theta \right) u_{,z} - \frac{E_z^2}{2} \sin 2\theta + \delta_1 \left[g(\theta) \theta_{,zz} \right. \\ &+ \frac{1}{2} \sin 2\theta \mathscr{K} \left(\theta_{,z}^2 - \frac{2d}{L} \theta_{,xz} \right) - \frac{2d}{L} \theta_{,x} \theta_{,z} \mathscr{K} \cos 2\theta \right] \\ &- \delta_2 \left[\frac{d}{4L} \chi_{,x} \theta_{,z} \sin 2\theta + \frac{d}{2L} \chi_{,z} \theta_{,x} \sin 2\theta \left(\frac{1}{2} + \cos^2 \theta \right) \right] \\ &+ \delta_2 \left[\chi_{,z} \theta_{,z} \left(1 + \frac{1}{2} \sin^2 \theta \right) \right], \end{aligned}$$
(10)

где $\overline{x} = x/L$ и $\overline{z} = z/d$ — безразмерные пространственные переменные, $\tau = \frac{\epsilon_0 \epsilon_a E_0}{\gamma_1} t$ — безразмерное время, $\mathcal{K} = 1 - K_{31}, g(\theta) = \sin^2 \theta + K_{31} \cos^2 \theta$ — функция полярного угла $\theta, K_{31} = K_3/K_1, \gamma_{21} = \gamma_2/\gamma_1, \delta_1 = \left(\frac{E_{\text{th}}}{\pi E_0}\right)^2$ и $\delta_2 = \xi \frac{T_{NI}}{K_1} \delta_1$ — четыре параметра ЖК-системы, $E_{\text{th}} = \frac{\pi}{d} \sqrt{\frac{K_1}{\epsilon_0 \epsilon_a}}$ — пороговое напряжение электрического поля **E**, $\xi \sim 10^{-12} J/mK$ — термомеханическая постоянная [6], γ_1 и γ_2 — коэффициенты вращательной вязкости, а T_{NI} — температура фазового перехода нематикизотропная фаза. Следует отметить, что в дальнейшем верхняя черта в обозначениях пространственных переменных x и z будет опущена.

Безразмерный аналог уравнения Навье–Стокса в нашем случае может быть записан в виде (детали изложены в Приложении)

$$\delta_{3} \frac{du}{d\tau} = \frac{d}{L} \left[\left(u_{,z} \mathscr{F}_{1} \right)_{,x} + \delta_{2} \chi_{,z} \theta_{,z} \mathscr{F}_{2} \right]_{,z} + \left[u_{,z} \mathscr{F}_{3} + \frac{d}{L} \left(\frac{\alpha_{1}}{\gamma_{1}} \sin 4\theta w_{,z} - \frac{1}{2} \left(1 - \gamma_{21} \cos 2\theta \right) \dot{\theta} \right) \right]_{,z},$$
(11)

$$\delta_{3} \frac{dw}{d\tau} = \left(-w_{,z} \mathscr{F}_{6} - \frac{1}{2} \gamma_{21} \sin 2\theta \dot{\theta} + \frac{L}{d} u_{,z} \mathscr{F}_{5} \right)_{,z} + (u_{,z} \mathscr{F}_{4})_{,x} + (\mathscr{P} + \mathscr{B})_{,z}, \qquad (12)$$

где множество функций \mathscr{F}_i $(i=1,\ldots,6)$ и \mathscr{B} имеют вид:

$$\begin{aligned} \mathscr{F}_1 &= \frac{1}{2\gamma_1} \sin 2\theta \left(\alpha_1 \sin^2 \theta + \frac{\alpha_5 + \alpha_6}{4} - \frac{\gamma_2}{2} \right), \\ \mathscr{F}_2 &= \frac{1}{4} \left(\sin 2\theta - 6 \sin^2 \theta - 3 \cos^4 \theta - \frac{1}{2} \sin^2 2\theta \right), \\ \mathscr{F}_3 &= \frac{1}{4\gamma_1} \left[\gamma_1 + \gamma_2 \cos 2\theta + 2\alpha_4 + 2(\alpha_5 + \alpha_6) \sin 2\theta \right], \\ \mathscr{F}_4 &= \mathscr{F}_1 + \frac{1}{2} \gamma_{21} \cos 2\theta - \frac{1}{2}, \\ \mathscr{F}_5 &= -\mathscr{F}_1 + \frac{\sin 2\theta}{4\gamma_1} \left(\alpha_5 + \alpha_6 + 2\alpha_1 \sin 2\theta \right), \\ \mathscr{F}_6 &= \mathscr{F}_1 - \frac{1}{\gamma_1} \left(2\alpha_1 + \alpha_5 + \alpha_6 - \alpha_1 \cos 2\theta \right), \end{aligned}$$

