01,05,11

Фазовые превращения в сплавах $Fe_{100-x}Si_x$: исследования *ab initio*

© М.А. Загребин^{1,2}, М.В. Матюнина¹, А.Б. Кошкин¹, В.Д. Бучельников¹, В.В. Соколовский¹

¹ Челябинский государственный университет,

Челябинск, Россия

² Южно-Уральский государственный университет (национальный исследовательский университет),

Челябинск, Россия

E-mail: miczag@mail.ru

Поступила в Редакцию 30 декабря 2019 г. В окончательной редакции 30 декабря 2019 г. Принята к публикации 10 января 2020 г.

На основе температур структурных и магнитных фазовых переходов, оцененных теоретически из первых принципов, построена фазовая диаграмма концентрации для сплавов $Fe_{100-x}Si_x$ (9.375 $\leq x \leq 25.0$ at.%). Температуры структурного фазового перехода для экспериментально наблюдаемых кристаллических структур получены из геометрической оптимизации кристаллической структуры. Температуры Кюри оценивались в приближении молекулярного поля с использованием констант магнитного обменного взаимодействия, рассчитанных *ab initio*. Во всем рассматриваемом интервале концентраций структурные переходы из упорядоченной кубической фазы в полностью разупорядоченную через частично неупорядоченную происходят с ростом температуры. Что касается магнитных превращений, то переход ферромагнетик–парамагнетик наблюдается для всех составов, однако в разных кристаллических фазах.

Ключевые слова: фазовая диаграмма, *ab initio*, кристаллическая структура, обменное взаимодействие, приближение молекулярного поля.

DOI: 10.21883/FTT.2020.05.49224.24M

1. Введение

Силициды железа, благодаря наличию интересных физических свойст, являются перспективными как для фундаментальных исследований, так и для различных применений, например, в оптоэлектронных, термоэлектрических устройствах, а также устройствах спинтроники [1–5]. Например, β -FeSi₂ является полупроводником с шириной запрещенной зоны около 0.87 eV, что делает его пригодным для использования в оптоэлектронных технологиях [1]. С другой стороны, соединения Fe₅Si₃ [2] и Fe₃Si [3,4] являются металлическими ферромагнетиками при комнатной температуре и, следовательно, являются перспективными источниками спин-инжекции в устройствах спинтроники. Массивный Fe₃Si представляет собой сплав Гейслера с высокой температурой Кюри $(\approx 803 \text{ K})[3]$, а также с относительно большим значением спиновой поляризации на уровне Ферми ($\approx 43\%$) [5]. Известно, что кристаллический Fe₃Si имеет несколько локальных структур и поэтому может содержать примеси переходных металлов замещения [6]. Считается, что спинтронные свойства систем Fe₃Si могут быть улучшены или изменены путем изменения их атомного упорядочения. Экспериментальные данные по исследованию влияния деформации на энергии магнитной анизотропии эпитаксиальных пленок Fe₃Si и нестехиометрических пленок $Fe_{100-x}Si_x$ (x = 6.25-25) на подложке MgO (001) [7] показывают, что ось легкого намагничивания можно изменить с направления "в плоскости" на направление "вне плоскости", применяя соответствующую

вертикальную деформацию сжатия. Структурное разупорядочение также является важным средством настройки магнитных и электронных свойств.

В настоящей работе представлены результаты исследований *ab initio* структурных и магнитных фазовых превращений в сплавах $Fe_{100-x}Si_x$ (9.375 $\leq x \leq 25.0$ at.%).

2. Детали вычислений

Для изучения основного состояния и магнитных свойств сплавов $Fe_{100-x}Si_x$ (9.375 $\leq x \leq 25.0$ at.%) были использованы методы проектора присоединенной волны (Projector augmented wave method — PAW) и гриновских функций Корринги, Кона и Ростокера, реализованные в вычислительных пакетах VASP (The Vienna Ab initio simulation package) [8,9] и SPR-KKR (A spin polarized relativistic Korringa-Kohn-Rostoker code) [10] соответственно. Геометрическая оптимизация кристаллической решетки была выполнена с помощью VASP в сочетании с подходом суперячейки. Обменно-корреляционное взаимодействие учитывалось в приближении обобщенного градиента (general gradient approximation) в параметризации PBE (Perdew-Burke-Ernzerhof) [11]. В расчетах использовались РАШ-псевдопотенциалы [8,9] со следующими конфигурациями валентных электронов: $Fe(3p^63d^74s^1)$ и $Si(3s^23p^2)$. Для вычислений использовалась сетка, содержащая набор **k**-точек $8 \times 8 \times 8$, сгенерированная по схеме Монхроста-Пака [12]. Геометрическая оптимизация выполнена для структур, наблюдаемых экспериментально

