08,09

Фотолюминесценция центров окраски германий-вакансия в полученных химическим газофазным осаждением алмазных частицах

© С.А. Грудинкин¹, Н.А. Феоктистов¹, К.В. Богданов², А.В. Баранов², В.Г. Голубев¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Национальный исследовательский университет ИТМО, Санкт-Петербург, Россия E-mail: grudink.gvg@mail.ioffe.ru

Поступила в Редакцию 27 декабря 2019 г. В окончательной редакции 27 декабря 2019 г. Принята к публикации 27 декабря 2019 г.

> Методом химического газофазного осаждения с горячей нитью на подложке германия синтезированы алмазные частицы с центрами окраски германий-вакансия. Формирование центров окраски происходило в процессе роста алмазных частиц за счет введения атомов германия, образовавшихся в результате травления пластины кристаллического германия атомарным водородом. Рассмотрены условия процесса осаждения из газовой фазы, влияющие на фотолюминесценцию центров окраски германий-вакансия в алмазных частицах. Наибольшая интенсивность фотолюминесценции центров окраски германий-вакансия достигнута для алмазных частиц, полученных на подложке при температуре ее поверхности близкой к температуре плавления германия. В спектрах фотолюминесценции алмазных частиц также наблюдались линии, предположительно связанные с оптическими центрами, в состав которых входит вольфрам.

> Ключевые слова: алмаз, германий, центры окраски, фотолюминесценция, химическое газофазное осаждение

DOI: 10.21883/FTT.2020.05.49253.665

1. Введение

Оптически активные центры окраски в алмазе, представляющие собой примесно-вакансионные комплексы, обладают большими перспективами применения в квантовой информатике, биомедицине, магнитометрии, термометрии [1-5]. Алмазы обладают исключительной твердостью, высокой химической стойкостью, биосовместимостью, а центры окраски в них характеризуются высокой фотостабильностью. Для создания однофотонных источников излучения, люминесцентных биомаркеров и термометрии высокого разрешения требуются центры окраски с интенсивной и узкой бесфононной линией (БФЛ) фотолюминесценции (ФЛ), низкой спектральной диффузией БФЛ [6]. Перечисленным требованиям удовлетворяют центры окраски, включающие междоузельный атом IV группы (Si, Ge, Sn и Pb) и две ближайших вакансии в соседних узлах решетки [7]. Наиболее изученным представителем этого семейства центров является центр окраски кремний-вакансия (SiV) в отрицательном зарядовом состоянии. Из-за слабого электрон-фононного взаимодействия примерно 70% интенсивности ФЛ центра сосредоточено в узкой БФЛ с максимумом на длине волны 738 nm (полная ширина линии на половине высоты (FWHM) при комнатной температуре составляет 0.7 nm для одиночных центров SiV [8] и 4–9 nm для ансамбля центров SiV [9,10]). Центр обладает инверсной

симметрией, что обуславливает низкую спектральную диффузию БФЛ [11].

В последнее время значительные усилия сосредоточены на исследовании центра окраски германий-вакансия (GeV) в отрицательном зарядовом состоянии. Этот центр имеет схожую с центром SiV структуру. В работе [12] показано, что центр GeV имеет более высокую, чем центр SiV квантовую эффективность ФЛ. Это определяет его преимущество при использовании в качестве эмиттера для квантовой нанофотоники. Увеличение квантовой эффективности способствует повышению температурного и пространственного разрешения в нанотермометрии [13].