И

$$\mathscr{B} = \left[\frac{1}{2}\,\delta_2\chi_{,z}\theta_{,z}\,\sin 2\theta\left(1+\frac{1}{4}\,\sin^2\theta\right) - \delta_1g(\theta)\theta_{,z}^2\right]_{,z}$$

соответственно, $\dot{\theta} = \frac{d\theta}{d\tau}$ — материальная производная полярного угла, а $\delta_3 = \rho \frac{K_1}{\gamma_1^2} \delta_1^2$ — еще один параметр ЖК-системы. Следует отметить, что уравнение (12) было переписано с учетом условия несжимаемости $u_{,x} = -w_{,z}$. В свою очередь, безразмерное уравнение баланса энтропии принимает вид

$$\delta_4 \frac{d\chi}{d\tau} = \left(\Lambda \sin^2 \theta + \cos^2 \theta\right) \chi_{,zz} - (\Lambda - 1) \sin 2\theta \chi_{,z} \theta_{,z} + (\Lambda - 1) \frac{d}{L} \left[\sin 2\theta \chi_{,xz} - \cos 2\theta \left(\chi_{,x} \theta_{,z} + \chi_{,z} \theta_{,x}\right)\right],$$
(13)

где $\Lambda = \lambda_{\parallel}/\lambda_{\perp}, \chi \equiv \chi(x, z, \tau) = T(x, z, \tau)/T_{\text{NI}}$ — безразмерная температура, а $\delta_4 = \frac{\rho C_P K_1}{\gamma_1 \lambda_{\perp}}$ — еще один параметр ЖК-системы.

Теперь процесс релаксации поля директора в ПОЖК наноразмерном канале к его равновесному распределению по сечению канала под действием электрических, вязких, упругих и термомеханических сил может быть описан системой нелинейных дифференциальных уравнений в частных производных (10)–(13), с учетом соответствующих граничных условий для угла

$$\theta_{0 \le x < 1, z = -1} = \frac{\pi}{2}, \quad \theta_{x = \pm 1, -1 < z < 1} = \frac{\pi}{2}, \quad (14)$$

скорости

$$\mathbf{v}_{-1 < x < 10, z = \pm 1} = \mathbf{v}_{x = \pm 1, -1 < z < 1} = 0, \tag{15}$$

и температуры

$$\chi_{-1 \le x \le 1, z = -1} = \chi_{w},$$

$$\chi_{-1 \le x \le 1, z = -1} = \chi_{x = -1, -1 < z < 1} = \chi_{x = 1, -1 < z < 1} = \chi_{w},$$

$$\left(\frac{\partial \chi(x, z, \tau)}{\partial z}\right)_{0 \le x \le 1, z = 1} = \overline{q}.$$
(16)

Здесь $\chi_w = T_w/T_{\rm NI}$ — значение безразмерной температуры на ограничивающих поверхностях, $\overline{q} = -\frac{qd}{T_{\rm NI}\lambda_{\perp}}$ безразмерный тепловой поток через верхнюю ограничивающую поверхность в ЖК-фазу. Следует отметить, что верхняя черта в обозначениях теплового потока q в дальнейшем будет опущена.

Систему нелинейных уравнений (10)-(13), с граничными условиями (14)-(16), следует дополнить начальным условием для полярного угла

$$\theta(\tau = 0, x, z) = \theta_{\rm el}(x, z), \tag{17}$$

где значение полярного угла $\theta_{\text{elast}}(x, z)$ — есть решение уравнения (10), полученное только с учетом упругих сил (при отсутствии как поля скорости, так и температуры $u = w = \chi_{x} = \chi_{z} = 0$) и граничного условия (14).

3. Решение гидродинамических уравнений и основные результаты

Для того чтобы понять, какую роль играют как тепловой поток $\mathbf{q} = q\hat{\mathbf{k}}$, направленный в ЖК-канал через ограничивающую поверхность, так и двойной электрический слой с плотностью заряда σ в формировании гидродинамического течения в наноразмерном ПОЖК-канале, предположим, что лазерное излучение сфокусировано на верхней ограничивающей поверхности. Здесь функция qимеет вид

$$q(x, z) = q_0 \exp\left(-2\frac{(x - x_0)^2 + (z - z_0)^2}{\Delta}\right) \mathcal{H}(\tau_{\rm in} - \tau)$$
(18)

