05,11

Магнитные свойства и морфология поверхности интерметаллического соединения Dy₂Fe₁₀Al₇ и его гидрида

© Н.Ю. Панкратов¹, Т.П. Каминская¹, И.С. Терешина¹, А.А. Макуренкова¹, А.Ю. Карпенков², М.А. Пауков^{3,4}, С.А. Никитина¹

 ¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия
² Тверской государственный университет, Тверь, Россия
³ Карлов университет, Прага, Чехия
⁴ Балтийский федеральный университет им. И. Канта, Калининград, Россия
E-mail: pankratov@phys.msu.ru

Поступила в Редакцию 30 декабря 2019 г. В окончательной редакции 30 декабря 2019 г. Принята к публикации 10 января 2020 г.

Исследовано влияния гидрирования на микроструктурные параметры, топологию поверхности, температуры магнитных фазовых переходов соединения $Dy_2Fe_{10}Al_7$. Также исследованы магнитотепловые свойства в полученном гидриде $Dy_2Fe_{10}Al_7H_{3.2}$. Установлено, что гидрирование соединения $Dy_2Fe_{10}Al_7$ не изменяет температуру Кюри, но в то же время сильно влияет на температуру перехода типа точка магнитной компенсации. Найдено, что величина коэрцитивной силы возрастает при гидрировании, что позволяет сделать вывод о возрастании магнитокристаллической анизотропии в результате изменения локального окружения иона диспрозия при внедрении атомов водорода в кристаллическую решетку. Показано, что относительное изменение объема элементарной ячейки $\Delta V/V$ для гидрида $Dy_2Fe_{10}Al_7H_{3.2}$ составляет 3%. Исследование особенностей структурного состояния позволило заключить, что процессы гидрирования вызывают значительные изменения микроструктуры, что в свою очередь приводит к изменению физических и функциональных свойств материалов, подвергнутых процедуре наводораживания.

Ключевые слова: редкоземельные интерметаллиды, гидриды, ферримагнетик, точка компенсации.

DOI: 10.21883/FTT.2020.05.49235.11M

1. Введение

Редкоземельные интерметаллические соединения с высоким содержанием железа R₂Fe₁₇ привлекают пристальное внимание исследователей как с фундаментальной, так и с практической точек зрения [1-4]. Перспективы промышленного применения сплавов на основе Sm₂Fe₁₇ в качестве материалов для постоянных магнитов появились лишь после того, как было обнаружено, что его свойства (в первую очередь, характер магнитокристаллической анизотропии) могут быть радикально улучшены в результате введения атомов внедрения (азота или водорода) в междоузельные позиции в его структуре [5,6]. Это сделало соединение Sm₂Fe₁₇N_{2.9} перспективным материалом для разработки на его основе энергоемких постоянных магнитов, а соединения типа R_2 Fe₁₇ Z_x (R — редкоземельный атом; $Z = H, N \ u \ C)$ — объектами интенсивного изучения с целью выявления закономерностей изменения основных фундаментальных характеристик (температуры Кюри, намагниченности насыщения и магнитокристаллической анизотропии) в этом наиболее перспективном в практическом отношении классе соединений с высоким содержанием 3d-переходного металла при введении в

их кристаллическую решетку атомов легких элементов внедрения.

Бинарные сплавы R_2 Fe₁₇ существуют для всей серии лантанидов от церия до лютеция в виде двух различных кристаллических структур. Ромбоэдрическую кристаллическую структуру типа Th₂Zn₁₇ (пространственная группа R3m) образуют легкие редкоземельные элементы (они имеют больший ионный радиус). Гексагональную структуру (пространственная группа $P6_3mmc$) по типу соединений Th₂Ni₁₇ образуют тяжелые редкоземельные металлы (P3M). Изменение в кристаллической структуре происходит в середине ряда 4f-элементов.

