01,11

Особенности кристаллизации аморфных сплавов TiNiCu с высоким содержанием меди

© А.В. Шеляков¹, Н.Н. Ситников^{1,2}, И.А. Хабибуллина², Р.В. Сундеев,³, О.Н. Севрюков¹

 ¹ Национальный исследовательский ядерный университет "МИФИ", Москва, Россия
² ГНЦ ФГУП "Центр Келдыша", Москва, Россия
³ МИРЭА — Российский технологический университет, Москва, Россия
E-mail: alex-shel@mail.ru

Поступила в Редакцию 30 декабря 2019 г. В окончательной редакции 30 декабря 2019 г. Принята к публикации 10 января 2020 г.

Сплавы квазибинарной системы TiNi—TiCu с содержанием меди 25, 30, 35 и 40 at.% получены методом планарного литья при скорости охлаждения 10^6 K/s в виде лент толщиной $30-50\,\mu$ m и шириной 10-20 mm. Исследование структуры и фазовых превращений в сплавах проводилось с помощью электронной микроскопии, рентгеноструктурного анализа и дифференциальной сканирующей калориметрии. Установлено, что в исходном состоянии сплавы с 25 и 30 at.% Си имеют аморфно-кристаллическую структуру, при нагреве в калориметре испытывающую одностадийную полиморфную кристаллизацию аморфного состояния с формированием аустенитной фазы *B*2, которая при охлаждении до комнатной температуры в результате мартенситного превращения переходит в орторомбическую фазу *B*19. Показано, что сплавы с 35 и 40 at.% Си при закалке аморфизуются, а при нагреве происходит двухстадийная кристаллизация (первичная и эвтектическая) с формированием двухфазной структуры — тетрагональной фазы *B*11 (TiCu) с незначительной долей фазы *B*2. При этом увеличение содержания меди приводит к уменьшению температуры начала кристаллизации.

Ключевые слова: быстрая закалка расплава, аморфное состояние, кристаллизация, мартенситное превращение, сплавы с эффектом памяти формы.

DOI: 10.21883/FTT.2020.06.49332.31M

1. Введение

В последние годы сплавы на основе TiNi с эффектом памяти формы нашли широкое и эффективное применение в таких областях техники как аэрокосмическая техника, биомедицина, робототехника и МЭМС [1]. Тонкие ленты из сплавов квазибинарной системы TiNi-TiCu, полученные быстрой закалкой из расплава, являются привлекательным материалом для создания микроактюаторов [2] благодаря узкому температурному гистерезису, относительно большой возвращаемой деформации и нечувствительности температур мартенситного превращения к содержанию меди [3]. При этом было установлено, что наилучшими характеристиками обладают сплавы TiNiCu, кристаллизованные из аморфного состояния. Аморфизация достигается в сплавах с высоким содержанием меди (более 20 at.%) при скорости охлаждения расплава около 10⁶ K/s [4,5], что может быть реализовано при использовании наиболее распространенного в настоящее время метода изготовления аморфных металлических сплавов путем спиннингования расплава на внешней поверхности вращающегося диска, где он затвердевает в виде тонкой ленты, которая затем отделяется от диска под действием центробежной силы [6,7]. При этом установлено, что содержание меди

существенно влияет на характер кристаллизации быстрозакаленных аморфных сплавов TiNiCu [8,9]. Следует отметить, что метод спиннингования расплава позволяет получать ленты шириной до 4 mm, поскольку струя расплавленного в тигле металла выдавливается под давлением инертного газа на поверхность диска через сопло круглого сечения диаметром обычно не более 1.3 mm. В то же время в связи с практической необходимостью получения качественных аморфных лент шириной до 10 mm и более был разработан метод планарного литья, который отличается от обычного спиннингования в первую очередь щелевой геометрией сопла и значительно уменьшенным расстоянием между краем сопла и поверхностью диска [10].

Целью настоящей работы являлось исследование процессов формирования структуры при кристаллизации аморфного состояния в сплавах TiNiCu с содержанием меди более 25 at.%, полученных методом планарного литья.

