04

Ускорение потока пылевой плазмы в азимутальном электрическом и радиальном магнитном полях

© А.Р. Каримов^{1,2}, С.А. Терехов^{2,¶}, А.Е. Шиканов²

¹ Объединенный институт высоких температур РАН, Москва, Россия ²Национальный исследовательский ядерный университет "МИФИ", Москва, Россия [¶] E-mail: SATerekhov@mephi.ru

Поступило в Редакцию 18 апреля 2019г. В окончательной редакции 25 декабря 2019г. Принято к публикации 27 декабря 2019г.

В рамках модели холодной гидродинамики изучается ускорение потока пылевой плазмы в азимутальном электрическом и радиальном магнитном полях. Приведенные результаты показывают, что существуют условия, при которых макроскопические частицы захватываются и ускоряются плазменным потоком.

Ключевые слова: магнитные поля, пылевая плазма, нелинейные волны, ускоритель.

DOI: 10.21883/PJTF.2020.07.49215.17843

Высокоскоростные плазменные потоки, состоящие из электронов, ионов и заряженных макроскопических частиц, представляют интерес для различных технических приложений [1-4]. Для ускорения таких потоков используют рельсовые ускорители, основанные на непосредственном преобразовании электромагнитной энергии импульса тока в кинетическую энергию ускоряемых тел за счет действия силы Ампера на плазменный сгусток, возникающий в канале ускорителя [5]. При этом величина достижимой скорости метания макротел определяется только процессами накопления и выделения электрической энергии [5-8]. Другой причиной, ограничивающей максимальную скорость, является развитие неустойчивости плазменного поршня, проявляющейся при изменении тока в цепи ускорителя [7]. Поэтому представляет интерес рассмотрение альтернативных способов ускорения плазменных потоков, содержащих макроскопические заряженные частицы.

В настоящей работе рассматривается ускорение заряженных макроскопических частиц, входящих в состав пылевой плазмы, в результате их захвата вращающимся плазменным потоком, который, попадая в область скрещенных магнитных полей, изображенную на рис. 1, *a*, ускоряется за счет передачи импульса между макроскопическими степенями свободы потока плазмы [9–11]. При этом следует отметить, что исследуется вариант нескоррелированных пылевых частиц, когда коллективное воздействие заряженных пылинок на процессы, происходящие в плазме, ничтожно, т.е. плотность заряда пыли мала по сравнению с плотностью плазмы [12]:

$Z_d n_d \ll n_e$.

Поскольку заряд пылевой частицы зависит от ее размеров, данное условие также ограничивает ее размеры. В противном случае возникают эффекты дальнего порядка, когда уже невозможно ограничиться захватом отдельных пылевых частиц в основной плазменный поток [13].

В рассматриваемом случае магнитное поле имеет постоянную радиальную компоненту **B**_{r0} и меняющуюся во времени аксиальную составляющую $\mathbf{B}_{z_0}(t)$, которая порождает азимутальное электрическое поле, закручивающее поток ионов $\mathbf{j}_{i\phi}$ в одну сторону, а потоки электронов $\mathbf{j}_{e\omega}$ и отрицательно заряженных макрочастиц $\mathbf{j}_{d\omega}$ в противоположную сторону (\mathbf{F}_i и $\mathbf{F}_{e,d}$ — силы, которые действуют на потоки ионов, электронов и макрочастиц, показывающие, что эти потоки ускоряются в одну сторону). Взаимодействие данных токов с постоянным радиальным магнитным полем **B**_{r0} приводит к ускорению всего плазменного потока в аксиальном направлении. Техническая реализация этой идеи представлена на рис. 1, b [10]. Кроме того, такая конфигурация магнитного поля должна усилить обмен импульсом/энергией между макроскопическими степенями свободы потока из-за генерации собственного электрического поля внутри потока [14].

Чтобы описать процесс ускорения в схеме, изображенной на рис. 1, a, мы рассмотрим аксиально-симметричное течение холодного потока пылевой плазмы, начальный поперечный размер которой R_0 удовлетворяет условию $a \ll R_0 \ll b$, где a и b — внутренний и внешний радиусы магнитной системы. Представим электрическое и магнитное поля в виде сумм внешней и собственной составляющих:

$$\mathbf{E} = \mathbf{E_0} + \mathbf{E^*},\tag{1}$$

$$\mathbf{B} = \mathbf{B}_0 + \mathbf{B}^*,\tag{2}$$

где собственные электрические **E**^{*} и магнитные **B**^{*} поля определяются динамическими процессами в самой

Рис. 1. а — схема участка ускорения пылевой плазмы; b — конструкция ускорителя.