Болышинство соединений R_2 Fe₁₇ являются ферромагнетиками с температурой Кюри в области 300-450 К и имеют магнитокристаллическую анизотропию типа "легкая плоскость" во всей области температур магнитного упорядочения [7–10]. Магнитную структуру редкоземельных соединений R_2 Fe₁₇ можно рассматривать в модели двух магнитных подрешеток: ионов редкоземельных элементов (подрешетка R) и ионов 3*d*-переходных металлов (подрешетка Fe) [11]. Соответственно, три типа обменных взаимодействий: R-Fe, Fe-Fe и R-R определяют магнитные свойства этих соединений [8,12,13].

Аномально низкие температуры упорядочения составов R_2Fe_{17} с большим содержанием железа обычно объясняют в рамках модели локализованных электронов, в которой утверждается, что взаимодействие двух атомов железа будет ферро- или антиферромагнитное, в зависимости от расстояния между ними (больше или меньше критического $r_{\rm cr} = 0.25$ nm). В сплавах R_2Fe_{17} атомы Fe занимают 4 кристаллографически неэквивалентные позиции. В позициях 4f два атома Fe (так называемая "гантель") отстоят друг от друга менее чем на 0.25 nm и, следовательно, между этими атомами существуют антиферромагнитное обменное взаимодействие.

Замещение ионов железа p-элементами и/или внедрение в междоузлия кристаллической решетки легких элементов в соединении R_2 Fe₁₇ приводит к увеличению объема элементарной ячейки (к увеличению межатомных расстояний), а также к изменению электронной структуры и, как следствие, к значительному изменению их магнитных свойств [14–22].

Так, например, в соединении Sm_2Fe_{17} температура Кюри (T_C) возрастает от 389 до 746 К при добавлении 2.9 атомов азота на формальную единицу. Обычно подобные эффекты связывают с увеличением постоянной решетки и изменением величины обменных интегралов при увеличении расстояния между атомами железа [23]. Таким образом, наряду с атомами замещения азотирование/гидрирование редкоземельных интерметаллидов является удобным инструментом для управления их магнитными свойствами.

Соединении Dy₂Fe₁₀Al₇ является ферримагнетиком обладающим ромбоэдрической кристаллической структурой типа Th₂Zn₁₇ (в отличие от бинарного соединения Dy₂Fe₁₇ [24]). Высокая концентрация атомов алюминия с одной стороны приводит к уменьшению температуры Кюри до величины 235 К, а с другой стороны к уменьшению магнитного момента подрешетки железа, настолько что его величина будет сравнима с антиколлинеарно направленного магнитного моментом подрешетки диспрозия [25-28]. В этом соединении наблюдается магнитный переход типа магнитной компенсации при температуре 135 К [28]. Ферримагнитные материалы с переходным типом магнитной компенсации представляют интерес для рассмотрения их магнитных и магнитотепловых свойств [13]. Изучение ферримагнитных материалов открывает возможности для поиска новых материалов с заданными свойствами для использования в магнитных рефрижераторах. Экспериментальное исследование ферримагнетиков с точкой магнитной компенсации на сегодняшний день немногочисленны [29-31].

Целью данной работы является сравнительное исследование микроструктуры, топологии поверхности и магнитных свойств (намагниченности и температуры магнитных фазовых переходов) соединения $Dy_2Fe_{10}Al_7$ и гидрида $Dy_2Fe_{10}Al_7H_{3.2}$. Исследования магнитокалорического эффекта (МКЭ) представляют фундаментальный интерес, поскольку изучение МКЭ позволяет получить важную информацию о магнитной энтропии (S_M), которая сильно изменяется в области магнитных фазовых переходов.

2. Экспериментальные методы исследования

Соединение $Dy_2Fe_{10}Al_7$ получали методом индукционной плавки с чистотой исходных металлов не менее 99.95 at.% в среде аргона. По причине того, что при выплавке происходит частичное испарение редкоземельного металла, в сплаве содержание РЗМ увеличивалось на 5.3%. После выплавки куски сплава подвергались отжигу в атмосфере аргона при температуре 1100°C в течение 72 h с последующей закалкой в воду.