и описывает распределение инжектируемой энергии в наноразмерный ЖК-канал, в то время как q_0 — безразмерная мощность теплового потока, $\Delta = \frac{\omega_0}{d}$ — размер Гауссового пятна лазерного излучения, x_0 и z_0 — координаты его центра соответственно, $\mathscr{H}(\tau_{\rm in} - \tau)$ — функция Хэвисайда и $\tau_{\rm in}$ — характерное безразмерное время накачки лазерного излучения в ЖК-фазу. Следует отметить, что первые три параметра $\delta_1 = (\frac{E_{\rm th}}{\pi E_0})^2$, $\delta_2 = \xi \frac{T_{NI}}{K_1} \delta_1$ и $\delta_3 = \rho \frac{K_1}{\gamma_1^2} \delta_1^2$, входящие в систему нелинейных уравнений (10)–(13), зависят от величины порогового электрического поля $E_{\rm th} = \frac{\pi}{d} \sqrt{\frac{K_1}{\epsilon_0 \epsilon_a}}$, которое, в свою очередь, обратно пропорционально ширине d наноразмерного ЖК-канала. Поскольку в наших исследованиях безразмерная ширина ЖК-канала будет изменяться как $D = d/\lambda_D = 2.0$, 5.0, и 10.0,

Рис. 1. Слева — эволюция распределения угла $\theta(x = 0.5, z, \tau)$ по сечению наноразмерного ПОЖК-канала под действием как лазерного излучения, так и статического электрического поля E_0 , для трех значений безразмерной ширины ЖК-канала: (*a*) D = 2.0, (*b*) 5.0, и (*c*) 10.0 соответственно. Справа — то же что слева, только под действием электрического поля E_0 .

то в случае ЖК-материала, образованного молекулами 4-cyano-4'-pentylbiphenyl (5СВ) и при температурах, соответствующих интервалу существования нематической фазы этого ЖК-соединения, значения величин порогового электрического поля изменяются как $E_{\rm th}(D=2.0)=1.15\cdot 10^{-3}, E_{\rm th}(D=5.0)=0.47\cdot 10^{-3},$ и $E_{\rm th}(D=10.0)=0.235\cdot 10^{-3}$ (рассчитанных в единицах С/m²) соответственно безразмерным значениям ширины, в то время как значения параметра δ_1 изменяются соответственно как $\delta_1(D = 2.0) \sim 9.0 \cdot 10^{-4}$, $\delta_1(D=5.0)\sim 1.4\cdot 10^{-4},\;$ и $\delta_1(D=10.0)\sim 0.36\cdot 10^{-4}.$ В свою очередь, значения параметров δ_2 и δ_3 соответственно изменяются как $\delta_2(D=2.0)\sim 0.27$ и $\delta_3(D=2.0)\sim 1.8\times 10^{-12}, \quad \delta_2(D=5.0)\sim 4.2\cdot 10^{-2}$ и $\delta_3(D=5.0)\sim 4.4\cdot 10^{-14},$ и $\delta_2(D=10.0)\sim 1.1\cdot 10^{-3}$ и $\delta_3(D=10.0)\sim 2.9\cdot 10^{-15}.$ Таким образом, величина параметра $\delta_1(D=2.0)$ в 25 раз больше величины $\delta_1(D = 10.0)$, в то время как величина параметра $\delta_3(D=2.0)$ приблизительно в 245 раз больше чем величина $\delta_3(D = 10.0)$. Впоследствии мы покажем, как вариации величин параметров δ_i (i = 1, ..., 4), входящих в систему нелинейных уравнений в частных производных (10)–(13), будут влиять на характер гидродинамического течения, возникающего в наноразмерном ПОЖК-канале, как под действием теплового потока $\mathbf{q} = q\mathbf{k}$, направленного в ЖК-канал через ограничивающую поверхность, так и двойного электрического слоя с плотностью заряда σ .

Процесс эволюции поля директора $\hat{\mathbf{n}}$ к его распределению $\hat{\mathbf{n}}_{in}(x, z, \tau_{in})$, соответствующему окончанию процесса прогревания ЖК-фазы, описывающейся полярным углом $\theta(x, z, \tau)$, с его начального распределения $\theta(x, z, \tau = 0)$ и до $\theta_{in}(x, z, \tau_{in})$, а также формирование гидродинамического течения в наноразмерном ПОЖК-канале под действием как лазерного излучения, сфокусированного на верхней границе, так и двойного электрического слоя с плотностью заряда σ , были исследованы численно методом релаксаций [11], а критерием сходимости итерационной процедуры был выбран $\epsilon = |(\theta_{m+1} - \theta_m) / \theta_m| \sim 10^{-4}$. Здесь m — номер итерации.