плазменной среде, а внешнее магнитное поле есть

$$\mathbf{B}_0 = B_{r_0} \mathbf{e}_r + B_{z_0} \mathbf{e}_z. \tag{3}$$

Здесь $B_{r_0} = \text{const}$ — постоянное радиальное магнитное поле известной величины, а известная функция $B_{z0}(t)$ определяет изменение по времени аксиальной составляющей магнитного поля. Отметим, что в отличие от традиционных плазменных ускорителей, где внешние электрическое \mathbf{E}_0 и магнитное \mathbf{B}_0 поля независимы и могут создаваться разными техническими способами, в нашем случае \mathbf{E}_0 порождается \mathbf{B}_0 . Действительно, из выражения индукции магнитного поля, записанного для внешнего магнитного поля \mathbf{B}_0 в интегральной форме

$$\int_{\gamma} \mathbf{E}_0 \, d\mathbf{l} = \int_{S\gamma} \mathbf{B}_0 \, d\mathbf{S},\tag{4}$$

следует, что внешнее электрическое поле имеет только азимутальную составляющую

$$E_{\varphi_0} = -\frac{r}{2} \,\partial_t B_{z_0}.\tag{5}$$

Пренебрегая тепловым движением компонент, будем описывать собственные параметры плазмы, включая электрическое **E**^{*} и магнитное **B**^{*} поля, уравнениями холодной гидродинамики. Рассмотрим случай, в котором собственный ток проводимости скомпенсирован током смещения, что реализуется при $\nabla \times \mathbf{B}^* = 0$ (обсуждение применимости этого приближения дано в [9,10]). Тогда, пренебрегая пространственной зависимостью плотностей n_s , распределение скорости **v**_s и электрического поля можно представить в виде

$$n_{s} = n_{s}(t), \ \mathbf{v}_{s} = rA_{s}(t)\mathbf{e}_{r} + rC_{s}(t)\mathbf{e}_{\phi} + rD_{s}(t)\mathbf{e}_{z},$$
$$\mathbf{E}^{*} = r\varepsilon_{r}(t)\mathbf{e}_{r} + r\varepsilon_{\phi}(t)\mathbf{e}_{\phi} + r\varepsilon_{z}(t)\mathbf{e}_{z}, \tag{6}$$

где s = e, i, d, а функции $A_s(t)$, $C_s(t)$ и $D_s(t)$ соответствуют радиальной, азимутальной и аксиальной компонентам скорости *s*-й компоненты потока. Интересно отметить, что, согласно обобщенной теореме Джинса,

данные зависимости являются следствием представления функции распределения в виде

$$f_s = f_s(I_{xs}, I_{ys}),$$

$$I_{ls} = a_{ls}(t)v_x + b_{lx}(t)v_y + c_{ls}(t)x + d_{ls}(t)y + h_{ls}(t), \quad (7)$$

где l = x, y, а функции $a_{ls}(t), b_{ls}(t), c_{ls}(t), d_{ls}(t)$ и $h_{ls}(t)$ определяются подстановкой в уравнения Власова-Максвелла [15,16]. Однако проще сразу подставить (6), (7) в стандартные уравнения холодной гидродинамики и получить следующую систему нелинейных дифференциальных уравнений, записанную в безразмерной форме [11]:

$$\frac{dn_s}{dt} + 2n_s A_s = 0,$$

$$\frac{dA_s}{dt} + A_s^2 - C_s^2 = \mu_s \left[\varepsilon_r + C_s \left(B_{z0} + B_z^* \right) \right],$$

$$\frac{dC_s}{dt} + 2A_s C_s = \mu_s \left[\varepsilon_{\varphi} - \frac{1}{2} \frac{dB_{z0}}{dt} + D_s B_{r0} - A_s \left(B_{z0} + B_z^* \right) \right],$$

$$\frac{dD_s}{dt} + A_s D_s = \mu_s \left[\varepsilon_z - C_s B_{r0} \right],$$

$$\frac{d\varepsilon_r}{dt} = n_e (A_e - A_i) + Z_d n_d (A_d - A_i) - 2\varepsilon_r A_i,$$

$$\frac{d\varepsilon_\varphi}{dt} = n_e (C_e - C_i) + Z_d n_d (C_d - C_i) - 2\varepsilon_r C_i,$$

$$\frac{d\varepsilon_z}{dt} = n_e (D_e - D_i) + Z_d n_d (D_d - D_i) - 2\varepsilon_r D_i,$$

$$\frac{dB_z^*}{dt} = -2\varepsilon_\varphi,$$
(8)