В центрах окраски GeV и SiV спин-орбитальное взаимодействие приводит к расщеплению основного $({}^{2}E_{g})$ и возбужденного $({}^{2}E_{u})$ состояний на два состояния (тонкая структура центра) [7]. Значение величины расщепления основного состояния центра GeV (150 GHz) выше, чем центра SiV (47 GHz), что обуславливает большее время спиновой когерентности [14]. В спектре ФЛ центра GeV при комнатной температуре БФЛ, в которой сосредоточено 60% интенсивности излучения [15], имеет максимум на длине волны ~ 602 nm и характерное время жизни ~ 1.4 ns [16]. При комнатной температуре FWHM БФЛ центра GeV в спектре ФЛ гомоэпитаксиальной алмазной пленки составляет ~ 4.6 nm [17]. Одним из способов введения центров GeV в алмаз является метод ионной имплантации [12,16]. К недостаткам метода ионной имплантации относится отсутствие возможности обеспечить глубокое проникновение примеси и введение высоких концентраций примеси. Неизбежны также радиационные повреждения структуры поверхности алмаза, например, образование межузельных атомов углерода и вакансий, от которых не удается полностью избавиться в процессе последующего отжига [16,18]. Алмазные частицы с высоким совершенством кристаллической структуры и интенсивной линией ФЛ центра GeV были получены в условиях высокого давления и высоких температур (HPHT) [15,19,20].

Для получения алмазных пленок и частиц с центрами окраски широко используется метод химического газофазного осаждения (CVD). Это, в первую очередь, связано с возможностью контролируемого введения центров окраски [17,21]. К другим важным достоинствам различных модификаций метода CVD относятся: варьирование толщины алмазных пленок и размера алмазных частиц (от нескольких десятков нанометров до сотен микрон), осаждение алмаза на неалмазных подложках сложной формы, возможность изменения параметров синтеза в процессе роста и *in-situ* оптический контроль размера алмазных частиц. Поэтому, получение методом CVD алмазных частиц с введенными в них в процессе роста центрами окраски GeV представляет несомненный интерес.

Целью настоящей работы являлось получение на подложке германия методом химического газофазного осаждения с горячей нитью (Hot Filament Chemical Vapor Deposition — HFCVD) алмазных частиц с интенсивной фотолюминесценцией центров окраски GeV. Источником атомов германия были радикалы GeH_x, образовавшиеся в результате травления кристаллического германия атомарным водородом. В работе проведен поиск условий проведения CVD процесса с целью достижения максимальной интенсивности БФЛ центров окраски GeV в спектрах ФЛ алмазных частиц.

2. Методика эксперимента

Алмазные частицы синтезированы методом HFCVD. Параметры технологического процесса HFCVD: температура вольфрамовой спирали — 2000–2200°С, рабочее давление в реакторе — 40 Torr, расход водорода — 500 sccm, концентрация метана — 2%, время роста алмазных частиц — 2 h.

В качестве центров зародышеобразования использовались наноалмазы детонационного синтеза с характерным размером ~ 4 nm, которые контролируемо наносились на кремниевую подложку методом аэрозольного распыления [22]. Концентрация наноалмазов детонационного синтеза на поверхности подложки составляла $\sim 10^6$ cm⁻². Размер синтезированных алмазных частиц,

измеренный методом атомно-силовой микроскопии, варировался в диапазоне от 0.6 до $1\,\mu$ m.

Измерения спектров комбинационного рассеяния света (КРС) и ФЛ проводились в геометрии "обратного рассеяния" с помощью микро-рамановского спектрометра Renishaw InVia Raman Microscope, оснащенного конфокальным микроскопом. Спектральное разрешение спектрометра составляло ~ 1 сm⁻¹. При измерениях использовалась длина волны возбуждающего излучения 488 nm. Для измерений, проводимых при комнатной температуре, излучение возбуждающего лазера фокусировалось объективом 100 × (NA = 0.9) в пятно на образце диаметром ~ 1 μ m. Спектры КРС и ФЛ при T = 80 К измерены с использованием криогенной установки Linkam THMS 600. Для фокусировки падающего пучка на образец использовался объектив 50 × (NA = 0.50) с большим рабочим расстоянием.

3. Экспериментальные результаты и их обсуждение

Для введения центров GeV необходимо обеспечить доставку атомов Ge на поверхность алмазных частиц в процессе их синтеза. В настоящей работе твердотельным источником атомов Ge являлась полированная подложка кристаллического германия толщиной $300 \, \mu$ m, на которую осаждались алмазные частицы. В некоторых синтезах в алмазную кристаллическую решетку одновременно с центрами GeV вводились центры SiV. Для этого на держателе подложек рядом с подложкой германия располагалась пластина кристаллического кремния.