7

На рис. 1 представлены результаты расчета эволюции полярного угла $\theta(x = 0.5, z, \tau)$, начиная с его начального распределения $\theta(x = 0.5, z, \tau = 0) =$ $= heta_{
m elast}(x=0.5,z)$ и до $heta_{
m in}(x,z, au_{
m in})$, соответствующего окончанию процесса нагревания лазерным излучением, для трех значений безразмерной ширины ЖК-канала: (a) $D = d/\lambda_D = 2.0$ $(d \sim 100 \text{ nm}),$ (b) $D = 5.0 \ (d \sim 0.25 \,\mu\text{m}), \ \text{m} \ (c) \ D = 10.0 \ (d \sim 0.5 \,\mu\text{m})$ соответственно. На левой стороне рис. 1 (случай I) представлена эволюция полярного угла $\theta(x = 0.5, z, \tau)$ под действием как лазерного излучения, так и двойного электрического слоя, в то время как на правой стороне рис. 1 (случай II) представлена эволюция $\theta(x = 0.5, z, \tau)$ под действием только двойного электрического слоя. При этих вычислениях безразмерный тепловой поток был выбран в форме, представленной функцией q(x, z)(см. (18)), с безразмерной мощностью теплового потока, равной $q_0 = 0.25~(\sim 4.0 \cdot 10^{-2} \,\mathrm{mW}/\mu\mathrm{m}^2)$ и временем накачки излучения, равным $\tau_{in} = 0.01 ~(\sim 0.6 \text{ ns}),$ в то время как плотность двойного электрического слоя была выбрана равной $\sigma = 10^{-2} \, {
m C/m^2}$. Анализируя результаты вычислений, следует отметить, что в случае I как тепловой поток мощностью $q_0 = 0.25$, так и статическое электрическое поле, создаваемое двойным электрическим слоем с плотностью заряда $\sigma = 10^{-2} \,\mathrm{C/m^2}$, способно деформировать поле директора таким образом, что распределение полярного угла $\theta(x = 0.5, z, \tau)$ по сечению ПОЖК-канала представляет собой асимметричную функцию относительно середины сечения ЖК-канала, в то время как в случае II, под действием только электрических сил, мы имеем дело с симметричным распределением угла $\theta(x = 0.5, z, \tau)$. Такой процесс переориентации поля директора в наноразмерном ПОЖК-канале, как он описан в случаях I и II, свидетельствует о том, что основной вклад в этот процесс переориентации осуществляется за счет статического электрического поля $E_0 = \sigma/(\epsilon_0 \epsilon_a)$, инициируемого двойным электрическим слоем. Второе, что необходимо отметить, это то, что в случае сверхтонкого ЖК-канала $D = d/\lambda_D = 2.0$ ($d \sim 100$ nm), плотности заряда $\sigma = 10^{-2}$ С/m² двойного электрического слоя достаточно для того, чтобы переориентировать поле директора по всей ширине ЖК-канала (см. рис. 1, *a*),

Рис. 2. Эволюция распределения поля температуры $\chi(x, z, \tau)$ по сечению сверхтонкого (D = 2.0) ПОЖК-канала, в процессе прогревания (кривые с I по 5) и охлаждения (кривые с 6 по 9) соответственно.

Рис. 3. Эволюция распределения поля температуры $\chi(x, z = 1, \tau)$ вдоль верхней границы (z = 1) сверхтонкого (D = 2.0) ПОЖК-канала. Номера кривых соответствуют тем процессам, что показаны на рис. 2.

Рис. 4. Эволюция распределения поля температуры $\chi(x = 0.5, z, \tau)$ по сечению ПОЖК-канала, для трех значений безразмерной ширины канала: (*a*) D = 2.0, (*b*) 5.0, и (*c*) 10.0 соответственно. Номера кривых соответствуют тем процессам, что показаны на рис. 2.

в то время как в случае более широкого ЖК-канала $D = 10.0 \ (d \sim 0.5\,\mu\text{m})$ существует полость, в центре ЖК-канала $(0.35 \le z \le 0.55)$, где влияние как электрического поля, так и лазерного излучения полностью отсутствует. Ниже будет показано, что более сложная картина эволюции поля директора в канале шириной $D = 10.0 \ (d \sim 0.5\,\mu\text{m})$, чем в сверхтонком ЖК-канале $(D = 2.0 \ (d \sim 100 \ \text{nm}))$, приводит к сложной пространственной зависимости термомеханического потока в этих ЖК-каналах.

Эволюция поля температуры $\chi(x, z, \tau)$ от его начального распределения $\chi(x, z, \tau = 0) = \chi_w$ и до значений соответствующих окончанию процесса прогревания ЖК-канала $\chi(x, z, \tau = \tau_{in})$, представлена на рис. 2,3 и 4. Кривые с 1 по 5 номер соответствуют временам $au_k = \Delta au imes (k-1)$ $(k = 1, \dots, 5; \ \Delta au = 0.0025)$ (процесс нагревания ЖК-канала), в то время как кривые с 6 по 9 номер соответствуют временам $τ_k = \Delta τ \times (k-1)$ (k = 6, ..., 9; $\Delta τ = 0.0025$) (процесс охлаждения ЖК-канала) соответственно. Зависимости $\chi(x_k, z, \tau)$ ($x_k = 0.25k$ (k = 1, 2, 3)) представленные на рис. 2 а-с описывают эволюцию безразмерного поля температуры по сечению сверхтонкого ЖК-канала $(D = 2.0 \ (d \sim 100 \ nm)),$ для трех значений положения пространственной переменной $x_k = 0.25k$ (k = 1, 2, 3). Результаты вычислений показывают, что глубина прогревания ПОЖК-канала составляет ~ 40 nm в глубину ЖК-фазы со стороны верхней прогреваемой границы канала. На рис. 3 представлена эволюция распределения безразмерного поля температуры $\chi(x, z = 1, \tau)$ вдоль верхней границы ЖК-канала как в процессе прогревания (кривые с 1 по 5 номер), так и в процессе охлаждения (кривые с 6 по 9 номер) соответственно. И наконец, на рис. 4 представлены зависимости $\chi(x = 0.5, z, \tau)$ по сечению ПОЖК-канала для случая трех значений ширины канала: (*a*) D = 2.0 ($d \sim 100$ nm), (*b*) D = 5.0

