Фотолюминесценция и особенности дефектной структуры конгруэнтных и близких к стехиометрическому составу кристаллов ниобата лития, полученных по разным технологиям

© Н.В. Сидоров, М.В. Смирнов, Н.А. Теплякова[¶], М.Н. Палатников

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Федерального исследовательского центра "Кольский научный центр Российской академии наук", 184209 Апатиты, Мурманская обл., Россия

[¶]e-mail: tepl_na@chemy.kolasc.net.ru

Поступила в редакцию 04.12.2019 г. В окончательной редакции 05.12.2019 г. Принята к публикации 06.02.2020 г.

Исследована фотолюминесценция в объеме конгруэнтного и близких к стехиометрическому составу кристаллов ниобата лития, полученных по разным технологиям. Установлено, что интенсивность люминесценции в кристаллах, состав которых близок к стехиометрическому, ниже, чем в конгруэнтном кристалле. Показано, что вклад в люминесценцию могут вносить не только основные типы центров свечения, обусловленные наличием точечных дефектов Nb_{Li}, V_{Li} и других, но и комплексные дефекты, обусловленные присутствием в структуре OH-групп.

Ключевые слова: стехиометрический и конгруэнтный кристаллы ниобата лития, фотолюминесценция, центры свечения, дефекты, ИК спектроскопия, оптическая спектроскопия.

DOI: 10.21883/OS.2020.05.49324.333-19

Введение

Нелинейно-оптический монокристалл ниобата лития (LiNbO₃) обладает рядом уникальных физических характеристик и является одним из наиболее важных функциональных материалов электронной техники [1-3], технологии которого непрерывно совершенствуются [4-6]. Разнообразие дефектов (точечных и комплексных) в структуре сегнетоэлектрического кристалла LiNbO₃, обладающего к тому же эффектом фоторефракции, приводит к появлению множества локализованных уровней энергий в запрещенной зоне, расположение которых зависит от величины R. Ширина запрещенной зоны для номинально чистого конгруэнтного кристалла LiNbO₃ составляет 3.72 eV. Для стехиометрического — 3.38 eV [7], что близко к значению для широкозонных полупроводников. Переход возбужденного электрона между уровнями энергии в запрещенной зоне может приводить как к передаче энергии фононам решетки, так и к появлению излучения с определенной длиной волны. Особенности таких переходов определяют люминесцентные характеристики оптических материалов на основе кристалла LiNbO₃.

Информация о люминесцентных свойствах кристаллов LiNbO₃, состав которых близок к стехиометрическому составу, т. е. $R \sim 1$, представляет особый интерес. Близкие к стехиометрическому составу монокристаллы LiNbO₃ обладают существенно меньшей величиной напряженности коэрцитивного поля ($\sim 3 \text{ kV/mm}$) по сравнению с конгруэнтными кристаллами ($\sim 22 \text{ kV/mm}$), что делает их привлекательными для разработки материалов

для преобразования лазерного излучения на периодически поляризованных доменах субмикронных размеров [8]. Фотолюминесценция — серьезный лимитирующий фактор при преобразовании лазерного излучения нелинейно-оптическим кристаллом LiNbO₃.

В данной работе представлены результаты сравнительных исследований фотолюминесценции в номинально чистом конгрузнтном кристалле (LiNbO_{3cong}), а также в кристаллах, состав которых близок к стехиометрическому, полученных по двум технологиям: из расплава с 58.6 mol% Li₂O (LiNbO_{3stoich}) и по технологии HTTSSG (High temperature top speed solution growth [1,9-11]) из конгруэнтного расплава с добавлением флюса 6.0 wt% K₂O (LiNbO_{3stoich} (6.0 wt% K₂O)). Кристаллы LiNbO_{3stoich} отличаются неоднородным показателем преломления вдоль оси роста [2,6], что делает их непригодными для изготовления оптических элементов для преобразования лазерного излучения. По этой причине кристаллы LiNbO3stoich в промышленности в настоящее время не используются. Важное промышленное применение для разработки преобразователей лазерного излучения на периодически поляризованных доменах субмикронных размеров [8] могут найти кристаллы LiNbO_{3stoich} (6.0 wt% K₂O), отличающиеся низким коэрцитивным полем и высокой однородностью показателя преломления вдоль оси роста, близкой к таковой для номинально чистого конгруэнтного кристалла. Этот факт обусловливает актуальность проведения сравнительных исследований люминесцентных и других свойств кристаллов LiNbO₃, состав которых близок к стехиометрическому, полученных по разным технологиям. Ранее такие иссле-