Структура	Группа симметрии	Позиции Уайкова	Атомы	
D03	<i>Fm</i> 3 <i>m</i> № 225	8c 4b 4a	Fe ₁ Fe ₂ Fe ₃ , Si	
B2	<i>Pm</i> 3 <i>m</i> № 221	1 <i>a</i> 1 <i>b</i>	Fe ₁ Fe ₂ , Si	
A2	<i>Im</i> 3 <i>m</i> № 229	1 <i>a</i>	Fe, Si	

Таблица 1. Положение атомов Fe и Si в структурах D0₃, B2 и A2 сплавов Fe_{100-x}Si_x (9.375 $\leq x \leq 25.0$ at.%)

в сплавах Fe–Si: упорядоченная D0₃-фаза (группа симметрии $Fm\overline{3}m \ge 225$, прототип BiF₃), частично неупорядоченная B2 (группа симметрии $P\overline{3}m \ge 221$, прототип CsCl) и полностью разупорядоченная A2 (группа симметрии $Im\overline{3}m \ge 229$, прототип α -Fe). Для создания беспорядка в расчетах использовались 32-атомные суперьячейки. Подробное описание суперьячеек для сплавов Fe₃Z представлено в работе [13]. Равновесные параметры решетки a_0 и энергия E_0 были оценены для всех рассмотренных фаз согласно уравнению состояния Берча–Мурнагана.

Полученные оптимизированные постоянные решетки были использованы для расчета параметров обменного взаимодействия J_{ij} с использованием программного пакета SPR-KKR. Беспорядок в фазах D0₃, B2 и A2 создавался с помощью приближения когерентного потенциала [10]. Положения атомов Fe и Si в элементарной ячейке для всех рассмотренных кристаллических структур приведены в табл. 1.

Расчеты проводились с помощью спин-поляризованного скалярно-релятивистского гамильтониана Дирака в приближении локальной плотности в форме VWN (Vosko–Wilk–Nusair) [14]. С использованием параметров магнитного обменного взаимодействия была оценена

Рис. 1. Полные энергии структур А2 и В2, приведенные относительно минимальной энергии E_{\min} в зависимости от концентрации Si для сплавов Fe_{100-x} Si_x (9.375 $\leq x \leq 25.0$ at.%). На рисунке ΔE соответствует полной энергии структуры D0₃.

температура Кюри *T_C* в рамках приближения молекулярного поля (ПМП) [15].

3. Результаты и обсуждения

3.1. Кристаллическая структура

Обсудим результаты расчетов структурных свойств сплавов $Fe_{100-x}Si_x$ (9.375 $\leq x \leq 25.0$ at.%). В табл. 2 представлены равновесные параметры кристаллической решетки, равновесные полные энергии для всех рассматриваемых структурных состояний, а также наименьшие полные энергии системы среди всех структурных состояний $E_{\min} = \min(E_0^{D0_3}, E_0^{B2}, E_0^{A2})$ для $Fe_{100-x}Si_x$.

Из геометрической оптимизации было установлено, что структура D0₃ энергетически выгодна для всего рассматриваемого диапазона концентраций. Из данной

Таблица 2. Равновесные параметр кристаллической решетки a_0 и полная энергия E_0 в расчете на один атом для исследуемых кристаллических решеток, а также наименьшая полная энергия системы E_{\min} в расчете на один атом, сплавов $\operatorname{Fe}_{100-x}\operatorname{Si}_x$ (9.375 $\leq x \leq 25.0$ at.%). (Для сравнения приведены экспериментальные значения параметра кристаллической решетки a^{\exp} из работ [16,17])

х,	D03-структура		В2-структура		А2-структура		a^{\exp} ,	$E_{\min},$
at. %	$a_0, \text{\AA}$	E_0, eV	$a_0, \mathrm{\AA}$	E_0, eV	$a_0, \text{\AA}$	E_0, eV	Å	eV
9.375	5.68	-8.29	2.839	-8.28	2.842	-8.26	2.86 ¹	-8.29
12.5	5.66	-8.24	2.832	-8.21	2.841	-8.19	2.89 ²	-8.24
15.625	5.65	-8.18	2.826	-8.15	2.840	-8.12	_	-8.18
18.75	5.64	-8.12	2.814	-8.08	2.841	-8.01	5.69 ³	-8.12
21.875	5.63	-8.07	2.807	-8.01	2.833	-7.95	_	-8.07
25.0	5.61	-8.02	2.797	-7.95	2.814	-7.89	5.66 ⁴	-8.02

Примечание. ¹ x = 10 at.% [17]; ² x = 13.5 at.% [17]; ³ x = 18 at.% [16]; ⁴ x = 25 at.% [16].