Гидрирование производилось водородом высокой чистоты (с содержанием примесей 10⁻³-10⁻⁴ %), полученным при термическом разложении гидрида LaNi₅H₆. Образец был помещен в камеру высокого давления, где была проведена процедура активации поверхности образца при температуре 573 К в течение 20 h. Синтез гидрида Dy₂Fe₁₀Al₇H_{3.2} проводился путем прямого поглощения водорода образцом при температуре 573 К и давлении 8 MPa. Через 72 h температура была снижена до комнатной температуры с шагом 0.5 К/min. Когда в камере установилась требуемая температура, давление было снижено до атмосферного и образец изъят из камеры. Содержание водорода рассчитывалось на основании процедуры дегидрирования, которая проводилась через 24 h и через 1 год после приготовления гидрида. Показано, что содержание водорода составляет $z = 3.2 \pm 0.1$ атома водорода на формульную единицу и не меняется с течением времени.

Аттестация исходного сплава и гидрида проводилась методом рентгеноструктурного фазового анализа (PCA) на дифрактометре "ДРОН-2". В качестве источника рентгеновского излучения использовалась рентгеновская трубка с Си K_{α} -излучением ($\lambda = 0.1540598$ nm). Параметры элементарной ячейки определялись по отражениям в области углов $2\theta = 15-105^{\circ}$. Анализ показал, что и в исходном соединении, и в гидриде объем фазы со структурой типа Th₂Zn₁₇ (пространственная группа R3m) составляет не менее 96% (было обнаружено незначительное количество (3–4%) второй фазы Fe₃Al с кубической структурой (пространственная группа Fm3m).

Морфология поверхности сплавов исследовалось методом атомной силовой микроскопии (АСМ) на сканирующем зондовом микроскопе (C3M) "Smena-A" (платформа "Solver" производства ЗАО НТ-МДТ, Россия) как в контактной, так и в полуконтактной моде с применением стандартных кремниевых кантилеверов НА_NC ETALON длиной 80-110 µm с резонансными частотами 140-235 kHz и радиусом закругления острия 30 nm. Полученные АСМ-изображения обрабатывались программными средствами визуализации и анализа Nova 873 Grain Analysis. (Под зернами в данной работе подразумеваются структурные элементы, выявляемые на поверхности образца методом АСМ). Линейный размер зерна в данном случае определяется как диаметр круга, площадь которого равна площади сечения зерна.

Параметры решетки a, c и объем элементарной ячейки V, изменение объема элементарной ячейки при гидрировании $\Delta V/V$, осевое соотношение c/a, средний размер зерен (структурных неоднородностей поверхности) d в соединениях Dy₂Fe₁₀Al₇ и Dy₂Fe₁₀Al₇H_{3.2}

Соединение	a, nm	<i>c</i> ,nm	a/c	V, nm^3	$\Delta V/V, \%$	d, nm
$Dy_2Fe_{10}Al_7$	0.867	1.257	0.69	2.455	- 3	80
$Dy_2Fe_{10}Al_7H_{3.2}$	0.875	1.276	0.69	2.538		25

Метод отображения фазы связан с использованием резонансных колебаний кантилевера. Фазовый сдвиг колебаний определяется энергией диссипативного взаимодействия зонда с поверхностью образца (адгезионные, капиллярные и другие силы). Изменение фазы колебаний фиксируется в виде распределения фазового контраста. Поскольку в нижней точке колебаний кантилевер механически взаимодействует с по верхностью образца, на изменение фазы колебаний существенно влияет локальная жесткость поверхности [32]. АСМ-сканы поверхности исследуемых образцов, полученные этим методом, позволяют воспроизводить трехмерную структуру поверхности с высоким разрешением. Оценка размеров и формы зерна проводилась с помощью анализа полученных 2D и 3D-профилей сечения.