2. Материалы и методы исследования

Для исследования были выбраны ленты толщиной $30-50\,\mu\text{m}$ и шириной $10-20\,\text{mm}$ из сплавов квазибинарной системы TiNi-TiCu с содержанием меди 25,

30, 35 и 40 at.%. Технология их получения включала изготовление слитков сплавов из сверхчистых металлов с шестикратной переплавкой в дуговой печи в атмосфере аргона, последующее расплавление в кварцевом тигле в атмосфере гелия и экструзию расплава через щелевое сопло в тигле шириной 0.4 mm на поверхность быстро вращающегося медного диска (метод планарного литья) [10]. Скорость охлаждения расплава около 10⁶ K/s поддерживалась одинаковой для всех сплавов. Поскольку для получения сплавов в аморфном состоянии необходимо, чтобы температура ленты перед отделением от диска не превышала температуру стеклования T_g , время контакта ленты с закалочным диском увеличивалось за счет ее удержания на диске вплоть до завершения полного оборота и отделения от диска с помощью специального съемного устройства.

Кристаллизация сплавов проводилась в дифференциальном сканирующем калориметре (ДСК) "STA 449 F1 Jupiter" со скоростью нагрева 10 K/min от комнатной температуры до 500°С.

Исследование структуры полученных сплавов проводилось методами металлографии, электронной микроскопии и рентгеноструктурного анализа. Для металлографических исследований образцов лент были изготовлены их поперечные шлифы на оборудовании фирмы Buehler. Микроструктура поперечного сечения образцов изучались с помощью сканирующего электронного микроскопа FEI Quanta 600 FEG. Рентгеноструктурный анализ проводился по фокусировке Брэгга–Брентано с использованием гибридного монохроматора на дифрактометрах PANalytical Empyrean в Cu- K_{α} -излучении и ДРОН-3М в Co K_{α} -излучении.

3. Результаты и их обсуждение

Микроструктура исходного состояния в быстрозакаленных лентах из сплавов квазибинарной системы TiNi-TiCu определялась с помощью рентгеновского фазового анализа в Cu-K_a-излучении как с контактной (обращенной к закалочному диску) поверхности лент, так и с неконтактной (свободной) стороны лент (рис. 1). На дифрактограммах свободной поверхности лент с содержанием меди 25 и 30 at.% Си при комнатной температуре (рис. 1, a) наблюдаются ярко выраженные дифракционные пики аустенитной фазы В2 (типа CsCl), интенсивность которых резко снижается при увеличении содержания меди до 40 at.%. Как показали электронно-микроскопические исследования поперечного сечения лент (рис. 2), это связано с образованием поверхностного кристаллического слоя на свободной стороне лент из сплавов с 25 и 30 at.% Си (толщиной около 3.5 и $1.5 \,\mu$ m, соответственно), в то время как в лентах с 35 и 40 at.% Си кристаллический слой не наблюдается. Нестандартное расположение на дифрактограммах наиболее интенсивных рефлексов объясняется текстурированностью сформированного кристаллического слоя. Полученная микроструктура заметно отличается от микроструктуры сплавов такого же состава,

Рис. 1. Рентгеновские дифрактограммы, полученные со свободной (*a*) и контактной (*b*) поверхностей быстрозакаленных лент из сплавов $Ti_{50}Ni_{50-x}Cu_x$ (x = 25; 30; 35 и 40 at.%) при комнатной температуре

полученных спиннингованием расплава [9]. В частности, в сплаве с 25 at.% Си ранее было обнаружено присутствие большого количества мартенситной фазы *B*19 (орторомбический мартенсит), а в сплавах с 30–40 at.% полностью отсутствовали как какие-либо структурные пики на дифрактограммах, так и поверхностный кристаллический слой.

На дифрактограммах контактной стороны лент во всех образцах, как и в сплавах после спиннингования, наблюдается размытое аморфное гало вблизи $2\theta = 42^{\circ}$ (рис. 1, *b*), что свидетельствует о рентгеноаморфном состоянии сплавов, однако в образцах с 25 и 30 аt.% Си наблюдаются небольшие пики фазы *B*2 (в сотни раз меньшей интенсивности по сравнению со свободной стороной), что может говорить о присутствии небольшой доли кристаллитов в аморфной матрице, поскольку поверхностный кристаллический слой на контактной стороне не наблюдается (рис. 2).

Далее образцы лент подвергались кристаллизационному отжигу в калориметре для определения температурных интервалов и характера кристаллизации сплавов из аморфного состояния. Как и в сплавах, полученных спиннингованием расплава, содержание меди существен-

Рис. 2. СЭМ-изображения типичных поперечных сечений быстрозакаленных лент из сплавов $Ti_{50}Ni_{50-x}Cu_x$: x = 25 (*a*), 30 (*b*), 35 (*c*) и 40 (*d*).