Примесь	Концентрация примеси в шихте, wt %	Содержание примеси в кристалле, wt %		
Mn, V, Mg,	$< 1 \cdot 10^{-4}$	$< 5 \cdot 10^{-4}$		
Sn, Cu				
Pb, Ni, Cr	$< 1 \cdot 10^{-4}$	$< 1 \cdot 10^{-3}$		
Co, Mo	$< 4 \cdot 10^{-4}$	$< 1 \cdot 10^{-3}$		
Si, Fe	$< 1 \cdot 10^{-3}$	$< 1 \cdot 10^{-3}$		
Ti	$< 5 \cdot 10^{-4}$	$< 1 \cdot 10^{-3}$		
Al	$< 1 \cdot 10^{-3}$	$< 5 \cdot 10^{-4}$		
Zr	$< 3 \cdot 10^{-3}$	$< 1 \cdot 10^{-2}$		
Ca	$< 1 \cdot 10^{-3}$	$< 5 \cdot 10^{-3}$		
Te, Sb	$< 1 \cdot 10^{-3}$	_		
Bi	$< 4 \cdot 10^{-4}$	_		

Таблица 1. Примесный состав исследованных кристаллов ниобата лития

дования, насколько нам известно, не проводились. Для интерпретации результатов исследования фотолюминесценции нами привлечены данные ИК спектроскопии в области валентных колебаний ОН-групп и оптической спектроскопии. Особенности дефектной структуры кристаллов, исследованных в данной работе, а также некоторые их оптические характеристики приведены в работах [7,12–14].

Методика эксперимента

Все кристаллы выращены методом Чохральского в воздушной атмосфере на установке "Кристалл 2". Использовалась гранулированная шихта ниобата лития, синтезированная в ИХТРЭМС КНЦ РАН. Подробно приготовление шихты, выращивание монокристаллов и подготовка образцов для исследований описаны в работах [4,10,11,15,16]. Примесный состав шихты и монокристаллов представлен в табл. 1.

Регистрация спектров фотолюминесценции производилась спектрографом SL100M (Solar TII) с ПЗС-детектором (FLICCDML0673710) в интервале длин волн от 380 до 750 nm с шагом ~ 0.2 nm при комнатной температуре. В качестве источника возбуждения использовался непрерывный He-Cd-лазер с длиной волны возбуждения 325 nm и мощностью 15 mW. Для уменьшения случайных флуктуаций сигнала ПЗС-матрица охлаждалась элементом Пельтье до -30°С. Время экспозиции равно 1 s. Ширина входной щели монохроматора составляла 1.00 mm. Из каждого спектра фотолюминесценции вычитался фоновый сигнал. Для регистрации спектров с объема кристалла использовалась 90-градусная геометрия рассеяния. При этом с целью устранения паразитного рассеянного излучения на щель спектрографа фокусировался только лазерный трек в кристалле. Остальное излучение отсекалось черным экраном с отверстием в виде сильно вытянутого прямоугольника по размеру лазерного трека. Кроме того, регистрация

спектров фотолюминесценции осуществлялось в разных точках (не менее 5 раз) исследуемого образца с целью усреднения интенсивности люминесцентного сигнала. Для определения частоты и интенсивности максимумов люминесценции спектры были обработаны с использованием программ разделения контуров спектральных линий. Степень несовпадения модельного спектра фотолюминесценции с экспериментальным для всех образцов не превышала 1.35%.

Регистрация ИК спектров производилась с помощью спектрометра IFS 66 v/s фирмы Bruker, спектров оптического поглощения — с помощью спектрофотометра СФ-256 УВИ. Край фундаментального оптического поглощения (λ_{20}) был рассчитан для пластин исследованных кристаллов толщиной 1 mm.