Рис. 5. Эволюция распределения горизонтальной $u(x, z, \tau)$ составляющей поля скорости $\mathbf{v} = u\hat{\mathbf{i}} + w\hat{\mathbf{k}}$ по сечению сверхтонкого (D = 2.0) ПОЖК-канала, для трех значений положения пространственной переменной $x_k = 0.25k$ (k = 1, 2, 3). Номера кривых соответствуют тем процессам, что показаны на рис. 2.

Рис. 6. Тоже что на рис. 5, но для вертикальной $w(x, z, \tau)$ составляющей поля скорости v.

 $(d \sim 0.25 \ \mu m)$, и $(c) \ D = 10.0 (d \sim 0.5 \ \mu m)$ соответственно. Следует отметить, что с увеличением ширины ЖК-канала процент прогретого объема убывает с 50%, в случае D = 2.0, и до 10%, в случае D = 10.0 соответственно.

Эволюция распределения поля скорости $v(x, z, \tau) = u(x, z, \tau)i + w(x, z, \tau)k$ в наноразмерном ПОЖК-канале под действием как потока тепла q направленного через верхнюю границу канала, так и двойного электрического слоя представлена на рис. 5-8. На рис. 5 и 6 представлены эволюции распределения горизонтальной $u(x, z, \tau)$ (см. рис. 5) и вертикальной $w(x, z, \tau)$ (см. рис. 6) составляющих поля скорости у по сечению сверхтонкого ЖК-канала $D = 2.0 ~(d \sim 100 \,\mathrm{nm})),$ для трех значений положения пространственной переменной $x_k = 0.25k$ (k = 1, 2, 3). Кривые с 1 по 5 номер соответствуют временам $\tau_k = \Delta \tau \times (k-1) \ (k = 1, ..., 5; \ \Delta \tau = 0.0025) \ (\text{процесс})$ нагревания ЖК-канала), в то время как кривые с 6 по 9 номер соответствуют временам $\tau_k = \Delta \tau \times (k-1)$ $(k = 6, \ldots, 9; \Delta \tau = 0.0025)$ (процесс охлаждения ЖК-канала) соответственно.

Прежде всего следует отметить, что эволюция горизонтальной составляющей поля скорости и в сверхтонком ЖК-канале (D = 2.0) свидетельствует о том, что вблизи верхней более теплой границы канала формируется отрицательно направленный горизонтальный поток ЖК-материала. При этом максимальное значение $|u| \sim 4.0 ~(\sim 7.0 \text{ nm/ns})$ достигается вблизи точки x = 0.5, z = 0.95, что на порядок больше величины вертикальной составляющей поля скорости $|w| \sim 0.4$ (~ 0.7 nm/ns). При этом, в случае сверхтонкого ЖК-канала, практически 60% ($0 \le z \le 0.60$) объема ЖК-фазы, отсчитанного от нижней границы канала, остается практически неподвижным. Следует также отметить, что в процессе охлаждения ЖК-канала скорость $\mathbf{v} = u\mathbf{i} + w\mathbf{k}$ стремится к нулю, а поле температуры выравнивается по всему ЖК-каналу, спустя время $\tau_R = 0.1 \ (\sim 6.0 \,\mathrm{ns}).$

С ростом ширины ЖК-канала, с величины D = 2.0 $(d \sim 100 \,\mathrm{nm})$ до D = 10.0 $(d \sim 0.5 \,\mu{\rm m}),$ картина эволюции поля скорости v под влиянием градиентов поля директора $\nabla \hat{\mathbf{n}}$ и температуры претерпевает существенное изменение $\nabla \chi$ (см. рис. 7 и 8). Прежде всего абсолютная величина как горизонтальной и, так и вертикальной w составляющих вектора скорости у возрастает приблизительно в 5 раз. Во вторых, гидродинамический поток инициируемый термомеханической силой формирует вихревое течение направленное по часовой стрелке, с центром вращения в точке x = 0.5, z = 0.5. В случае D = 10.0 найбольшее абсолютное значение горизонтальной составляющей вектора скорости $|u| \sim 20.0 ~(\sim 0.5 \,\mu\text{m/ns})$ (см. рис. 7), в то время как найбольшее абсолютное значение вертикальной составляющей вектора скорости $|w| \sim 2.0$ $(\sim 0.05\,\mu\text{m/ns})$ (см. рис. 8) соответственно. За такое поведение поля скорости $\mathbf{v} = u\hat{\mathbf{i}} + w\hat{\mathbf{k}}$ с ростом

Рис. 7. Эволюция распределения горизонтальной $u(x, z, \tau)$ составляющей поля скорости **v** по сечению ПОЖК-канала, для трех значений безразмерной ширины канала: (*a*) D = 2.0, (*b*) 5.0 и (*c*) 10.0 соответственно. Номера кривых соответствуют тем процессам, что показаны на рис. 2.