Для проведения исследований были изготовлены полированные шлифы сплава $Dy_2Fe_{10}Al_7$ и его гидрида $Dy_2Fe_{10}Al_7H_{3.2}$. Для проведения исследований наноструктуры сплава шлифы подвергались травлению 5% раствором HNO₃ для выявления структуры зерен. Следует отметить, что гидрид слабо поддавался воздействию концентрированной азотной кислоты.

Для исследований магнитных свойств исходного соединения и гидрида были выполнены измерения с применением SQUID магнитометра (Quantum Design). Термомагнитный анализ образцов проводился в магнитном поле до 1 kOe в температурном интервале 4.2–300 К. Изотермические измерения полевых зависимостей намагниченности были проведены в полях до 70 kOe в температурном интервале от 4.2 до 250 К. Исследование магнитокалорического эффекта проводились косвенным методом путем обработки экспериментально полученных полевых зависимостей намагниченности, измеренных при различных температурах (с постоянным шагом), применяя уравнения Максвелла.

3. Результаты и обсуждение

Рентгеноструктурный фазовый анализ показал, что все полученные соединения являются практически однофазными и имеют кристаллическую структуру типа Th_2Zn_{17} . В таблице приведены структурные характеристики исследованных соединений. Па раметры решетки для исходного соединения $Dy_2Fe_{10}Al_7$ хорошо согласуются с данными работ [25,27,28,33]. Установлено, что изменение объема элементарной ячейки $\Delta V/V$ для гидрированного образца $Dy_2Fe_{10}Al_7H_{3.2}$ составляет 3%. При этом осевое соотношение c/a практические не

изменяется, что говорит об изотропном увеличении решетки в результате внедрения атомов водорода.

Гистерезисные свойства магнитных материалов определяются главным образом микро- и наноструктурой магнитного материала и зависят от нескольких факторов. Это, прежде всего, размер и форма зерна (с учетом критического размера однодоменности), наличие вторичных фаз в объеме зерна и в межзеренной границе, степень текстуры и внутренние напряжения. Все они могут быть, с одной стороны, причиной формирования эффективных центров задержки смещения доменных границ, что приводит к формированию высококоэрцитивного состояния; или, с другой стороны — послужить местом образования доменов обратного знака, что приведет к снижению коэрцитивного поля.

Использование метода атомной силовой микроскопии (ACM) позволяет получить дополнительную информацию об особенностях топографии поверхности магнитного материала и воспроизвести ее трехмерную структуру с пространственным разрешением до 10 nm. Исследование методом ACM морфологии поверхности образца соединения $Dy_2Fe_{10}Al_7$ и его образца гидрида позволило выявить структурные особенности их поверхности.

Анализ АСМ-изображений исходного соединения $Dy_2Fe_{10}Al_7$ (рис. 1) показал, что рельеф его поверхности имеет дискретную структуру. Для лучшей ви-

Рис. 1. АСМ-изображение структуры поверхности сплава Dy₂Fe₁₀Al₇ в контактной моде.

Рис. 2. 3D-изображение структуры поверхности сплава Dy₂Fe₁₀Al₇.

зуализации особенностей рельефа поверхности с помощью специальной программной обработки получено 3D-изображение исследуемого участка поверхности (рис. 2). Видно, что зерна на поверхности исходного образца образуют сложную структуру, объединяясь в хаотично распределенные конгломераты. На АСМ-снимке видны и конгломераты частиц размерами до 0.15μ m, и очень мелкие частицы размерами 50–100 nm. Таким образом, установлено, что исходный образец не имеет выраженной текстуры.

На рис. 3 показаны ACM-изображения участка поверхностей исходного соединения $Dy_2Fe_{10}Al_7(a)$ и гидрида $Dy_2Fe_{10}Al_7H_{3.2}(b)$ в одинаковом масштабе. Для определения величины и формы зерна исследуемых сплавов были построены профили сечений по полученным изоб-

Рис. З. ACM-изображение структуры поверхности в контактной моде для $Dy_2Fe_{10}Al_7(a)$ и гидрида $Dy_2Fe_{10}Al_7H_{3.2}(b)$ и соответствующие им сечения (*c* и *d*).