Результаты и их обсуждение

Спектры фотолюминесценции кристаллов LiNbO_{3stoich}, LiNbO_{3stoich} (6.0 wt% K₂O) и LiNbO_{3cong}, полученные с объема образца, приведены на рис. 1. Видно, что в спектре каждого кристалла в области от 380 до 650 nm наблюдается гало, а также общий подъем интенсивности люминесценции в длинноволновой области (> 700 nm), наиболее значительный для кристалла LiNbO_{3stoich} (6.0 wt% K₂O). В табл. 2 приведены основные характеристики полос люминесценции после разложения их на составляющие. Из рис. 1 и табл. 2 видно, что гало является сложным и содержит широкую полосу с главным максимумом при 527 nm (LiNbO_{3stoich}), 613 nm (LiNbO_{3cong}) и 612 nm LiNbO_{3stoich} (6.0 wt% K₂O) и несколькими побочными максимумами при 402-423, 510-511, 650-667 и 698-701 nm. Интегральная интенсивность спектра фотолюминесценции кристаллов LiNbO_{3stoich} и LiNbO_{3stoich} (6.0 wt% K₂O) соответственно на 71% и 42% меньше интегральной интенсивности спектра кристалла LiNbO3cong, что свидетельствует о наиболее высокой излучательной способности кристалла LiNbO3cong в ряду исследованных кристаллов. Этому можно дать следующее объяснение.

Таблица 2. Количественные характеристики спектров фотолюминесценции монокристаллов LiNbO₃

Полоса излучения		1	2	3	4	5
LiNbO _{3stoich}	<i>I</i> , rel. units	97	2519	187	959	1073
	<i>w</i> , nm	47.2	230.4	36.1	44.6	47.2
	λ , nm	402	527	611	650	698
LiNbO _{3cong}	<i>I</i> , rel. units	1176	5028	6976	451	1229
	<i>w</i> , nm	75.9	157.5	199.1	38.5	33.3
	λ , nm	423	511	613	654	701
$\begin{array}{c} LiNbO_{3stoich}\\ (6.0wt\%K_2O) \end{array}$	<i>I</i> , rel. units	1319	3746	3755	3014	1758
	<i>w</i> , nm	95.5	128.0	117.4	63.1	35.2
	λ , nm	407	510	612	667	700

Рис. 1. Спектры фотолюминесценции монокристаллов LiNbO_{3stoich} (1), LiNbO_{3cong} (2) и LiNbO_{3stoich} (6.0 wt% K₂O) (3). Ширина щели монохроматора 1 mm.

В идеальном строго стехиометрическом (R = Li/Nb ==1) кристалле LiNbO₃, в котором отсутствуют точечные дефекты NbLi, характеризующемся идеальным порядком расположения катионов вдоль полярной оси (Li, Nb, вакантный октаэдр [2,10]), может быть только один центр люминесценции, обусловленный наличием катионов Nb, находящихся в своих позициях и являющихся глубокими электронными ловушками. В реальных высокосовершенных стехиометрических кристаллах LiNbO₃, даже при условии R = 1, всегда присутствуют немногочисленные собственные точечные дефекты NbLi, V_{Li} (катионы Nb, вакансии, расположенные в позициях катионов Li) и др. [7,8]. Кроме того, присутствуют следовые количества многочисленных трудно контролируемых примесей металлов, являющихся глубокими и мелкими ловушками электронов. Для исследованных нами кристаллов концентрация каждой следовой примеси составляет $10^{-4} - 10^{-3}$ wt%, табл. 1. Таким образом, в реальных кристаллах даже с $R \sim 1$ может быть множество центров люминесценции различной интенсивности. При этом обязательным условием является сохранение зарядового состояния катионной подрешетки в целом. Количество собственных катионов Nb и Li и вакантных октаэдров V в кристалле LiNbO₃, а также примесных катионов, расположенных не в своих позициях (центров свечения — дефектов Nb_{Li}, V_{Li} , V_{Nb} и др.), возрастает с уменьшением величины R. При этом возрастает разупорядочение структурных единиц катионной подрешетки в целом [2,12]. Соответственно должна возрастать интенсивность полос люминесценции, отвечающих этим дефектным центрам.