Рис. 8. Тоже что на рис. 7, но для вертикальной $w(x, z, \tau)$ составляющей поля скорости v.

ширины ЖК-канала ответственна термомеханическая сила, обусловленная взаимодействием градиентов поля директора $\nabla \hat{\mathbf{n}}$ и температуры $\nabla \chi$. Следует отметить, что эволюция полярного угла $\theta(x = 0.5, z, \tau)$ (см. рис. 1) в случае сверхтонкого ЖК-канала характеризуется выпуклым профилем $\theta(x, z, \tau)$ по сечению канала на временах $\tau_{in} = 0.01$ (~ 0.6 ns), в то время как в случае более широкого ЖК-канала

 $(D = 10.0 \quad (d \sim 0.5 \,\mu \text{m}))$ эволюция полярного угла $\theta(x = 0.5, z, \tau)$ характеризуется двумя практически симметричными "горбами" (см. рис. 1(b) и (c)). В результате более сложной эволюции поля директора, с ростом ширины ЖК-канала, формируется более сложная картина эволюции градиента поля директора ∇̂n. Результаты вычислений показывают, что основным фактором, влияющим на эволюцию градиента поля директора, является статическое электрическое поле, формирующееся на границах ЖК-канала. Так, в случае более широкого ЖК-канала (D = 10.0), под действием двойного электрического слоя с плотностью заряда $\sigma = 10^{-2} \, \text{C/m}^2$, внутри канала формируется полость $(0.35 \le z \le 0.55)$, где влияние как электрических сил, так и лазерного излучения пренебрежимо мало. А поскольку прогревание ЖК-канала посредством лазерного излучения простирается вглубь только на 40 nm, то величины разнонаправленных горизонтальных потоков, которые формируются вблизи верхней и нижней ограничивающих поверхностей, достаточно для формирования вихревого потока в более широком ЖК-канале.

Как уже выше было отмечено, величина параметра $\delta_1(D=2.0)$ в 25 раз больше величины $\delta_1(D=10.0)$, в то время как величина параметра $\delta_3(D=2.0)$ приблизительно в 245 раз больше, чем величина $\delta_3(D = 10.0)$. На величину этих параметров влияет величина порогового напряжения $E_{\rm th} = \frac{\pi}{d} \sqrt{\frac{K_1}{\epsilon_0 \epsilon_a}}$, которая, в свою очередь, обратно пропорциональна ширине d наноразмерного ЖК-канала. Поскольку деформация изначально однородно ориентированного ЖК-канала, при наложении внешнего, перпендикулярно направленного электрического поля E, возникает только при полях $E > E_{\rm th}$, то ширина d играет главную роль в процессе формирования градиента поля директора $\nabla \hat{\mathbf{n}}$ в тонких и сверхтонких ЖК-каналах. Таким образом, величина Eth, а вслед за ней и ширина ЖК наноканала ответственны за столь широкий разброс значений параметров δ_i (*i* = 1, 2, 3), входящих в систему нелинейных дифференциальных уравнений в частных производных, описывающих как процесс переориентации поля директора, так и формирования поля скорости и поля температуры.

4. Заключение

В предлагаемой работе численными методами, в рамках нелинейного обобщения классической теории Эриксена–Лесли, с учетом баланса энтропии, описано несколько сценариев формирования гидродинамических течений в наноразмерном планарно ориентированном жидкокристаллическом (ПОЖК) канале под действием как сфокусированного лазерного излучения, так и с учетом двойного электрического слоя, естественно возникающего на границе раздела ЖК-фаза/твердое тело. Учет термомеханических вкладов в выражении для сдвигового напряжения и в уравнении баланса энтропии позволил описать процесс формирования вихревого потока в тонком ПОЖК-канале.

Исследованные в работе особенности, связанные с реакцией ЖК-материала, инкапсулированного в тонкие и сверхтонкие каналы, на локально формирующиеся градиенты температуры и поля директора, необходимо учитывать при создании сенсоров и датчиков используемых в биотехнологических приложениях, медицине и биометрических оптических системах.