Твердотельные источники кремния (пластины Si) широко используются для введения центров окраски SiV в процессе CVD синтеза [9,10,23,24]. Травление атомарным водородом кремний содержащих пластин приводит к появлению летучих радикалов SiH_x. Перенос и осаждение этих радикалов на поверхность растущих алмазных кристаллитов с последующим вхождением кремния в решетку алмаза обуславливает образование центров SiV. Можно предположить, что образование центров GeV в процессе CVD синтеза при использовании твердотельных источников германия происходит по механизму схожему с механизмом формирования центров окраски SiV. Источником атомов Ge в алмазной решетке являются радикалы GeH_x, образованные в результате травления атомарным водородом кристаллического германия [25]. Также возможен вклад от атомов Ge, образующихся в результате испарения с поверхности кристаллического германия.

Спектры ФЛ синтезированных алмазных частиц, полученные при температуре подложки германия 830°С, представлены на рис. 1. Интенсивности спектров ФЛ нормированы на интенсивность линии 521.9 nm, обусловленной КРС на ТО-фононе ($\sim 1332 \, {\rm cm}^{-1}$) в кристаллической решетке алмаза. В спектрах наблюдается

Рис. 1. Спектры Φ Л алмазных частиц на подложке кристаллического германия, полученные в присутствии (*I*) и в отсутствии (*2*) в процессе синтеза расположенной рядом с подложкой германия пластины кристаллического кремния. Температура поверхности подложки в процессе синтеза 830°С. На вставке приведены спектры КРС.

широкая полоса ФЛ с максимумом в области 600 nm. Слабая узкая линия 602.3 nm является БФЛ центра окраски GeV [16].

В спектре ФЛ алмазных частиц, синтезированных в отсутствии рядом с подложкой германия кремниевой пластины, наблюдается широкая полоса в диапазоне длин волн 670-800 nm (рис. 1, кривая 2). На огибающей контура эмиссии этой широкой полосы наблюдаются максимумы в области 714.4, 723.6, 734.4 nm, которые в работах [26,27] приписывают линиям излучения кластеров вакансий в алмазе. Другой причиной появления в спектре ФЛ этой широкой полосы может быть излучение оптического центра, в состав которого входит вольфрам (W-центр). Линии люминесценция W-центра ранее наблюдалась в алмазных пленках, полученных методом HFCVD с использованием вольфрамовой спирали [28] и методом химического осаждения из газовой фазы в дуговом разряде с применением вольфрамовых электродов [29]. Присутствие примеси вольфрама в алмазных пленках, полученных методом HFCVD, обнаружено в работе [30].

В спектре ФЛ алмазных частиц, синтезированных при размещении рядом с подложкой германия кремниевой пластины, на фоне широкой полосы в диапазоне длин волн 670-800 nm наблюдается интенсивная линия центра окраски SiV с максимумом БФЛ на длине волны 738.2 nm (рис. 1, кривая 1). Формирование центров SiV в алмазных частицах на подложке германия происходило за счет вхождения в решетку алмаза кремния, образовавшегося в результате травления кремниевой пластины атомарным водородом.

На вставке рис. 1 приведены спектры КРС алмазных частиц. В этих спектрах полоса 1332 cm⁻¹ соответствует ТО-фонону симметрии F2g в решетке алмаза и указывает на присутствие кристаллической алмазной фазы (*sp*³-гибридизованного углерода) [31]. FWHM в обоих спектрах составляет $\sim 10.5 \, {\rm cm}^{-1}$. Линии с максимумами в области 1350 $\rm cm^{-1}~(D\textsc{-}линия)$ и 1580 $\rm cm^{-1}$ (G-линия) обусловлены присутствием в алмазных частицах *sp*²-гибридизованного углерода [32]. Линия в области 1490 cm⁻¹ связана с присутствием аморфного углерода в алмазных частицах [31]. Появление линии $1150\,{\rm cm^{-1}}$ можно приписать углеродным цепочкам типа трансполиацетилена [31]. Отношение интегральной интенсивностей линии КРС алмаза к интенсивности линий, связанных с sp^2 -гибридизированным углеродом, практически не зависит от нахождения рядом с подложкой германия кремниевой пластины.