Рис. 2. Средний магнитный момент Fe в сплавах $Fe_{100-x}Si_x$ (9.375 $\leq x \leq 25.0$ at.%) в зависимости от содержания Si, вычисленный для структур D0₃, B2 и A2 с помощью пакета SPR-KKR (сплошные символы). Для сравнения приведены экспериментальные данные из работы [16] и данные вычислений, полученные из работы [18] (пустые символы).

таблицы также видно, что постоянные решетки всех рассматриваемых структур D0₃, B2 и A2 уменьшаются с увеличением концентрации Si. Это объясняется различием атомных радиусов Fe (1.26 Å) и Si (1.18 Å). Поведение равновесного параметра кристаллической решетки находится в согласии с экспериментальными данными [16,17]. На рис. 1 представлена зависимость разности полных энергии всех рассмотренных структурных состояний по отношению к полной энергии

наиболее устойчивого структурного состояния. Отметим, что поскольку во всем интервале концентраций наиболее выгодной является фаза D0₃, то ΔE на рисунке соответствует полной энергии структуры D0₃. Также можно видеть, что во всем интервале концентраций наблюдается последовательное превращение из наиболее упорядоченной фазы D0₃, в полностью разупорядоченную фазу A2, которое происходит через частично упорядоченную фазу B2.

657

Разность полной равновесной энергии системы и наименьшей полной энергии структуры $\Delta E = E_0 - E_{min}$ позволяет получить температуры структурного фазового перехода с помощью следующего грубого приближения: $\Delta E \approx k_B t_{tr}^{phase}$, где k_B — постоянная Больцмана. Для оценки был использован коэффициент преобразования 1 meV = 11.60 K. Здесь T_{tr}^{phase} — это температура, выше которой существует соответствующая фаза.

3.2. Магнитные свойства

На рис. 2 приведены концентрационные зависимости среднего магнитного момента атомов железа в сплавах $Fe_{100-x}Si_x$, вычисленные с использованием пакета SPR-KKR для всех рассматриваемых структур. Для всех рассмотренных структур значения среднего магнитного момента уменьшаются с увеличением содержания Si. Из рисунка видно, что результаты, полученные с помощью пакета SPR-KKR, имеют значения, большие в сравнении с экспериментальными данными [16]. Также отметим, что наши результаты находятся в качественном согласии с имеющимися теоретическими данными [18].

На рис. 3 представлены зависимости параметров магнитного обменного взаимодействия для структур D0₃, B2 и A2 сплава Fe₇₅Si₂₅. Здесь и далее положительные

Рис. 3. Параметры магнитного обменного взаимодействия в зависимости от расстояния d/a между парами атомов i и j, вычисленные при равновесных параметрах: (a) структура D0₃, (b) структуры B2 и A2. Для сравнения приведены параметры обменного взаимодействия из работы [19].

обменные постоянные $(J_{0j} > 0)$ соответствуют ферромагнитному (ФМ) взаимодействию, в то время как отрицательные $(J_{0j} < 0)$ указывают на антиферромагнитный (АФМ) обмен. Следует отметить, что обменные взаимодействия с участием атомов Si малы и опущены на графиках.

В случае структуры DO_3 (см. рис. 3, *a*) наибольшее взаимодействие наблюдается между ближайшими соседними атомами Fe₁-Fe₂ ($\approx 20 \text{ meV}$). Начиная со второй координационной сферы для данного взаимодействие наблюдается колебательный характер в области нуля. Внутриподрешеточные взаимодействия в первой координационной сфере (Fe_{1,2}-Fe_{1,2}) в десять раз меньше, чем межподрешеточное. Для взаимодействия Fe₁-Fe₁ в третьей координационной сфере наблюдается расщепление. Далее наблюдается колебательный характер взаимодействия в области нуля. Для сравнения на данный график нанесена зависимость $J_{ii}(d/a)$, вычисленная с помощью метода линеаризованных маффин-тин орбиталей в приближении сильной связи (Tight-binding Linear Muffin-Tin Orbital Method — ТВ-LMTО) из работы [19]. Можно отметить хорошее согласие вплоть до пятой координационной сферы. Различие может быть связано, по-видимому, с различием используемых в вычислениях методов.