где введены следующие безразмерные параметры: $\mu_i = m_e/m_i$, $\mu_e = -1$ и $\mu_d = -Z_d m_e/m_d$ (μ_e — масса электрона, μ_i — масса иона, μ_d и $-Z_d$ — масса и зарядовое число макроскопической частицы соответственно). В данной задаче в качестве характерного масштаба плотностей, времени и пространственного размера использовалась начальная электронная плотность n_{e_0} , обратная плазменная частота $\omega_{pe} = (4\pi n_{e_0}e^2/m_e)^{1/2}$, начальный радиус плазменного потока R_0 соответственно. При этом скорости были обезразмерены на величину $R_0\omega_{pe}$,

Рис. 2. Временные зависимости D_e (1), D_i (2) и D_d (3) для $A_e(0) = A_i(0) = -10^{-2}$, $A_d = -7 \cdot 10^{-3}$, $-C_e(0) = -C_d(0) = C_i(0) = 10^{-3}$, $D_e(0) = D_i(0) = D_d(0) = 10^{-1}$ в случае $B_{r_0} = -1$ и $B_{z_0} = -1$ (a) и в случае $B_{r_0} = -1$ и $B_{z_0} = -0.25t$ (b).

электрическое поле — на $4\pi e n_{e_0} R_0$, а магнитное поле — на $4\pi e n_{e_0} R_0 c / (R_0 \omega_{pe})$.

Чтобы показать принципиальную возможность захвата и ускорения макроскопических частиц из пылевой плазмы в рамках модели (8), рассмотрим поток аргоновой плазмы с параметрами макрочастиц, описанными в работах [13,17-19]. В такой плазме присутствуют заряженные макроскопические аргоновые кластеры, имеющие массу $m_d = 10^3 m_p \ (m_p - \text{масса протона}),$ характерный размер кластера $a = 6 \cdot 10^{-7}$ m и величину отрицательного зарядового числа Z_d = 998. Для начальной плотности электронов во время ускорения, равной $n_{e_0} = 10^{10} \, {
m cm}^{-3}$, доля ионов и макрочастиц при t = 0есть $n_{i0}/n_{e0} = 1.01$ и $n_{d0}/n_{e0} = 10^{-5}$ соответственно. Также следует отметить, что в настоящей работе процесс зарядки макрочастиц пылевой плазмы [13,17-19] как таковой не рассматривается, поскольку основной целью работы является качественное рассмотрение принципиальной возможности ускорения потока пылевой плазмы в электромагнитных полях специального вида.

Во всех расчетах постоянное радиальное поле было направлено внутрь плазменного цилиндра, так что $B_{r_0} = -1$. Начальные скорости электронов, ионов и макроскопических частиц принимали следующие значения: $A_e(0) = A_i(0) = -10^{-2}$ и $A_d = -7 \cdot 10^{-3}$, т. е. радиальные составляющие скорости были направлены внутрь плазменного цилиндра, $-C_e(0) = -C_d(0) = C_i(0) = 10^{-3}$, $D_e(0) = D_i(0) = D_d(0) = 10^{-1}$. Начальные значения собственного электрического поля принимались равными

 $\varepsilon_r(0) = 0$, $\varepsilon_{\varphi}(0) = 0$ и $\varepsilon_z(0) = 0$, а начальное значение возмущенного аксиального магнитного поля — $B_z^*(0) = 0$.

На рис. 2, *а* представлена зависимость аксиальных импульсов электронного D_e , ионного D_i потоков и потока макрочастиц D_d , когда $B_{r0} = -1$ и $B_{z0} = -1$, т.е. когда внешнее аксиальное поле постоянно на всем временно́м промежутке ускорения, а на рис. 2, *b* представлены такие же зависимости для $B_{r0} = -1$ и $B_{z0} = -0.25t$, т.е. когда внешнее аксиальное магнитное поле является постоянно убывающей линейной функцией времени.

Также проводилось исследование зависимости аксиальной составляющей скоростей компонент пылевой плазмы от направления радиальной составляющей скорости основного плазменного потока (электронной и ионной компонент). Так, в расчетах принимались следующие значения для радиальных компонент скоростей: $A_e(0) = A_i(0) = 10^{-2}$ и $A_d = -7 \cdot 10^{-3}$, т.е. начальная радиальная составляющая скорости пылевой компоненты была все так же направлена в центр цилиндра, а у электронной и ионной компонент плазменного потока направлена наружу. Величины начальных значений азимутальных и аксиальных компонент были следующими: $-C_e(0) = -C_d(0) = C_i(0) = 10^{-3}$ и $D_e(0) = D_i(0) = D_d(0) = 10^{-1}$. Начальные значения собственного электрического поля принимались равными $\varepsilon_r(0) = 0$, $\varepsilon_{\omega}(0) = 0$ и $\varepsilon_z(0) = 0$, а начальное значение возмущенного аксиального магнитного поля — $B_{z}^{*}(0) = 0$. В результате были получены зависимости аксиальных импульсов электронов, ионов и макрочастиц (рис. 3).