Центрам свечения в виде дефектов NbLi в легированных кристаллах LiNbO3 и номинально чистых кристаллах LiNbO_{3stoich}, LiNbO_{3stoich} (6.0 wt% K₂O) и LiNbO3cong соответствуют максимумы полос люминесценции при 510-520 nm [17,18]. Из табл. 2 видно, что интенсивность полос люминесценции с максимумами при 510-527 nm увеличивается в ряду кристаллов LiNbO_{3stoich}, LiNbO_{3stoich} (6.0 wt% K₂O), LiNbO_{3cong}, что свидетельствует о последовательном увеличении количества точечных дефектов NbLi в этом ряду кристаллов. При этом вследствие сохранения зарядовой нейтральности катионной подрешетки в целом возрастает количество вакантных кислородных октаэдров [2,3,19] и происходят изменения в строении комплексных дефектов, обусловленных наличием гидроксильных групп ОН в структуре кристалла [12,13]. В кристалле LiNbO_{3cong} (R = 0.946) количество дефектов Nb_{Li} составляет $\sim 6 \text{ wt\%}$ [2,3], что намного больше, чем в кристаллах LiNbO_{3stoich} и LiNbO_{3stoich} (6.0 wt% K₂O) [1]. Локализация атомов водорода в каждом из этих кристаллов также имеет свои особенности [12].

Концентрацию точечных дефектов Nb_{Li} и V_{Li} в кристаллической решетке беспримесных кристаллов LiNbO₃, согласно модели компенсации Li-вакансий [2,19], можно рассчитать по формулам [20]

$$C(V_{\rm Li}) = \left(\frac{4 - 4 \times \text{Li/Nb}}{5 + \text{Li/Nb}}\right) \times 100, \tag{1}$$

$$C(\mathrm{Nb}_{\mathrm{Li}}) = \frac{\mathrm{C}(V_{\mathrm{Li}})}{4}.$$
 (2)

Величину *R* Li/Nb в кристаллах ниобата лития разного состава можно оценить двумя независимыми методами: по интенсивности полос в спектре ИК поглощения, соответствующих валентным колебаниям ОН-групп, согласно методике, предложенной в [20] и используя данные о крае фундаментального оптического поглощения по формуле:

Li/Nb =
$$1 - \left(\frac{\lambda_{20} - 301.5}{81.29}\right)^2$$
, (3)

где λ_{20} — край фундаментального оптического поглощения, табл. 3. Результаты расчетов величины RLi/Nb и концентрации точечных дефектов Nb⁴⁺_{Li} и V_{Li}^{-} в исследованных кристаллах приведены в табл. 3.

Таблица 3. Край фундаментального оптического поглощения (λ_{20}), отношение Li/Nb (определенное по краю фундаментального поглощения — Li/Nb^{*} и по ИК спектру поглощения — Li/Nb^{**}), концентрация ОН-групп (C_{OH}^{-}) и точечных дефектов Nb⁴⁺_{Li} и V_{Li}^{-} в кристаллах ниобата лития при $t = 25^{\circ}$ С

Кристалл	λ_{20} , nm	Li/Nb*	Li/Nb**	$C(Nb_{Li}), mol \%$	$C(V_{\mathrm{Li}}^{-}), \operatorname{mol} \%$	$C_{\rm OH}^{-},{\rm cm}^{-3}$
LiNbO _{3cong}	319.9	0.949	0.942	0.98	3.90	$\begin{array}{c} 3.26 \cdot 10^{17} \\ 1.58 \cdot 10^{17} \\ 2.49 \cdot 10^{17} \end{array}$
LiNbO _{3stoich}	311.0	0.986	0.988	0.20	0.80	
LiNbO _{3stoich} (6.0 wt% K ₂ O)	310.0	0.989	0.991	0.15	0.60	