Приложение

Уравнение баланса моментов, действующих на единицу объема ЖК-фазы, имеет вид

$$\mathbf{\Gamma}_{\rm el} + \mathbf{T}_{
m elast} + \mathbf{T}_{
m vis} + \mathbf{T}_{
m tm} = 0,$$

где $\mathbf{T}_{el} = -\epsilon_0 \epsilon_a \mathbf{E} \times \hat{\mathbf{n}} (\mathbf{E} \cdot \hat{\mathbf{n}})$ — электрический, $\mathbf{T}_{elast} = \frac{\delta \mathscr{W}_{elast}}{\delta \hat{\mathbf{n}}} \times \hat{\mathbf{n}}$ — упругий, $\mathbf{T}_{vis} = \frac{\delta \mathscr{R}^{vis}}{\delta \hat{\mathbf{n}}_{,t}} \times \hat{\mathbf{n}}$ — вязкий и $\mathbf{T}_{tm} = \frac{\delta \mathscr{R}^{tm}}{\delta \hat{\mathbf{n}}_t} \times \hat{\mathbf{n}}$ — термомеханический вклады в баланс моментов соответственно. Здесь $\hat{\mathbf{n}}_{,t} \equiv \frac{d\hat{\mathbf{n}}}{dt}$ — материальная производная вектора $\hat{\mathbf{n}} = n_x \hat{\mathbf{i}} + n_z \hat{\mathbf{k}}$.

Уравнение баланса линейных моментов, действующих на единицу объема ЖК-фазы, имеет вид

$$\rho \, \frac{d\mathbf{v}}{dt} = \nabla \cdot \boldsymbol{\sigma}_t$$

где $\frac{d\mathbf{v}}{dt} = \frac{\partial v}{\partial t} + uv_{,\mathbf{x}} + wv_{,\mathbf{z}}, \ \sigma = \sigma^{\text{el}} + \sigma^{\text{vis}} + \sigma^{\text{tm}} - \mathscr{P}\mathscr{E}$ — полное выражение для тензора напряжения (TH), состоящее из упругого $\sigma^{\text{el}} = -\frac{\partial \mathscr{W}_{\text{el}}}{\partial \nabla \hat{\mathbf{n}}} \cdot (\nabla \hat{\mathbf{n}})^{\text{T}}$, вязкого $\sigma^{\text{vis}} = \frac{\delta \mathscr{R}^{\text{vis}}}{\delta \nabla \mathbf{v}}$ и термомеханического $\sigma^{\text{tm}} = \frac{\delta \mathscr{R}^{\text{tm}}}{\delta \nabla \mathbf{v}}$ вкладов в TH соответственно. Здесь $\mathscr{R} = \mathscr{R}^{\text{vis}} + \mathscr{R}^{\text{tm}} + \mathscr{R}^{\text{th}}$ — полная диссипационная функция Рэлея, $\mathscr{W}_{\rm el} = \frac{1}{2} \left[K_1 \left(\nabla \cdot \hat{\mathbf{n}} \right)^2 \right]$ $(\hat{\mathbf{n}} \times \nabla \times \hat{\mathbf{n}})^2$ — плотность упругой энергии, K_1 и К3 — продольный и поперечный коэффициенты упругости, 9 — гидростатическое давление в ЖК-системе, \mathscr{E} — единичный тензор, в то время как $\mathscr{R}^{\text{vis}} =$ $= \alpha_1 \left(\hat{\mathbf{n}} \cdot \mathbf{D}_s \cdot \hat{\mathbf{n}} \right)^2 + \gamma_1 \left(\hat{\mathbf{n}}_t - \mathbf{D}_a \cdot \hat{\mathbf{n}} \right)^2 + 2\gamma_2 \left(\hat{\mathbf{n}}_t - \mathbf{D}_a \cdot \hat{\mathbf{n}} \right) \left(\mathbf{D}_s \cdot \hat{\mathbf{n}} \right)^2$ $-\left(\hat{\mathbf{n}}\cdot\mathbf{D}_{s}\cdot\hat{\mathbf{n}}\right)\hat{\mathbf{n}}\right)+\alpha_{4}\mathbf{D}_{s}:\,\mathbf{D}_{s}+(\alpha_{5}+\alpha_{6})\left(\hat{\mathbf{n}}\cdot\mathbf{D}_{s}\cdot\mathbf{D}_{s}\cdot\hat{\mathbf{n}}\right)\quad$ вязкий, а $\frac{1}{\varepsilon} \mathscr{R}^{\mathrm{tm}} = (\hat{\mathbf{n}} \cdot \nabla T) \mathbf{D}_{\mathrm{s}}$: $\mathbf{M} + \nabla T \cdot \mathbf{D}_{\mathrm{s}} \cdot \mathbf{M} \cdot \hat{\mathbf{n}}$ $+ (\hat{\mathbf{n}} \cdot \nabla T) (\hat{\mathbf{n}}_{t} - \mathbf{D}_{a} \cdot \hat{\mathbf{n}} - 3\mathbf{D}_{s} \cdot \hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{D}_{s} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}) \cdot \mathbf{M} \cdot \hat{\mathbf{n}}$ $+\hat{\mathbf{n}}(\nabla \mathbf{v})^{\mathrm{T}}\cdot\mathbf{M}\cdot\nabla T+\frac{1}{2}(\hat{\mathbf{n}}\cdot\mathbf{D}_{\mathrm{s}}\cdot\hat{\mathbf{n}})\nabla T\cdot\mathbf{M}\cdot\hat{\mathbf{n}}+\hat{\mathbf{n}}_{\mathrm{t}}\cdot\mathbf{M}\cdot\nabla T$ + $\frac{1}{2} \mathcal{M}_0 \nabla T \cdot \nabla \mathbf{v} \cdot \hat{\mathbf{n}} + (\hat{\mathbf{n}} \cdot \nabla T) \mathcal{M}_0 (\hat{\mathbf{n}} \cdot \mathbf{D}_{\mathrm{s}} \cdot \hat{\mathbf{n}})$ $+rac{1}{2}\mathcal{M}_0\hat{\mathbf{n}}_{\mathrm{t}}\cdot
abla T$ — термомеханический и $\mathscr{R}^{\mathrm{th}}=rac{1}{T}$ $imes ilde{(\lambda_{\parallel}(\hat{\mathbf{n}}\cdot
abla T))}^2 + \lambda_{\perp} (
abla T - \hat{\mathbf{n}} (\hat{\mathbf{n}}\cdot
abla T)^2)$ — термический вклады в полное выражение для функции Рэлея Я соответственно. Здесь $\alpha_1 - \alpha_6$ — коэффициенты вязкости Лесли, $\gamma_1(T)$ и $\gamma_2(T)$ — коэффициенты вращательной вязкости ЖК-системы, ξ — термомеханическая постоянная, λ_{\parallel} и λ_{\perp} — коэффициенты теплопроводности