Рис. 3. Временны́е зависимости $D_e(1)$, $D_i(2)$ и $D_d(3)$ для $A_e(0) = A_i(0) = 10^{-2}$, $A_d = -7 \cdot 10^{-3}$, $-C_e(0) = -C_d(0) = 10^{-3}$, $D_e(0) = D_i(0) = D_d(0) = 10^{-1}$ в случае $B_{r_0} = -1$ и $B_{z_0} = -1$

Существуют различные варианты динамики ускорения макроскопических частиц: в случае, изображенном на рис. 2, все компоненты пылевой плазмы будут ускоряться; в варианте, приведенном на рис. 3, *b*, будут ускоряться только массивные многозарядные частицы. При этом величина аксиального импульса пылевых частиц в случае с замедлением электронной и ионной компонент превышает аналогичное значение при одновременном ускорении всех трех компонент, но наиболее сильное влияние на темп ускорения макрочастиц оказывает радиальная компонента скорости.

Таким образом, в рамках упрощенной модели холодного потока пылевой плазмы для схемы ускорения, изображенной на рис. 1, нам удалось продемонстрировать возможность захвата макроскопических заряженных частиц с последующим их ускорением. Также следует отметить, что результаты по совместному ускорению зарядов разной массы и знаков в рассматриваемой схеме наводят на мысль о возможности ускорения макромолекул с огромными дипольными моментами, что было бы интересно с точки зрения воздействия на структуру сложных полимерных материалов.

Финансирование работы

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-32-90105.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Pawlowski L*. The science and engineering of thermal spray coatings. N.Y.: Wiley, 1995. 432 p.
- [2] Жуков Б.Г., Куракин Р.О., Сахаров В.А., Бобашев С.В., Поняев С.А., Резников Б.И., Розов С.И. // Письма в ЖТФ. 2013. Т. 39. В. 12. С. 63–70.
- [3] Скворцов В.В. Аэродинамические исследования при участии потоков синтезированной и низкотемпературной плазмы. М.: Физматлит, 2013. 218 с.
- [4] Бешенков В.Г., Знаменский А.Г., Марченко В.А., Пустовит А.Н., Черных А.В. // ЖТФ. 2007. Т. 77. В. 5. С. 102–107.
- [5] Арцимович Л.А., Лукьянов С.Ю., Подгорный И.М., Чуватин С.А. // ЖЭТФ. 1958. Т. 33. В. 1. С. 3–8.
- [6] Бобашев С.В., Жуков Б.Г., Куракин Р.О., Поняев С.А., Резников Б.И., Розов С.И. // Письма в ЖТФ. 2010. Т. 36. В. 2. С. 54–61.
- [7] Плеханов А.В., Кудрявцев А.В., Железный В.Б., Хандрыга Д.В. // ПМТФ. 1996. Т. 37. № 1. С. 15–20.
- [8] Жуков Б.Г., Резников Б.И., Куракин Р.О., Поняев С.А., Бобашев С.В. // ЖТФ. 2016. Т. 86. В. 11. С. 43–49.
- [9] Karimov A.R., Murad P.A. // IEEE Trans. Plasma Sci. 2017.
 V. 45. N 7. Pt 2. P. 1710–1716.
- [10] Karimov A.R., Murad P.A. // IEEE Trans. Plasma Sci. 2018.
 V. 46. N 4. Pt 2. P. 882–887.
- [11] Karimov A.R., Terekhov S.A., Shikanov A.E., Murad P.A. // IEEE Trans. Plasma Sci. 2019. V. 47. N 3. P. 1520–1525.
- [12] Цитович В.Н. // УФН. 1997. Т. 167. № 1. С. 57–99.
- [13] Фортов В.Е., Храпак А.Г., Храпак С.А., Молотков В.И., Петров О.Ф. // УФН. 2004. Т. 174. № 5. С. 495–544.
- [14] Karimov A.R., Yu M.Y., Stenflo L. // J. Plasma Phys. 2013.
 V. 79. N 6. P. 1007–1009.
- [15] Karimov A.R. // Phys. Plasmas. 2013. V. 20. N 5. P. 052305.
- [16] Karimov A.R., Yu M.Y., Stenflo L. // J. Plasma Phys. 2016.
 V. 82. N 5. P. 905820502.

- [17] *Shukla P.K., Mamun A.A.* Introduction to dusty plasma physics. London: IOP Publ. Ltd, 2002. 284 p.
- [18] Tawidian H. Formation and behavior of nanoparticles in a plasma: dusty plasma instabilities. Université d'Orléans, 2013. 183 p.
- [19] Konopka U., Morfill G.E., Ratke L. // Phys. Rev. Lett. 2000.
 V. 84. N 5. P. 891–894.