но влияет на процессы кристаллизации (рис. 3). Вплоть до температуры 400°С во всех образцах не наблюдается каких-либо пиков фазовых превращений. Дальнейший нагрев приводит к одностадийной кристаллизации сплавов с 25 и 30 at.% Сu. Как известно, тонкие пленки и ленты TiNiCu обычно демонстрируют полиморфную

Рис. 3. ДСК-кривые кристаллизации быстрозакаленных сплавов $Ti_{50}Ni_{50-x}Cu_x$ (x = 25; 30; 35 и 40 аt.%) в калориметре.

кристаллизацию [11–13]. Полиморфное превращение включает в себя рост одной кристаллической фазы B2 с тем же составом, что и аморфная матрица. При последующем охлаждении до комнатной температуры сплавы с 25 и 30 at.% Си испытывают мартенситное превращение с образованием ромбического мартенсита B19, что подтверждается результатами рентгеноструктурного анализа (на рис. 4 представлены дифрактограммы в области наиболее интенсивных рефлексов фаз B2, B19 и B11).

В то же время в сплавах с содержанием меди 35 и 40 аt.% наблюдаются два раздельных пика выделения тепла, ответственных за кристаллизацию из аморфного состояния, причем более низкотемпературный пик по величине выделяемой энергии близок к энтальпии кристаллизации в образцах с содержанием меди 25 и 30 аt.%, а более высокотемпературный пик заметно ее превышает. Как показали рентгенографические исследования (рис. 4), сплавы с 35 и 40 аt.% Си кристаллизуются с образованием преимущественно структуры типа *B*11 (TiCu). Как известно, формирование фазы *B*11 в сплавах TiNiCu препятствует протеканию мартенситного превращения $B2 \leftrightarrow B19$ и проявлению эффектов памяти формы, а также приводит к охрупчиванию сплавов [14,15].

Рис. 4. Рентгеновские дифрактограммы быстрозакаленных сплавов $Ti_{50}Ni_{50-x}Cu_x$ (x = 25; 30; 35 и 40 at.%) после кристаллизации в калориметре, полученные при комнатной температуре.

Рис. 5. Рентгеновские дифрактограммы быстрозакаленного сплава системы TiNi-TiCu с 40 at.% Cu в исходном состоянии и после кристаллизации в калориметре при разных температурах (T_1 , AT_2 и T_3 , см. рис. 3), полученные при комнатной температуре.

Следует отметить, что при увеличении содержания меди наблюдается уменьшение температуры начала кристаллизации.

В данной работе для исследования процесса двухстадийной кристаллизации быстрозакаленных сплавов системы TiNi-TiCu с содержанием меди 35-40 at.% получали промежуточные состояния в процессе контролируемых отжигов в калориметре до фиксированной температуры. Были сформированы три состояния (рис. 3): состояние 1 — при температуре T_1 вблизи температуры расстекловывания T_g ; состояние 2 — между двумя пиками выделения тепла (нагрев до температуры T_2); состояние 3 — после окончания двухстадийной кристаллизации (нагрев до температуры T_3).

Структура образцов, полученных при нагреве в калориметре аморфного сплава до трех различных температур, изучалась методом рентгеноструктурного анализа в СоК_α-излучении. Типичная дифрактограмма сплава TiNiCu с содержанием меди 35-40 at.% в исходном аморфном состоянии характеризуется наличием двух гало, на фоне которых видны небольшие дифракционные линии, принадлежащие кристаллической фазе В2 (рис. 5). Первое гало центрировано вблизи линии (110), а второе — вблизи линии (211) фазы В2. При температуре T_1 на дифрактограмме наблюдается некоторое увеличение рефлексов фазы В2, а также появление дифракционных линий, принадлежащих тетрагональной фазе B11 (TiCu). По мере роста температуры до T_2 объемная доля кристаллической фазы В11 увеличивается, дифрактограмма характеризуется наложением рефлексов фаз *B*2 и *B*11 в области вблизи $2\theta = 45^{\circ}$. При температуре Т₃ сплав полностью переходит в кристаллическое состояние со структурой В11 с незначительной долей фазы В2. Охлаждение сплава до комнатной температуры не приводит к каким-либо структурным превращениям.