ражениям поверхности (рис. 3, c и d соответственно). Из анализа профиля установлено, что средний размер зерен (структурных неоднородностей поверхности) исходного соединения Dy₂Fe₁₀Al₇ составляет 80 nm.

Обнаружено (см. рис. 3, b), что поверхность гидрированного образца $Dy_2Fe_{10}Al_7H_{3.2}$ сильно изменилась после процесса гидрирования. Внедрение атомов водорода в кристаллическую решетку привило к охрупчиванию образца. Исследование топологии поверхности обоих образцов выявило сходную структуру. Несмотря на то, что на поверхности гидрированного образца наблюдаются конгломераты зерен в виде нитей, общая текстура, также как и в исходном образце, остается не выраженной. Из анализа сечений установлено, что средний размер зерен в гидриде $Dy_2Fe_{10}Al_7H_{3.2}$ составляет 20–30 nm.

Анализ полученных изображений показал, что в обоих образцах зерна объединяются в конгломераты. Исследование особенностей структурного состояния позволяет заключить, что процессы гидрирования вызывают значительные изменения микроструктуры, что в свою очередь может приводить к изменению физических и функциональных свойств материалов, подвергнутых процедуре наводораживания.

Температуры Кюри исходного соединения и гидрида Dy₂Fe₁₀Al₇H_{3.2} определены методом TMA в магнитном поле 1 kOe и оказались равны $T_C = 235$ K, как для гидрида, так и для исходного соединения. Таким образом, проведенные исследования АСМ были проведены на образцах в парамагнитном состоянии в случае исходного сплава с алюминием, а также на образцах гидрида. Введение водорода с точки зрения расширения решетки равносильно приложению отрицательного гидростатического давления. Температуры Кюри данных соединений определяются величинами обменных взаимодействий внутри 3*d*-подрешетки и между 4*f* и 3*d*-элементами. Ожидаемое изменение температуры Кюри в гидриде вследствие возрастания объема элементарной ячейки определенное по влиянию давления на температуру Кюри $(dT_C/dP=-8\,\mathrm{K/GPa}$ для $\mathrm{Dy}_2\mathrm{Fe}_{17})$ и сжимаемость $(\kappa \approx 0.01 \,\text{GPa}^{-1})$ составляет 30 К [23]. Поэтому можно сделать заключение, что наряду с эффектом объемного расширения, действуют и другие факторы, важнейшим из которых является изменение электронной структуры соединения в результате внедрения атомов водорода в кристаллическую решетку. Ранее было найдено, что в случае квазибинарного соединения Sm₂(Fe_{0.6}Al_{0.4})₁₇ температура Кюри не изменяется при внедрении атомов азота в кристаллическую решетку [34]. При этом в соединениях в меньшей концентрацией алюминия процесс азотирования вызывает значительное (на 100-200 К) возрастание T_C .

На рис. 4 представлены температурные зависимости намагниченности в магнитном поле H = 8 kOe для соединения $\text{Dy}_2\text{Fe}_{10}\text{Al}_7$ и гидрида $\text{Dy}_2\text{Fe}_{10}\text{Al}_7\text{H}_{3.2}$. Видно, что характер кривых отличается. В исходном соединении $\text{Dy}_2\text{Fe}_{10}\text{Al}_7$ наблюдается достаточно резкое падение

Рис. 4. Температурные зависимости намагниченности соединения $Dy_2Fe_{10}Al_7$ и гидрида $Dy_2Fe_{10}Al_7H_{3.2}$ в поле 8 kOe.

Рис. 5. Петли магнитного гистерезиса для исходного соединения $Dy_2Fe_{10}Al_7$ и гидрида $Dy_2Fe_{10}Al_7H_{3.2}$ при температуре 4.2 K.