Интенсивность БФЛ центров GeV меньше интенсивности БФЛ центров SiV и сравнима по интенсивности с линией КРС алмаза (рис. 1, кривая 1). Одной из возможных причин слабой интенсивности БФЛ центра GeV является низкая концентрация радикалов GeH_x в газовой фазе, образующихся в результате травления подложки германия. Это может быть связано с тем, что скорость травления атомарным водородом кристаллического германия значительно меньше, чем кремния [33].

Повышение концентрации радикалов GeH_x в газовой фазе может увеличить интенсивность БФЛ линии центров GeV. Для этой цели рядом с подложкой германия (на расстоянии ~ 0.5 mm) была размещена пластина кристаллического германия толщиной ~ 3 mm (размеры в латеральной плоскости 4 × 2 mm). Благодаря значительно большей толщине, чем у подложки германия, поверхность пластины германия располагается ближе к вольфрамовой спирали. Поэтому, из-за большого градиента температуры между вольфрамовой спиралью и держателем подложки поверхность пластины германия нагревается до температуры близкой к температуре плавления германия (938°С). О достижении температуры плавления свидетельствуют характерные кратеры на поверхности пластины германия, не наблюдаемые на поверхности более тонкой подложке германия. При температуре поверхности близкой к температуре плавления на поверхности пластины германия происходит образование квазижидкого слоя, что может привести к более интенсивному ее травлению и увеличению образования летучих радикалов GeH_x. Для проверки этого предположения был проведен синтез алмазных частиц на подложке германия при двух различных температурах поверхности подложки 660°С и 830°С. На держателе подложек рядом с подложкой германия размещалась также пластина кремния.

На рис. 2 приведены спектры ФЛ алмазных частиц, синтезированных на подложке германия, когда рядом на держателе подложки дополнительно размещались пластины германия и кремния. Интенсивности спектров ФЛ нормированы на интенсивность линии 521.9 nm (линия

Рис. 2. Спектры Φ Л алмазных частиц на подложке кристаллического германия, синтезированных при размещении пластин германия и кремния рядом с подложкой германия. Температура подложки германия 830°С (*1*) и 660°С (*2*). На вставке приведены спектры КРС.

КРС алмаза на частоте ~ $1332 \, {\rm cm}^{-1}$). Интенсивность БФЛ центров GeV для алмазных частиц, синтезированных при температуре подложки 660°С, выше, чем для частиц, синтезированных при температуре подложки 830°С. Интенсивность линии БФЛ центров GeV для алмазных частиц, полученных при температуре подложки 830°С, сравнима с интенсивностью ФЛ алмазных частиц, полученных в процессе HFCVD без размещенной рядом пластины германия (рис. 1, кривая *I*). В спектре ФЛ алмазных частиц, полученных при температуре подложки 830°С, присутствует БФЛ центра окраски SiV, а при температуре 660°С данная линия не наблюдается.

На вставке рис. 2 показаны спектры КРС алмазных частиц, синтезированных при температуре 660 и 830°С. Для алмазных частиц, полученных при температуре подложки 830°С, линия КРС алмаза центрирована на $\sim 1332~{\rm cm^{-1}}$ и FWHM равна $\sim 10~{\rm cm^{-1}}$. Линия алмаза в спектре КРС алмазных частиц, полученных при температуре 660°С, испытывает коротковолновый сдвиг до $\sim 1329.2~{\rm cm^{-1}}$ относительно спектрального положения для объемного алмаза (1332 cm⁻¹), а FWHM составляет $\sim 15~{\rm cm^{-1}}$. Положение и ширина линии КРС алмаза, отношение интенсивности линии алмаза к линиям, обусловленным sp²-гибридизованным углеродом, в обоих спектрах практически одинаковы.