Из табл. 3 видно, что количество дефектов NbLi минимально в кристалле LiNbO_{3stoich} (6.0 wt% K_2O). В то же время интенсивность полосы фотолюминесценции при 510 nm, соответствующей дефектам NbLi, не минимальна в спектре кристалла LiNbO_{3stoich} (6.0 wt% K₂O). Причина этого несоответствия может заключаться в следующем. Из рис. 1 видно, что в спектрах фотолюминесценции исследованных кристаллов присутствует полоса с максимумом при 611-613 nm. Причем интенсивность максимума при 612 nm в кристалле LiNbO $_{3stoich}$ (6.0 wt%) K₂O) в 20 раз больше интенсивности соответствующего максимума при 611 nm в кристалле LiNbO_{3stoich}, табл. 2. Столь большие различия в интенсивности максимума при 611-613 nm для исследованных кристаллов можно объяснить с точки зрения наличия люминесценции комплексного дефекта в виде биполярона Nb_{Nb}⁴⁺-Nb_{Li}⁴⁺. Одно из теоретически рассчитанных значений оптических переходов у биполярона $(Nb_{Li}^{4+}-Nb_{Nb}^{4+})$ равно 2.0 eV (620 nm) [21,22]. Этот факт позволяет предположить, что если интенсивность излучения отдельного центра свечения в первом приближении зависит только от концентрации отдельного вида дефектов, то количество центров свечения данного и других дефектов увеличивается по мере уменьшения величины R: оно максимально для кристалла LiNbO_{3cong} и минимально для LiNbO_{3stoich}, табл. 2. Однако этот результат также не согласуется с рассчитанным отношением Li/Nb в исследованных кристаллах, табл. 3. Отношение Li/Nb в кристалле LiNbO3stoich (6.0 wt% K2O) даже незначительно выше, чем в кристалле LiNbO3stoich, табл. 3. Причем расчеты отношения Li/Nb для исследованных кристаллов были проведены по данным о крае фундаментального поглощения и по данным ИК спектров поглощения в области валентных колебаний ОН-групп, результаты которых согласуются между собой, табл. 3. Следовательно, можно предположить, что в исследованных кристаллах наблюдается перенос поглощенной энергии между центрами свечения, что обуславливает различия с экспериментальными данными, полученными при исследовании ИК спектров и края фундаментального поглощения.

Из рис. 1 и табл. 2 видно, что максимум при 527 nm полосы люминесценции, обусловленный точечными дефектами Nb_{Li}, для кристалла LiNbO_{3stoich} смещен по сравнению с аналогичными максимумами для кристаллов LiNbO_{3cong} (511 nm) и LiNbO_{3stoich} (6.0 wt% K_2O) (510 nm) в длинноволновую сторону, что может

Рис. 2. Спектры оптического поглощения кристаллов: $1 - \text{LiNbO}_{3\text{stoich}}$, $2 - \text{LiNbO}_{3\text{stoich}}$ (6.0 wt% K₂O), $3 - \text{LiNbO}_{3\text{cong}}$.

быть связано с высокой неоднородностью показателя преломления кристалла LiNbO3stoich вдоль оси роста. Это подтверждается различным поведением оптического поглощения кристаллов в области края фундаментального поглощения, рис. 2. Спектры оптического поглощения для исследования оптической неоднородности кристаллов были получены для образцов размерами $\sim 8 \times 7 \times 6$ mm. Видно, что край фундаментального оптического поглощения кристаллов LiNbO_{3stoich} (6.0 wt%) $K_2O)$ и LiNbO_{3cong} смещен в коротковолновую область и является более крутым по сравнению с краем оптического поглощения кристалла LiNbO3stoich. Этот факт указывает на более высокую однородность показателя преломления в кристаллах LiNbO3stoich (6.0 wt% K2O и LiNbO_{3cong} по сравнению с кристаллом LiNbO_{3stoich}. Худшая оптическая однородность кристалла LiNbO_{3stoich} по сравнению с кристаллами LiNbO3stoich (6.0 wt% K2O) и LiNbO3cong подтверждается также данными лазерной коноскопии [12,14].

При освещении кристалла ниобата лития лазерным излучением имеют место два конкурирующих процесса. С одной стороны, при увеличении упорядочения структурных единиц катионной подрешетки при $R \rightarrow 1$ в кристалле LiNbO₃ уменьшается количество заряженных точечных дефектов и связанных с ними глубоких уровней захвата в запрещенной зоне. Одновременно увеличивается количество мелких ловушек ("уровней прилипания" в запрещенной зоне [23]) и соответственно увеличивается вероятность излучательной рекомбинации фотовозбужденных носителей. Основная часть фотоэлектронов захватывается имеющимися глубокими ловушками. Следовательно, больше становятся нескомпенсированные внутренние электрические поля, влияющие на показатель преломления и определяющие фоторефрактивные свойства кристалла. Этим, по-видимому, и объясняется больший эффект фоторефракции в более структурно совершенных кристаллах LiNbO_{3stoich} по сравнению с кристаллом LiNbO_{3cong}. Однако в данном объяснении не учитываются изменения, происходящие в комплексных дефектах, чувствительных к изменению кристаллического поля, к изменению величины *R*.