намагниченности в области перехода из магнитоупорядоченного в парамагнитное состояние. Температурная зависимость намагниченности в поле 8 kOe показывает минимум вблизи температуры магнитной компенсации $T_{\rm comp} = 85$ K для гидрида, что на 40 K меньше, чем в исходном соединении ($T_{\rm comp} = 135$ K). В точке магнитной компенсации намагниченности подрешеток Dy и Fe становятся равны друг другу. Соответственно при $T < T_{\rm comp}$ намагниченность подрешетки Dy превышает намагниченность подрешетки Fe, а при $T > T_{\rm comp}$ наоборот [13].

На рис. 5 показаны петли магнитного гистерезиса исходного состава и гидрида при температуре 4.2 К. Из рисунка видно, что исходное соединение и его гидрид при низких температурах обладает высокой магнитокри-

сталлической анизотропией. Для соединения $Dy_2Fe_{10}Al_7$ коэрцитивное поле составляет 7 кЭ, а спонтанная намагниченность 22 emu/g. В результате гидрирования произошло резкое изменение магнитных свойств, а именно коэрцитивное поле возросло до величины 20 kOe. В тоже время наблюдается уменьшение спонтанной намагниченности до величины 15 emu/g в гидриде $Dy_2Fe_{10}Al_7H_{3.2}$ при температуре 4.2 K.

Для изучения магнитных и магнитотепловых свойств гидрида $Dy_2Fe_{10}Al_7H_{3.2}$ были проведены измерения изотерм намагниченности в магнитных полях до 70 kOe в интервале температур 60–115 K при последовательном изменении температуры с постоянным шагом 5 K. Полученные изотермы намагниченности (см. рис. 6) не обнаруживают насыщения в магнитных полях до 70 kOe. В полях выше 20 kOe наблюдается линейный рост намагниченности при изменении магнитного поля.

В работе получена температурная зависимость изотермического изменения энтропии ($\Delta S_{\rm M}$) в области перехода. Для оценки величины $\Delta S_{\rm M}$ при изменении

Рис. 6. Кривые намагниченности гидрида Dy₂Fe₁₀Al₇H_{3.2} в полях до 70 kOe вблизи точки магнитной компенсации.

Рис. 7. Температурная зависимость изменения магнитной части энтропии гидрида Dy₂Fe₁₀Al₇H_{3.2} в полях до 20 и 50 kOe.

внешнего магнитного поля от 0 до H_0 , с учетом соотношения Максвелла, можно приближено записать:

$$\Delta T_{\rm ad} = \frac{1}{T_2 - T_1} \left[\int_0^{H_0} M(H, T_2) dH - \int_0^{H_0} M(H, T_1) dH \right].$$
(1)

Видно, что изотермическое изменение энтропии при температуре определяется площадью между двумя магнитными изотермами, измеренными при температурах T_1 и T_2 , деленной на разность этих температур.

На рис. 7 изображены температурные зависимости изменения магнитной части энтропии $\Delta S_{\rm M}(T)$ в магнитных полях 20 и 50 kOe. При температуре компенсации ($T_{\rm comp}$) меняется знак $\Delta S_{\rm M}$. Изменение знака в точке перехода объясняется следующим. В области $T < T_{\rm comp}$ магнитный момент подрешетки Dy превышает по величине магнитный момент подрешетки железа и ориентирован по направлению поля. В этом случае воздействие магнитного поля приводит к уменьшению энтропии.

В области температур выше T_{comp} магнитный момент подрешетки Dy становится меньше по величине по сравнению с магнитным моментом подрешетки железа и ориентирован антипараллельно к направлению внешнего магнитного поля, и воздействие поля приводит к возрастанию магнитной части энтропии $S_{\rm M}$ [13]. При этом магнитный момент железной подрешетки в области точки компенсации практически не изменяется по величине с ростом температуры и магнитного поля, поэтому вклад от железной подрешетки в МКЭ пренебрежимо мал. В точке компенсации магнитные моменты подрешеток равны по величине и суммарный магнитный момент равен нулю, поэтому в T_{comp} энтропия магнитной подсистемы не изменяется при приложении магнитного поля.