На рис. З показаны спектры КРС алмазных частиц, образовавшихся на пластине кристаллического кремния. Кривая *1* соответствует спектру КРС алмазных частиц, полученных в том же HFCVD процессе, что и алмазные частицы на подложке германия, спектр ФЛ которых представлен на рис. 1, кривая *1*. Кривая *2* соответствует спектру КРС алмазных частиц, полученных в

том же HFCVD процессе, что и алмазные частицы на подложке германия, спектр ФЛ которых представлен на рис. 2, кривая 1. Температура поверхности подложки кремния составляла ~ 720°С. В процессе синтеза рядом с пластиной кремния располагалась (кривая 2) или отсутствовала (кривая 1) пластина кристаллического германия. Спектры приведены в диапазоне частот, где регистрируются линии КРС на LO-фононах в кристаллическом германии $(300\,{\rm cm^{-1}})$ и кристаллическом кремнии (520 cm^{-1}) . Линия КРС на частоте 300 cm^{-1} наблюдается в спектре алмазных частиц (рис. 3, кривая 2), полученных в присутствии рядом с подложкой германия дополнительной пластины германия. Наличие в спектре КРС алмазных частиц на пластине кремния линии на частоте $300\,\mathrm{cm}^{-1}$ свидетельствует о росте на ней кристаллического германия. Линия 300 cm⁻¹ не наблюдается (рис. 3, кривая 1) в спектрах КРС алмазных частиц на пластине кремния, полученных в процессе HFCVD без пластины германия. Следовательно, пластина германия является более интенсивным источником GeH_x, чем подложка германия. Возможно также, что размер кристаллитов германия очень мал и поэтому не обнаруживается в эксперименте по КРС. Из выше сказанного можно сделать вывод о том, что интенсивность травления пластины германия атомарным водородом значительно увеличивается при повышении температуры ее поверхности до температуры плавления.

На основе полученных экспериментальных результатов можно выдвинуть предположение, объясняющее различия в интенсивности БФЛ центра GeV в спектрах ФЛ алмазных частиц, синтезированных при температуре поверхности подложки германия 830 и 660°С (рис. 2).

Рис. 3. Спектры КРС алмазных частиц, синтезированных методом HFCVD на пластине кремния. На держателе подложки рядом с пластиной кремния располагалась (кривая 2) или отсутствовала (кривая I) пластина германия толщиной ~ 3 mm.

При температуре 830°С подвижность осажденных радикалов (или атомов) германия на подложке достаточна, чтобы обеспечить рост кристаллитов германия. По-видимому, значительная доля атомов германия образует кристаллиты, а не участвует в образовании центров GeV. Это обуславливает слабую интенсивность БФЛ центра GeV. При температуре подложки германия 660°С замедляется миграция атомов германия по поверхности алмазных частиц. Вероятно, они менее эффективно образуют частицы кристаллического германия, и большая доля атомов германия становится доступна для образования центров GeV. В результате в спектре ФЛ алмазных частиц наблюдается увеличение интенсивности БФЛ центров GeV (рис. 2, кривая 2). Наблюдаемый сдвиг в коротковолновую область и уширение КРС линии алмаза (рис. 2, кривая 2 на вставке) свидетельствуют об образовании алмазных кристаллитов размером в единицы нанометров [34]. Положение максимума БФЛ центров GeV в алмазных частицах, полученных при температуре 660°С, составляет 604 nm, то есть наблюдается длинноволновый сдвиг на 2 nm по отношению к ее положению в алмазах с микронным размером кристаллитов. Также наблюдается увеличение FWHM БФЛ центра GeV до 16 nm.

Отсутствие БФЛ центра SiV в спектрах алмазных частиц на подложке германия, полученных при температуре 660° C (рис. 2, кривая 2) можно связать с низкой температурой пластины кремния, при которой заметно уменьшается скорость травления пластины кремния атомарным водородом или с тем, что при данной температуре подложки германия сильно уменьшается вероятность образования центров окраски SiV.