На оптические и электрические свойства кристаллов ниобата лития сильно влияет присутствие в структуре гидроксильных групп ОН, которые занимают места ионов кислорода [1,12,24]. Образование водородной связи приводит не только к кардинальному изменению волновых функций внешних электронных орбиталей иона кислорода и параметров его электронной поляризуемости, но и к сильному искажению всего октаэдра МеО₆ (Me — основные (Li, Nb) или примесные катионы), не исключая образования полярона Nb⁴⁺ [25]. При этом атомы водорода могут локализоваться в структуре номинально чистого кристалла в трех различных позициях в составе комплексных дефектов Ме-ОН и Me-OH-Me(V_{Li}) (Me — примесный или основной катион) [24]. Наличие таких комплексных дефектов, содержащих в себе несколько центров свечения, может приводить к люминесценции в видимой и ближней ИК области спектра, а также к передаче энергии между центрами свечения, к изменению положения энергетических уровней, локализованных в запрещенной зоне.

В работах [1,26] для высокосовершенного стехиометрического кристалла LiNbO₃, выращенного методом HTTSSG, в котором существует только одна позиция атома водорода, авторы наблюдали только одну интенсивную широкую полосу люминесценции с максимумом при 443 nm. По мнению авторов [26], механизм излучения данной полосы связан с электроннодырочной рекомбинацией между Nb4+-O-. При этом катион Nb⁵⁺ находится в своем октаэдре. В тоже время для стехиометрического кристалла LiNbO_{3stoich} $(6.0 \text{ wt}\% \text{ K}_2\text{O})$, также полученного методом HTTSSG, как и для кристалла LiNbO3stoich, мы наблюдали 5 полос люминесценции с максимумами при 402-407, 510-527, 611-612, 650-667 и 698-700 nm, рис. 1, табл. 2. Отличие данных работы [26] и наших данных может быть обусловлено тем, что в исследованных нами кристаллах LiNbO_{3stoich} (6.0 wt% K₂O) и LiNbO_{3stoich}, как и в кристалле LiNbO3cong, атомы водорода занимают большее количество позиций, что приводит к большему числу активных центров свечения.

На рис. 3 приведены спектры ИК поглощения в области валентных колебаний водородных связей монокристаллов LiNbO_{3stoich}, LiNbO_{3cong} и LiNbO_{3stoich} (6.0 wt%K₂O). В спектрах всех исследованных кристаллов в

Рис. 3. ИК спектры поглощения в области валентных колебаний ОН-групп номинально чистых монокристаллов ниобата лития разного состава: $1 - \text{LiNbO}_{3\text{stoich}}$, $2 - \text{LiNbO}_{3\text{stoich}}$ (6.0 wt% K₂O), $3 - \text{LiNbO}_{3\text{cong}}$.

области 3420-3540 ст⁻¹ проявляются три интенсивные полосы поглощения с частотами 3465-3470 (v1), 3480-3483 (ν_2), 3486-3488 (ν_3) cm⁻¹, что свидетельствует о наличии трех позиций атомов водорода в структуре кристалла. Различия в частотах полос поглощения для всех кристаллов незначительные, что свидетельствует о практически одинаковых значениях квазиупругих постоянных связей О-Н. Однако интенсивности и ширины полос поглощения для кристалла LiNbO3cong значительно отличаются от таковых для кристаллов LiNbO_{3stoich} и LiNbO_{3stoich} (6.0 wt% K₂O), рис. 3, что указывает на разную концентрацию ОНгрупп в разных позициях в структуре исследованных кристаллов, а также на разную степень упорядочения ОН-связей. Более узкие полосы поглощения в ИК спектре кристаллов LiNbO_{3stoich} и LiNbO_{3stoich} (6.0 wt% K₂O), рис. 3, указывают на больший порядок в расположении соответствующих ОН-групп в структуре кристаллов по сравнению с кристаллом LiNbO_{3cong}. Концентрация ОН-групп в исследованных кристаллах была рассчитана из спектра ИК поглощения по методу Клавира [27]. Результаты расчета представлены в табл. 3. Полученные результаты показывают, что в кристалле LiNbO_{3cong} концентрация ОН-групп максимальная, а количество ОН-групп в кристалле LiNbO_{3stoich} (6.0 wt% K₂O) является промежуточным между кристаллами LiNbO_{3cong} и LiNbO_{3stoich}, табл. 3.

