03

Synthesis and Characterization of High-Quality Polycrystalline Sample NiV₂O₆ by Solid-State Reaction Technique

© M. Atikur Rahman¹, M.R. Akter², M. Romana Khatun², R. Sultana³, M.A. Razzaque Sarker²

¹ Department of Physics, Pabna University of Science and Technology,

Pabna-6600, Bangladesh

² Department of Physics, Rajshahi University,

Rajshahi-6205, Bangladesh

³ Bangladesh Council of Scientific and Industrial Research,

E-mail: atik0707phy@gmail.com Received: November 11, 2019 Revised: January 30, 2020 Accepted: February 2, 2020

Dhaka University, Bangladesh

Employing the solid-state reaction route, good quality polycrystalline sample NiV₂O₆ is prepared that has effective application in rechargeable Li-ion batteries. The raw materials NiO and V₂O₅ (purity > 99%) were used for the fabrication of NiV₂O₆. The phase formation and thermal stability of this sample were measured by thermogravimetric analyzer. The micro-structural feature of this sample was measured by scanning electron microscopy (SEM). The SEM images ensured that the product NiV₂O₆ is very uniform and well-separated and consists of large grain size of about $1-5\,\mu\text{m}$. The crystal structure and bonding characteristics of NiV₂O₆ were obtained by XRD diffractometer and FTIR spectroscopy. The X-ray diffraction data revealed the triclinic structure of NiV₂O₆ with space group P-1 and lattice parameters: $a=7.162\,\text{Å}$, $b=8.816\,\text{Å}$, $c=4.789\,\text{Å}$, and axial angles $\alpha=90.13^\circ$, $\beta=93.78^\circ$, and $\gamma=101.72^\circ$. The temperature-dependent electrical resistivity of NiV₂O₆ was measured by two-probe method which ensured the semiconducting nature of this phase. The electronic and optical properties were investigated by impedance analyzer and UV-Visible spectrophotometer. The calculated optical band gap of NiV₂O₆ is found to be 2.38 eV.

Keywords: crystal morphology, XRD, SEM, FTIR, electronic properties, optical properties.