Таким образом, для достижения максимальной концентрации центров GeV в алмазных частицах необходимо обеспечить высокую концентрацию радикалов GeH_x в газовой фазе вблизи поверхности растущих алмазных частиц и высокую эффективность встраивания атомов германия в кристаллическую решетку алмаза с образованием оптического центра окраски. Можно предположить, что выполнение этих условий достигается при HFCVD синтезе алмазных частиц на подложке германия при температуре ее поверхности близкой к температуре плавления германия. При такой температуре интенсивное травление атомарным водородом с одной стороны приводит к высокой концентрации радикалов GeH_x и с другой стороны препятствует образованию кристаллитов германия на поверхности синтезируемых алмазных частиц.

Для подтверждения сделанного предположения был осуществлен синтез алмазных частиц на поверхности пластины германия толщиной 3 mm при температуре ее поверхности близкой к температуре плавления. Спектры ФЛ полученных алмазных частиц, измеренные при T = 300 K (кривая 1) и T = 80 K (кривая 2), приведены на рис. 4. При T = 300 K в спектре ФЛ алмазных частиц наблюдается интенсивная БФЛ центров GeV с максимумом на длине волны 602.2 nm и FWHM приблизительно

Рис. 4. Спектры $\Phi Л$ алмазных частиц на подложке германия толщиной ~ 3 mm, измеренные при T = 300 K (1) и T = 80 K (2). Температура поверхности подложки германия близка к температуре плавления германия.

равной 6.5 nm. Интегральная интенсивность БФЛ центра GeV приблизительно в 200 раз выше интегральной интенсивности линии КРС алмаза (рис. 4).

В спектре $\Phi Л$ при $T = 80 \, \text{K}$ максимум $Б \Phi Л$ центра GeV расположен на длине волны 601.8 nm и ее FWHM равна приблизительно 2.5 nm. В спектрах на рис. 4 в области длин волн 670-800 nm наблюдаются линии возможное происхождение которых обсуждалось выше. Линии 738.1 nm при *T* = 300 K и 736.9 nm при $T = 80 \, \text{K}$ являются БФЛ центра SiV, появление которой мы связываем с наличием остаточного кремния на стенках и внутренних деталях реактора. FWHM БФЛ центра SiV при $T = 80 \,\mathrm{K}$ составляет $\sim 2.2 \,\mathrm{nm}$. В спектре $\Phi \Pi$ при $T = 80 \, \text{K}$ наблюдаются две интенсивные узкие линии 713.2 и 723.3 nm. Также в спектре на коротковолновом крыле БФЛ центра SiV наблюдается слабая линия 733.5 nm, а на длинноволновом крыле БФЛ центра SiV наблюдаются слабые широкие линии 745.5, 755.3 и 766.2 nm. По нашему мнению, более вероятной причиной происхождения этих линий является присутствие W-центра в алмазных частицах. Особенность W-центра состоит в наличии в спектре ФЛ в диапазоне длин волн от 704 nm до 713 nm пяти БФЛ, обозначаемых W₁-W₅ [29]. Наиболее интенсивной является БФЛ W₅ [29], которую мы наблюдаем на длине волны 713.2 nm (1.738 eV). Линия 723.3 nm (1.714 eV) сдвинута в длинноволновую область спектра относительно БФЛ W_5 на ~ 24 meV. Спектральное расстояние между слабыми линиями 723.3, 733.5, 745.5, 755.3 и 766.2 также составляет $\sim 24 \, \text{meV}$. Такое значение величины спектрального расстояния между наблюдаемыми линиями дает нам основание отнести эти линии к фононным повторениям БФЛ W₅ [29].