Природа малоинтенсивных центров свечения в областях при $\lambda \sim 380-400$ и > 650 nm, рис. 1, табл. 2, остается пока не ясной. Возможно, в объеме кристалла могут активироваться центры свечения, связанные с вакансиями по литию и ниобию, либо происходить нарушение анионной подрешетки с образованием кислородных вакансий. Максимум вблизи ~ 650 nm, табл. 2, может быть обусловлен генерацией второй гармоники лазерного излучения в фотолюминесцентных спектрах исследуемых образцов.

Заключение

Исследования спектров фотолюминесценции кристаллов LiNbO_{3cong}, LiNbO_{3stoich} (6.0 wt% K₂O) и LiNbO_{3stoich}, полученных при возбуждении линией 325 nm с объема кристалла, показывают, что фотолюминесценция неоднозначно зависит от стехиометрии и технологии получения кристалла. В кристалле LiNbO3cong доминирующими центрами свечения с максимумами при 511 и 613 nm являются центры в виде дефектов NbLi, являющихся наиболее глубокими электронными ловушками. В кристаллах LiNbO $_{3stoich}$ (6.0 wt% K₂O) и LiNbO $_{3stoich}$ практически отсутствуют точечные дефекты NbLi, но люминесценция соответствующих центров свечения с максимумами при 510-527 nm достаточно интенсивная, особенно для кристалла LiNbO_{3stoich} (6.0 wt% K₂O). Согласно проведенным расчетам, в структуре кристалла LiNbO3stoich (6.0 wt% K2O) наблюдается повышенное содержание ОН-групп по сравнению с кристаллом LiNbO_{3stoich}. Этот факт позволяет сделать предположение, что вклад в люминесценцию могут вносить не только основные типы центров свечения в виде точечных дефектов (когда основные и примесные катионы расположены не в своих позициях), но центры свечения в виде комплексных дефектов с участием атомов водорода. В длинноволновой области спектра, вследствие рассеяния энергии на колебаниях кристаллической решетки, имеет место более сильное тушение всех центров люминесценции в кристалле LiNbO3cong по сравнению с кристаллами LiNbO_{3stoich} и LiNbO_{3stoich} (6.0 wt% K₂O).

Благодарность

Авторы выражают благодарность В.Б. Пикулеву за помощь в постановке физического эксперимента и обсуждение экспериментальных данных.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Lengyel K., Peter A., Kovacs L., Corradi G., Palfalvi L., Hebling J., Unferdorben M., Dravecz G., Hajdara I., Szaller Zs., Polgar K. // Appl. Phys. Rev. 2015. V. 2. P. 040601-1. doi 10.1063/1.4929917
- [2] Сидоров Н.В., Волк Т.Р., Маврин Б.Н., Калинников В.Т. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны. М.: Наука, 2003. 255 с.
- [3] *Кузьминов Ю.С.* Электрооптический и нелинейнооптический кристалл ниобата лития. М.: Наука, 1987. 262 с.
- [4] Палатников М.Н., Сидоров Н.В., Макарова О.В., Бирюкова И.В. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития. Апатиты: Издво КНЦ РАН, 2017. 241 с.
- [5] Палатников М.Н., Макарова О.В., Сидоров Н.В. Ростовые и технологические дефекты кристаллов ниобата лития различного генезиса. Апатиты: Изд-во КНЦ РАН, 2018. 89 с.
- [6] Palatnikov M.N., Sidorov N.V. Oxide Electronics and Functional Properties of Transition Metal Oxides. USA: NOVA Sience Publichers, 2014. P. 31–168.
- [7] Сидоров Н.В., Палатников М.Н., Теплякова Н.А., Сюй А.В., Киле Е.О., Штарев Д.С. // Неорг. матер. 2018. Т. 54. № 6. С. 611. doi 10.7868/S0002337X18060106; Sidorov N.V., Palatnikov M.N., Teplyakova N.A., Syuy A.V., Kile E.O., Shtarev D.S. // Inorg. Mater. 2018. V. 54. N 6. P. 581. doi 10.1134/S0020168518060134
- [8] Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. // Appl. Phys. Rew. 2015. V. 2. N 4. P. 040604. doi 10.1063/1.4928591
- [9] Polgar K., Peter A., Kovacs L., Corradi G., Szaller Zs. // J. Cryst. Growth. 1997. V. 177. N 3–4. P. 211. doi 10.1016/S0022-0248(96)01098-6
- [10] Бирюкова И.В., Габриелян В.Т., Калинников В.Т., Палатников М.Н. // Тезисы докладов IX Национальной конференции по росту кристаллов. М., 2000. С. 443.
- [11] Баласанян Р.Н., Вартанян Э.С., Габриелян В.Т., Казарян Л.М. Авт. свидетельство № 845506, 06.03.1981.
- [12] Сидоров Н.В., Палатников М.Н., Бобрева Л.А. // Журн. структ. хим. 2019. Т. 60. № 9. С. 1434. doi 10.26902/JSC_id46180; Sidorov N.V., Palatnikov M.N., Bobreva L.A. // J. Struct. Chem. 2019. V. 60. Р. 1434. doi 10.26902/JSC_id46180
- [13] Сидоров Н.В., Палатников М.Н., Бобрева Л.А., Климин С.А. // Неорг. матер. 2019. Т. 55. № 4. С. 395. doi 10.1134/S0002337X19040134; Sidorov N.V., Palatnikov M.N., Bobreva L.A., Klimin С.А. // Inorg. Mater. 2019. V. 55. N 4. P. 365. doi 10.1134/S0020168519040137
- [14] Теплякова Н.А., Сидоров Н.В., Палатников М.Н. // Персп. матер. 2016. № 4. С. 19.
- [15] Palatnikov M.N., Biryukova I.V., Sidorov N.V., Denisov A.V., Kalinnikov V.T., Smith P.G.R., Shur V.Ya. // J. Cryst. Growth. 2006. V. 291. P. 390. doi 10.1016/j.jcrysgro.2006.03.022