В случае структуры В2 характер зависимостей $J_{ij}(d/a)$ в целом аналогичен наблюдаемому для структуры D0₃. Можно отметить, что межподрешеточное взаимодействие для В2 меньше, чем в случае D0₃ ($\approx 14 \text{ meV}$). В случае структуры A2 взаимодействие в первой координационной сфере $\approx 21 \text{ meV}$.

Вычисленные значения параметров магнитного обменного взаимодействия J_{ij} позволили получить температуры Кюри с помощью ПМП. Рассчитанные температуры Кюри для структур D0₃, B2 и A2 приведены в табл. 3.

Из таблицы видно, что температура Кюри уменьшается с увеличением содержания кремния для всех исследуемых структурных состояний. Можно отметить качественное согласие концентрационной зависимости температуры Кюри с экспериментальными данными.

Таблица 3. Температуры Кюри T_C (в K) для $Fe_{100-x}Si_x$ со структурами A2, B2 и D0₃. Для сравнения приведены экспериментальные значения T_C из работы [20]

<i>x</i> , at.%	Температура Кюри Т _С , К					
	Фаза D03	Фаза В2	Фаза А2	Эксперимент		
9.375	1284	1219	1270	1008 ¹		
12.5	1225	1095	1212	_		
15.625	1170	949	1136	990 ²		
18.75	1116	786	1052	—		
21.875	1066	733	958	980 ³		
25.0	1033	484	854	970		

Рис. 4. Температура Кюри T_C и температуры структурных переходов $T_{\rm tr}^{\rm phase}$ в сплавах ${\rm Fe}_{100-x}{\rm Si}_x$ (9.375 $\leq x \leq 25.0$ at.%) в зависимости от содержания Si.

3.3. Фазовая диаграмма

Объединение вычисленных температур структурных и магнитных фазовых переходов позволяет построить фазовую диаграмму для сплавов Fe_{100-x}Si_x $(9.375 \le x \le 25.0 \text{ at.}\%)$, которая представлена на рис. 4. Первая область фазовой диаграммы соответствует концентрации Si 9.375 ≤ *x* ≤ 15.625 at.%. В этой области магнитный переход из ФМ в парамагнитное (ПМ) состояние осуществляется в кристаллической структуре А2. Аналогичная последовательность фазовых переходов наблюдается экспериментально для Fe₉₀Si₁₀ [21]. Вторая последовательность наблюдается для x = 18.75 at.%. В этом случае магнитный фазовый переход осуществляется в фазе В2, после чего происходит структурный фазовый переход в ПМ фазу А2. Такое же поведение наблюдается и для x = 21.875 at.%. Отметим, что для сплава Fe₇₅Si₂₅ исходя из данных грубых оценок нельзя однозначно определить последовательность фазовых переходов. В данном случае наблюдается два структурных фазовых перехода. При повышении температуры происходит фазовый переход из D0₃ структуры в B2, после чего происходит структурный переход в А2-фазу. Что касается магнитных фазовых переходов, то температура Кюри для фазы В2 $T_C^{B2} < T_{tr}^{B2}$. Аналогично, температура Кюри для фазы А2 $T_C^{A2} < T_{tr}^{A2}$. В то же время температура Кюри для фазы D0₃ $T_C^{D0_3} > T_{tr}^{B2}$.