4. Заключение

Методом HFCVD на подложке кристаллического германия синтезированы алмазные частицы с центрами окраски GeV. При комнатной температуре в спектрах ФЛ наблюдалась БФЛ центра окраски GeV на длине волны $\sim 602\,\text{nm}$. Источником атомов германия являлись радикалы GeH_x, образованные в результате травления кристаллического германия атомарным водородом. Слабая интенсивность БФЛ центра окраски GeV при температуре подложки германия 830°С связана с низкой концентрацией радикалов GeH_x. Увеличение концентрации радикалов GeH_x достигнуто за счет размещения рядом с подложкой германия дополнительной пластины германия. В полученных при температуре поверхности подложки 660°C алмазных частицах, состоящих из кристаллитов нанометровых размеров, положение максимума БФЛ центров GeV испытывает длинноволновый сдвиг на 2 nm по отношению к ее положению в алмазах с микронным размером кристаллитов. Максимальная интенсивность БФЛ центра окраски GeV получена в алмазных частицах, выращенных на подложке германия толщиной 3 mm при температуре ее поверхности близкой к температуре плавления. В спектрах ФЛ алмазных частиц в области длин волн 780-800 nm наблюдались линии ФЛ, связанные, по-видимому, с присутствием в решетке алмаза оптических центров, в состав которых входит вольфрам.

Финансирование работы

Работа выполнена с использованием средств госбюджета по теме госзадания 0040-2019-0012.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J.M. Smith, S.A. Meynell, A.C.B. Jayich, J. Meijer. Nanophotonics 8, 1889 (2019).
- [2] T. Schröder, S.L. Mouradian, J. Zheng, M.E. Trusheim, M. Walsh, E.H. Chen, L. Li, I. Bayn, D. Englund. JOSA B 33, B65 (2016).
- [3] I. Aharonovich, E. Neu. Adv. Opt. Mater. 2, 911 (2014).
- [4] E. Neu. In: Nanodiamonds Advanced Material Analysis. Properties and Applications Elsevier / Ed. J.-C. Arnault. Elsevier. (2017). P. 419.
- [5] O.A. Shenderova, A.I. Shames, N.A. Nunn, M.D. Torelli, I. Vlasov, A. Zaitsev. J. Vac. Sci. Technol. B 37, 030802 (2019).
- [6] I. Aharonovich, S. Castelletto, D.A. Simpson, C.H. Su, A.D. Greentree, S. Prawer. Rep. Prog. Phys. 74, 076501 (2011).
- [7] C. Bradac, W. Gao, J. Forneris, M. Trusheim, I. Aharonovich. arXiv1906.10992 (2019).