ЖК-системы вдоль и поперек направления директора $\hat{\mathbf{n}}$ соответственно. Тензоры $\mathbf{D}_s = \frac{1}{2} \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right]$ и $\mathbf{D}_a = \frac{1}{2} \left[\nabla \mathbf{v} - (\nabla \mathbf{v})^T \right]$ — являются симметричным и асимметричным вкладами в тензор скорости деформации, $\mathbf{M} = \frac{1}{2} \left[\nabla \hat{\mathbf{n}} + (\nabla \hat{\mathbf{n}})^T \right]$ и $\mathcal{M}_0 = \nabla \cdot \hat{\mathbf{n}}$ — скалярный инвариант тензора **M**.

Уравнение теплопроводности описывающее изменение поля температуры T(x, z, t) под действием потока тепла **q** через верхнюю границу ПОЖК-канала имеет вид

$$\rho C_P \, \frac{dT}{dt} = -\nabla \cdot \mathbf{Q}$$

где $\mathbf{Q} = -T \frac{\delta \mathcal{R}}{\delta \nabla T}$ — есть тепловой поток в ЖК-системе, а C_P — коэффициент теплоемкости соответственно.

Финансирование работы

Работа выполнена при финансовой поддержке Минобрнауки (гранты 3.11888.2018/11.12 и 3.9585.2017/8.9) и при финансовой поддержке РФФИ и Немецкого научноисследовательского сообщества в рамках научного проекта № 20-52-12040.

Список литературы

- [1] S.J. Woltman, G.D. Jay, G.P. Crawford. Nature Mater. 6, 929 (2007).
- [2] J.G. Cuennet, A.E. Vasdekis, L. De Sio, D. Plaltis. Nature Photonic. 5, 234 (2011).
- [3] A.P.H.J. Schenning, G.P. Crawford, D.J. Broer. Liquid Crystal Sensors. CRC Press, Taylor and Francis Group, Boca Raton (2018). 164 p.
- [4] T.M. Squires, S.R. Quake. Rev. Mod. Phys. 77, 977 (2005).
- [5] P.G. de Gennes, J. Prost. The Physics of Liquid Crystals. 2nd ed. Oxford University Press, Oxford (1995).
- [6] A.V. Zakharov, A.A. Vakulenko. J. Chem. Phys. 127, 084907 (2007).
- [7] J.N. Israellachvili. Intermolecular and Surface Forces. Academic Press, London (1992). 450 p.
- [8] J.L. Ericksen. Arch. Ration. Mech. Anal. 4, 231 (1960).
- [9] F.M. Leslie. Arch. Ration. Mech. Anal. 28, 265 (1968).
- [10] Л.Д. Ландау, Е.М. Лифшиц. Гидродинамика. Наука, М. (1986). 736 с.
- [11] И.С. Березин, Н.Р. Жидков. Методы вычислений. Физматгиз, М. (1964). 464 с.

Редактор Ю.Э. Китаев