4. Заключение

В настоящей работе исследовались структурные и магнитные фазовые переходы в Fe_{100-x}Si_x

 $(9.375 \le x \le 25.0 \text{ at.}\%)$ с помощью вычислений *ab initio*. Были рассмотрены три кристаллические структуры (D0₃, B2 и A2). Проведенные теоретические исследования свойств основного состояния показали, что все рассматриваемые фазы устойчивы, а DO₃ является энергетически выгодной для всего диапазона концентраций Si. Полученные разности равновесных энергий и энергий наиболее устойчивой структурной фазы позволили оценить температуры структурных переходов. Было показано, что температуры фазовых превращений увеличиваются с увеличением концентрации Si. Изучение магнитных свойств показало, что фаза А2 демонстрирует наиболее сильное обменное взаимодействие. Внутриподрешеточные взаимодействия в фазе DO₃ в десять раз слабее по сравнению с межподрешеточными и становятся незначительными, начиная с третьей координационной сферы. Поведение параметров магнитного обменного взаимодействия находится в согласии с результатами, полученными с помощью метода линеаризованных маффин-тин орбиталей в приближении сильной связи. С использованием постоянных обменного взаимодействия были оценены температуры Кюри с помощью приближения молекулярного поля. Установлено качественное согласие концентрационной зависимости температуры Кюри с экспериментальными данными.

Температуры структурных и магнитных переходов позволили построить концентрационную фазовую диаграмму для $Fe_{100-x}Si_x$. На данной диаграмме в зависимости от концентрации можно отметить два типа последовательностей фазовых переходов. На основании этих исследований можно сделать вывод, что поведение температур фазовых переходов находится в качественном согласии с имеющейся экспериментальной диаграммой для $Fe_{100-x}Si_x$. В заключение следует сказать, что сплавы $Fe_{100-x}Si_x$ могут быть перспективными для технологических применений.

Финансирование работы

Работа выполнена при поддержке грантом Российского научного фонда (Проект № 18-12-00283).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Leong, M. Harry, K.J. Reeson, K.P. Homewood. Nature 387, 686 (1997).
- [2] K. Seo, S. Lee, Y. Jo, M.H. Jung, J. Kim, D.G. Churchill, B. Kim. J. Phys. Chem. C 113, 6902 (2009).
- [3] W.A. Hines, A.H. Menotti, J.I. Budnick, T.J. Burch, T. Litrenta, V. Niculescu, K. Raj. Phys. Rev. B 13, 4060 (1976).
- [4] J. Kudrnovský, N.E. Christensen, O.K. Andersen. Phys. Rev. B 43, 5924 (1991).

[5] A. Ionescu, C.A.F. Vaz, T. Trypiniotis, C.M. Gürtler, H. García-Miquel, J.A.C. Bland, M.E. Vickers, R.M. Dalgliesh, S. Langridge, Y. Bugoslavsky, Y. Miyoshi, L.F. Cohen, K.R.A. Ziebeck. Phys. Rev. B 71, 094401 (2005).

659

- [6] T.J. Burch, T. Litrenta, J.I. Budnick. Phys. Rev. Lett. 33, 421 (1974).
- [7] Y.N. Zhang, J.X. Cao, I. Barsukov, J. Lindner, B. Krumme, H. Wende, R.Q. Wu. Phys. Rev. B 81, 144418 (2010).
- [8] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [9] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [10] H. Ebert, D. Ködderitzsch, J. Minár. Rep. Prog. Phys. 74, 096501 (2011).
- [11] J.P. Perdew, K. Burke, M. Enzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [12] H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 5188 (1976).
- [13] M.V. Matyunina, M.A. Zagrebin, V.V. Sokolovskiy, O.O. Pavlukhina, V.D. Buchelnikov, A.M. Balagurov, I.S. Golovin. Phase Transit. **92**, 101 (2019).
- [14] S.H. Vosko, L. Wilk, M. Nusair. Canad. J. Phys. 58, 1200 (1980).
- [15] P.W. Anderson. Solid State Phys. 14, 99 (1963).
- [16] L.K. Varga, F. Mazaleyrat, J. Kovac, J.M. Greneche. J. Phys. Condens. Mat. 14, 1985 (2002).
- [17] S. Miraghaei, P. Abachi, H.R. Madaah-Hosseini, A. Bahrami. J. Mater. Proc. Tech. 203, 554 (2008).
- [18] T. Khmelevska, S. Khmelevskyi, A.V. Ruban, P. Mohn. J. Phys.: Condens. Matter 18, 6677 (2006).
- [19] J. Kudrnovský, V. Drchal, L. Bergqvist, J. Rusz, I. Turek, B. Újfalussy, I. Vincze. Phys. Rev. B **90**, 134408 (2014).
- [20] P.C. Shyni, A. Perumal. IEEE T. Magn. 50, 2101904 (2014).
- [21] O. Kubaschewski. Iron Binary Phase Diagrams. Springer, Berlin (1982). 185 p.

Редактор Е.Ю. Флегонтова