- [8] E. Neu, M. Fische, S. Gsell, M. Schreck, C. Becher. Phys. Rev. B 84, 205211 (2011).
- [9] I.I. Vlasov, A.S. Barnard, V.G. Ralchenko, O.I. Lebedev, M.V. Kanzyuba, A.V. Saveliev, V.I. Konov, E. Goovaerts. Adv. Mater. 21, 808 (2009).
- [10] E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, C. Becher. Appl. Phys. Lett. 98, 243107 (2011).
- [11] A. Sipahigil, K.D. Jahnke, L.J. Rogers, T. Teraji, J. Isoya, A.S. Zibrov, F. Jelezko, M.D. Lukin. Phys. Rev. Lett. 113, 113602 (2014).
- [12] M.K. Bhaskar, D.D. Sukachev, A. Sipahigil, R.E. Evans, M.J. Burek, C.T. Nguyen, L.J. Rogers, P. Siyushev, M.H. Metsch, H. Park, F. Jelezko, M.Lončar, M.D. Lukin. Phys. Rev. Lett. **118**, 223603 (2017).
- [13] T.T. Tran, B. Regan, E.A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A.S. Solntsev, M. Toth, I. Aharonovich, C. Bradac. Sci. Adv. 5, eaav9180 (2019).
- [14] K.D. Jahnke, A. Sipahigil, J.M. Binder, M.W. Doherty, M. Metsch, L.J. Rogers, N.B. Manson, M.D. Lukin, F. Jelezko. New J. Phys. 17, 043011 (2015).
- [15] Y.N. Palyanov, I.N. Kupriyanov, Y.M. Borzdov, N.V. Surovtsev. Sci. Rep. 5, 14789 (2015).
- [16] T. Iwasaki, F. Ishibashi, Y. Miyamoto, Y. Doi, S. Kobayashi, T. Miyazaki, K. Tahara, K.D. Jahnke, L.J. Rogers, B. Naydenov, F. Jelezko, S. Yamasaki, S. Nagamachi, T. Inubushi, N. Mizuochi, M. Hatano. Sci. Rep. 5, 12882 (2015).
- [17] V. Sedov, A. Martyanov, S. Savin, A. Bolshakov, E. Bushuev, A. Khomich, O. Kudryavtsev, V. Krivobok, S. Nikolaev, V. Ralchenko. Diam. Rel. Mater. 90, 47 (2018).
- [18] S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, A. Zaitsev. New J. Phys. 13, 035024 (2011).
- [19] E.A. Ekimov, M.V. Kondrin, V.S. Krivobok, A.A. Khomich, I.I. Vlasov, R.A. Khmelnitskiy, T. Iwasaki, M. Hatano. Diam. Rel. Mater. 93, 75 (2019).
- [20] K.N. Boldyrev, B.N. Mavrin, P.S. Sherin, M.N. Popova. J. Lumin. 193, 119 (2018).
- [21] S.A. Grudinkin, N.A. Feoktistov, A.V. Medvedev, K.V. Bogdanov, A.V. Baranov, A.Ya. Vul', V.G. Golubev. J. Phys. D 45, 062001 (2012).
- [22] Н.А. Феоктистов, В.И. Сахаров, И.Т. Серенков, В.А. Толмачев, И.В. Коркин, А.Е. Алексенский, А.Я. Вуль, В.Г. Голубев. ЖТФ 81, 132 (2011).
- [23] A.A. Basov, M. Rahn, M. Pars, I.I. Vlasov, I. Sildos, A.P. Bolshakov, V.G. Golubev, V.G. Ralchenko. Phys. Status Solidi A 206, 2009 (2009).
- [24] S.A. Grudinkin, N.A. Feoktistov, M.A. Baranov, A.N. Smirnov, V.Y. Davydov, V.G. Golubev. Nanotechnol. 27, 395606 (2016).
- [25] V.G. Ralchenko, V.S. Sedov, A.A. Khomich, V.S. Krivobok, S.N. Nikolaev, S.S. Savin, I.I. Vlasov, V.I. Konov. Bull. Lebedev Phys. Inst. 42, 165 (2015).
- [26] S. Dannefaer, W. Zhu, T. Bretagnon, D. Kerr. Phys. Rev. B 53, 1979 (1996).
- [27] D.V. Musale, S.R. Sainkar, S.T. Kshirsagar. Diam. Rel. Mater. 11, 75 (2002).
- [28] J.W. Steeds, N.C. Burton, A.R. Lang, D. Pickard, Y.G. Shreter, J.E. Butler. Solid State Phenom. 51, 271 (1996).

- [29] S. Lal, T. Dallas, S. Yi, S. Gangopadhyay, M. Holtz, F.G. Anderson. Phys. Rev. B 54, 13428 (1996).
- [30] P.M. Menon, A. Edwards, C.S. Feigerle, R.W. Shaw, D.W. Coffey, L. Heatherly, R.E. Clausing, L. Robinson, D.C. Glasgow. Diam. Rel. Mater. 8, 101 (1999).
- [31] S. Prawer, R.J. Nemanich. Phil. Trans. R. Soc. Lond. A 362, 2537 (2004).
- [32] K. Bogdanov, A. Fedorov, V. Osipov, T. Enoki, K. Takai, T. Hayashi, V. Ermakov, S. Moshkalev, A. Baranov. Carbon 73, 78 (2014).
- [33] Y.J. Zheng, P.F. Ma, J.R. Engstrom. J. Appl. Phys. 90, 3614 (2001).
- [34] А.Е. Алексенский, М.В. Байдакова, А.Я. Вуль, В.Ю. Давыдов, Ю.А. Певцова. ФТТ **39**, 158 (1997).

Редактор К.В. Емцев