- [16] Палатников М.Н., Сидоров Н.В., Бирюкова И.В., Щербина О.Б., Калинников В.Т. // Персп. Матер. 2011. № 2. С. 93.
- [17] Emond M.H.J., Wiegel M., Blasse G., Feigelson R. // Mat. Res. Bull. 1993. V. 28. N 10. P. 1025. doi 10.1016/0025-5408(93)90140-9
- [18] Krol D.M., Blasse G., Powell R.C. // J. Chem. Phys. 1980.
 V. 73. N 1. P. 163. doi 10.1063/1.439901
- [19] Volk T., Wöhlecke M. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching. Berlin: Springer, 2008. 250 p.
- [20] Саллум М.И., Грунский О.С., Маньшина А.А., Тверьянович А.С., Тверьянович Ю.С. // Изв. РАН. Сер. хим. 2009. Т. 73. № 11. С. 2162; Salloum М.Y., Grunsky O.S., Manishina A.A., Tveriyanovich A.S., Tveriyanovich Yu.S. // Russ. Chem. Bull., Int. Ed. 2009. V. 58. P. 2228.
- [21] Ахмадуллин И.Ш., Голенищев-Кутузов В.А., Мигачев С.А. // ФТТ. 1998. Т. 40. № 6. С. 1109; Akhmadullin I.Sh., Golenishchev-Kutuzov V.A., Migachev S.A. // Phys. Sol. St. 1998. V. 40. N 6. P. 1012. doi 10.1134/1.1130478
- [22] Schirmer O.F., Thiemann O., Wöhlecke M. // J. Phys. Chem. Sol. 1991. V. 52. N 1. P. 185. doi 10.1016/0022-3697(91)90064-7
- [23] Блистанов А.А., Любченко В.М., Горюнова А.Н. // Кристаллогр. 1998. Т. 43. № 1. С. 86.
- [24] Cabrera J.M., Olivares J., Carrascosa M., Rams J., Müller R.
 & Diéguez E. // Adv. Phys. 1996. V. 45. N 5. P. 349.
 doi 10.1080/00018739600101517
- [25] Евдокимов С.В., Яценко А.В. // Кристаллогр. 2003. Т. 48. № 4. С. 594; Yevdokimov S.V., Yatsenko A.V. // Cryst. Rep. 2003. V. 48. N 4. Р. 542. doi 10.1134/1.1595175
- [26] Fischer C., Wöhlecke M., Volk T., Rubinina N. // Phys. stat. sol. (A). 1993. V. 137. P. 247. doi 10.1002/pssa.2211370122
- [27] Klauer S., Wöhlecke M., Kapphan S. // Phys. Rev. B. 1992.
 V. 45. P. 2786. doi 10.1103/PhysRevB.45.2786