4. Заключение

В нашей работе установлено, что кристаллическая структура и температура Кюри соединения Dy₂Fe₁₀Al₇ сохраняется при гидрировании. Из анализа АСМ изображений показано, что процесс гидрирования вызвал значительные изменения микроструктуры, что, в свою очередь, приводит к изменению функциональных свойств материалов подвергнутых наводораживанию. Найдено, что величина коэрцитивной силы возрастает при гидрировании, что позволяет сделать вывод о возрастание магнитокристаллической анизотропии в результате изменения локального окружения иона диспрозия при внедрении атомов водорода в кристаллическую решетку. Уменьшение спонтанной намагниченности, повидимому, вызвано уменьшением намагниченности железной подрешетки в результате внедрения атомов водорода в междоузлия. Найдено, что гидрирование соединения Dy₂Fe₁₀Al₇ сильно влияет на температуру перехода типа точка магнитной компенсации, однако не изменяет температуру Кюри. Показано, что при температуре T_{comp} магнитокалорический эффект (изменение магнитной части энтропии) меняет знак. Таким образом, исследования МКЭ является удобной методикой для определения переходов типа точка магнитной компенсации.

Финансирование работы

Исследование выполнено за счет Гранта Российского научного фонда (проект № 18-13-00135).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.В. Андреев, А.В. Дерягин, С.М. Задворкин, Н.В. Кудреватых, В.Н. Москалев, Р.З. Левитин, Ю.Ф. Попов, Р.Ю. Юмагужин. В сб. Физика магнитных материалов / Под ред. Д.Д. Мишина, Калининский гос. ун-т (1985). С. 1.
- [2] X. Kou, F. de Boer, R. Grössinger, G. Wiesinger, H. Suzuki, H. Kitazawa, T. Takamasu, G. Kido. J. Magn. Magn. Mater 177–181, 1002 (1998). Int. Conf. Magn. (Part II)
- [3] B. García-Landa, P.A. Algarabel, M.R. Ibarra, F.E. Kayzel, T.H. Ahn, J.J.M. Franse. J. Magn. Magn. Mater. 140–144, 1085 (1995).
- [4] K. Takeda, T. Maeda, T. Katayama. J. Alloys Comp. 281, 1, 50 (1998).
- [5] O. Isnard, S. Miraglia, J. Soubeyroux, D. Fruchart, P. l'Héritier. J. Magn. Magn. Mater. 137, *1*, 151 (1994).
- [6] H. Fujii, H. Sun. Chapter 3 Interstitially modified intermetallics of rare earth and 3d elements. In: Handbook of Magnetic Materials / Ed. K.H.J. Buschow. Elsevier, Nederland. (1995). V. 9. P. 303
- [7] K.H.J. Buschow. Rep. Prog. Phys. 40, 10, 1179 (1977).
- [8] D. Givord, R. Lemaire. IEEE Trans. Mag. 10, 2, 109 (1974).

[9] I.S. Tereshina, S.A. Nikitin, J. Stepień-Damm, L.D. Gulay, N.Y. Pankratov, A.A. Salamova, V.N. Verbetsky, W. Suski. J. Alloys Comp. **329**, 1–2, 31 (2001).