Таким образом, сначала, по-видимому, происходит первичная кристаллизация с выделением фазы B2, имеющей состав, отличный от состава аморфной матрицы, а затем объемная эвтектическая с образованием двухфазной структуры B2 + B11. Для более детального изучения формирующихся структур необходимо проведение дальнейших исследований локальной структуры сплавов, в частности, методами EXAFS и просвечивающей электронной микроскопии.

4. Заключение

В работе методом быстрой закалки из расплава со скоростью охлаждения 10^6 K/s получены сплавы квазибинарной системы TiNi-TiCu с содержанием меди от 25 до 40 at.% в виде лент толщиной $30-50\,\mu$ m. Использование метода планарного литья позволило изготовить ленты шириной 10-20 mm. Установлено, что в исходном состоянии после закалки сплавы с 25 и 30 at.% Cu являются аморфно-кристаллическими с тонким ($1.5-3.5\,\mu$ m) кристаллическим слоем на поверхности лент, имеющим структуру аустенитной фазы *B*2, в то время как при содержании меди 35 и 40 at.% сплавы находятся практически полностью в аморфном состоянии.

При нагреве в калориметре сплавов с 25 и 30 at.% Си происходит одностадийная полиморфная кристаллизация аморфного состояния с формированием фазы *B*2, которая при охлаждении до комнатной температуры испытывает мартенситное превращение в орторомбическую фазу *B*19.

В то же время в сплавах с содержанием меди 35 и 40 аt.%, превышающим предел растворимости меди в TiNi (30 at.%), наблюдается двухстадийная кристаллизация: вначале происходит первичная кристаллизация с выделением фазы B2, а затем объемная эвтектическая кристаллизация с образованием двухфазной структуры, характеризующейся кристаллическим состоянием с тетрагональной фазой B11 (TiCu) и незначительной долей фазы B2.

Показано, что увеличение содержания меди приводит к уменьшению температуры начала кристаллизации.

Финансирование работы

Работа выполнена за счет гранта РНФ (проект № 19-12-00327).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J.M. Jani, M. Leary, A. Subic, M.A. Gibson. Mater. Des. 56, 1078 (2014).
- [2] A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso. Sens. Actuator A **158**, 149 (2010).
- [3] J. Morgiel, E. Cesari, J. Pons, A. Pasko, J. Dutkiewicz. J. Mater. Sci. 37, 5319 (2002).
- [4] A.V. Shelyakov, N.N. Sitnikov, A.P. Menushenkov, V.V. Koledov, A.I. Irjak. Thin Solid Films 519, 5314 (2011).
- [5] S.W. Kang, Y.M. Lim, Y.H. Lee, H.J. Moon, Y.W. Kim, T.H. Nam. Scr. Mater. **62**, 71 (2010).
- [6] V.G. Pushin, S.B. Volkova, N.M. Matveeva. Phys. Met. Metallogr. 83-3, 275 (1997).
- [7] A.V. Shelyakov, N.M. Matveeva, S.G. Larin. In: Shape Memory Alloys: Fundamentals, Modeling and Industrial Applications / Eds F. Trochu, V. Brailovski. Canadian Inst. Mining, Metallurgy and Petroleum (1999). P. 295.
- [8] Z.Y. Gao, M. Sato, A. Ishida. J. Alloys Comp. 619, 389 (2015).
- [9] N. Sitnikov, A. Shelyakov, R. Rizakhanov, N. Mitina, I. Khabibulina. Mater. Today: Proc. 4, 4680 (2017).
- [10] Б.А. Калин, В.Т. Федотов, О.Н. Севрюков, А.Е. Григорьев, Сварочное производство 1, 15 (1996).
- [11] A. Ishida, M. Sato. Intermetallics 19, 900 (2011).
- [12] L. Chang, D.S. Grammon. Philos. Mag. A 76, 163 (1997).
- [13] P. Schlossmacher, N. Boucharat, G. Wilde, H.Roesner, A.V. Shelyakov. J. Phys. IV France 112, 731 (2003).
- [14] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu. Mater. Trans. JIM, **31**, 959 (1990).
- [15] H. Rösner, P. Schlossmacher, A.V. Shelyakov, A.M. Glezer. Scrip. Mater. 43, 871 (2000).

Редактор Д.В. Жуманов