725

- [10] P. Alvarez-Alonso, P. Gorria, J.L. Sanchez Llamazares, G.J. Cuello, I.P. Orench, J. Sanchez Marcos, G. Garbarino, M. Reiffers, J.A. Blanco. Acta Mater. 61, 20, 7931 (2013).
- [11] O. Isnard, A.V. Andreev, O. Heczko, Y. Skourski. J. Alloys Comp. 627 (Supplement C), 101 (2015).
- [12] J.M.D. Coey. Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010).
- [13] К.П. Белов. Эффекты парапроцесса в ферримагнетиках и антиферромагнетиках. Физматлит, М. (2001).
- [14] G. Wiesinger, G. Hilscher. Chapter five magnetism of hydrides, in Handbook of Magnetic Materials / Ed. K.H.J. Buschow. Elsevier, Netherlands (2007). V. 17, 293 p.
- [15] B.-G. Shen, Z.-H. Cheng, H.-Y. Gong, B. Liang, Q.-W. Yan, W.-S. Zhan. Solid State Commun. 95, 11, 813 (1995).
- [16] J.L. Wang, S.J. Campbell, O. Tegus, C. Marquina, M.R. Ibarra. Phys. Rev. B 75, 17, 17423 (2007).
- [17] E.A. Tereshina, H. Drulis, Y. Skourski, I.S. Tereshina. Phys. Rev. B 87, 21, 214425 (2013).
- [18] E.A. Tereshina, H. Yoshida, A.V. Andreev, I.S. Tereshina, K. Koyama, T. Kanomata. J. Phys. Soc. Jpn 76 (Suppl.A), 82 (2007).
- [19] E.A. Tereshina, A.V. Andreev, J. Kamarad, H. Drulis. J. Alloys Comp. 492, 1, 1 (2010).
- [20] E.A. Tereshina, A.V. Andreev. Intermetallics 18, 6, 1205 (2010).
- [21] S. Nikitin, I. Tereshina, E. Tereshina, W. Suski, H. Drulis. J. Alloys Comp. 451, 1, 477 (2008). 6th Int. Conf. f-Eltments (ICFF-6).
- [22] E.A. Tereshina, A.V. Andreev, J. Kamarád, O. Isnard. J. Appl. Phys. 105, 7, 07A747 (2009).
- [23] С.А. Никитин, И.С. Терешина, Н.Ю. Панкратов, Е.А. Терешина, Ю.В. Скурский, К.П. Скоков, Ю.Г. Пастушенков. ФТТ 43, 9, 1651 (2001).
- [24] O. Isnard, D. Hautot, G.J. Long, F. Grandjean. J. Appl. Phys. 88, 5, 2750 (2000).
- [25] H. Oesterreicher, D. McNeely. J. Less Commun. Met. 53, 2, 235 (1977).
- [26] H. Oesterreicher, D. McNeely. J. Less Commun. Met. 53, 2, 245 (1977).
- [27] Y. Hao, F. Wang, P. Zhang, X. Sun, Q.W. Yan. J. Phys.: Condens. Matter 11, 32, 6113 (1999).
- [28] T.H. Jacobs, K.H.J. Buschow, G.F. Zhou, F.R. de Boer. Physica B: Condens. Matter **179**, *3*, 177 (1992).
- [29] S. Ma, Z. Zhong, D. Wang, J. Luo, J. Xu, Y. Huang, Y. Hou, J. He, Q. Cao, Y. Du. Eur. Phys. J. B 86, 4, 133 (2013).
- [30] K.P. Belov, S.A. Nikitin. Phys. Status Solidi B 12, 1, 453 (1965).
- [31] C.K. Sabdenov, M.D. Davydova, K.A. Zvezdin, A.K. Zvezdin, A.V. Andreev, D.I. Gorbunov, E.A. Tereshina, Y. Skourski, J. Šebek, I.S. Tereshina. J. Alloys Comp. **708**, 1161 (2017).
- [32] В.Л. Миронов. Основы сканирующей зондовой микроскопии. Институт физики микроструктур РАН, Н. Новгород (2005). 114 с.
- [33] D. Płusa, R. Pfranger, B. Wysłocki. J. Less Commun. Met. 99, 1, 87 (1984).
- [34] J. Wang, F. Yang, N. Tang, X. Han, H. Pan, J. Hu. J. Appl. Phys. 79, 4, 2012 (1996).

Редактор К.В. Емцев