Нелинейное оптическое поглощение в GaSe при лазерном возбуждении

© В.М. Салманов¹, А.Г. Гусейнов¹, Р.М. Мамедов¹, А.А. Салманова², Н.Д. Дашдамирова¹

¹ Бакинский государственный университет,

АZ1148 Баку, Азербайджан

06

² Азербайджанский государственный университет нефти и промышленности,

АZ1010 Баку, Азербайджан

e-mail: vagif_salmanov@yahoo.com

Поступила в редакцию 02.12.2019 г. В окончательной редакции 02.12.2019 г. Принята к публикации 23.12.2019 г.

> Экспериментально исследовано нелинейное поглощение в кристаллах GaSe при высоких уровнях оптического возбуждения. В качестве источников излучения были использованы Nd : YAG-лазер (1-я и 2-я гармоники: 1064 и 532 nm) и жидкостной лазер (область перестройки длины волны излучения 594–643 nm). Показано, что наблюдаемые особенности в спектрах поглощения, люминесценции и фотопроводимости в области экситонного резонанса в кристаллах GaSe при высоких уровнях оптического возбуждения могут быть объяснены взаимодействия экситонов и экранированием кулоновского взаимодействие свободными носителями.

Ключевые слова: GaSe, нелинейное поглощение, люминесценция, фотопроводимость.

DOI: 10.21883/OS.2020.04.49202.326-19

Введение

Кристаллы GaSe, принадлежащие к полупроводниковому семейству А³В⁶, обладают слоистой структурой, обусловленной различными типами химических связей вдоль слоев (ковалентная) и между слоями (ван-дерваальсовая). Существование слабой связи между слоями и отсутствие оборванных связей, практически исключающих возможность образования поверхностных уровней, концентрация которых на два порядка меньше, чем в обычных полупроводниках, делает возможным простым скалыванием слоев изготовление оптически однородных образцов толщиной вплоть до одного монослоя с естественной зеркальной поверхностью. Благодаря большой нелинейной восприимчивости, наличию экситонного поглощения с довольно большой энергией связи ($\sim 20 \,\mathrm{meV}$) и разнообразию механизмов нелинейности показателя преломления и коэффициента поглощения эти кристаллы в настоящее время широко используются в квантовой электронике [1-6].

Известно, что при высоких уровнях оптического поглощения полупроводники склонны к нелинейному поведению, т.е. коэффициент поглощения и показатель преломления не являются константой в среде, но изменяются в зависимости от интенсивности падающего света. Нелинейные характеристики полупроводника могут быть исследованы однолучевым методом, а также двулучевой спектроскопией (pump-probe spectroscopy) [7]. Двулучевой метод позволяет более детальное исследование динамики нелинейного поглощения и его временную эволюцию в полупроводниках при высоких уровнях оптического возбуждения. При этом возбуждение кристалла происходит интенсивным лазерным импульсом, создающим большую концентрацию электроннодырочных пар, а при помощи зондирующего импульса осуществляется мониторинг обнаруженных нелинейных явлений. Данная работа посвящена экспериментальному исследованию оптических нелинейностей в кристаллах GaSe при высоких уровнях оптического возбуждения.

Методика эксперимента

Исследованные кристаллы GaSe были выращены методом Бриджмена. Образцы относились к ε -модификации, имели гексагональную структуру и обладали p-типом проводимости. Образцы с толщинами $10-50\,\mu$ m и геометрическими размерами 3×3 mm были изготовлены путем скалывания из крупных слитков (перпендикулярно оптической оси с). Согласно холловским измерениям, концентрация и подвижность носителей в направлении, параллельном оптической оси с, при комнатной температуре составляли $p \approx 10^{14} \, {\rm cm}^{-3}$ и $\mu_p \approx (20-30) \, {\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1}$ соответственно.

В качестве источника излучения использовались импульсный Nd : YAG-лазер со встроенными генераторами 2-й и 3-й гармоник, предназначенный для генерации излучения с длинами волн 1064, 532 и 335 nm (длительность 12 ns, максимальная мощность $\sim 12 \,\text{MW/cm}^2$), и жидкостной лазер на красителе родамин 6G (область перестройки длины волны излучения 594–643 nm, мощность 10 MW/cm², длительность $\sim 3 \,\text{ns}$).

В работе наряду с однолучевым методом применялся также двулучевой метод исследования. При двулучевом методе кристаллы возбуждались мощными импульсами лазера с энергией кванта $\hbar\omega = 2.34 \,\text{eV}$ (2-я гармоника излучения Nd : YAG-лазера), и снимались спектры излучения с помощью зондирующего импульса с $\hbar\omega = 1.17 \,\text{eV}$ (1-я гармоника Nd : YAG-лазера). Интенсивность излучения изменялась при помощи калиброванных нейтральных световых фильтров.

При исследовании спектров фотолюминесценции был использован автоматизированный монохроматор с двойной дисперсией M833 (спектральное разрешение ~ 0.024 nm на длине волны 600 nm) с компьютерным управлением и детектором, регистрирующим излучение в диапазоне длин волн 350–2000 nm. Регистрация импульсов фототока производилась по методике, позволяющей записывать на экране запоминающего осциллографа (Le Croy) одиночные наносекундные импульсы.

Экспериментальные результаты и их обсуждение

На рис. 1, *а* представлены спектры пропускания монокристаллов GaSe при различных интенсивностях возбуждения светом жидкостного лазера. Как видно из рисунка, наблюдается нелинейное поглощение в области экситонного резонанса ($\hbar\omega = 2 \text{ eV}$ [8]), и происходит просветление образца на указанной частоте излучения при высоких интенсивностях возбуждения. Зависимость коэффициента поглощения от интенсивности возбуждения показана на рис. 1, *b*. Видно, что вплоть до интенсивности возбуждения $I_0 = (0.1-0.2) \text{ MW/cm}^2$ коэффициент поглощения остается постоянным, но затем при изменении интенсивности в интервале $0.15 < I_0 < 12 \text{ MW/cm}^2$ происходит уменьшение коэффициента поглощения более чем в три раза.

На рис. 2 представлены спектры фотопроводимости $\Delta \sigma$ кристаллов GaSe при различных интенсивностях возбуждения (I_0). При низких мощностях накачки наблюдается хорошо известная экситонная фотопроводимость с максимумом при энергии фотона $\hbar \omega \approx 2.00 \text{ eV}$. С ростом мощности накачки увеличивается концентрация неравновесных носителей, что приводит к увеличению фотопроводимости в экситонной области (кривая 2). Дальнейшее увеличение интенсивности возбуждения приводит к уширению и исчезновению экситонного пика (кривые 3 и 4), но при этом фотопроводимость за краем фундаментального поглощения резко возрастает.

Более детальное исследование нелинейного поглощения было проведено изучением фотолюминесценции кристаллов GaSe двулучевым методом. На рис. 3 представлены спектры фотолюминесценции кристаллов GaSe при различных мощностях накачки. Как видно из рисунка, при низких уровнях возбуждения в спектре отчетливо наблюдается фотолюминесценция, связанная с излучением свободного экситона ($\lambda = 620$ nm при 300 K, кривая 1) [8]. С увеличением интенсивности возбуждения происходит уменьшение экситонной фотолюминесценции, и одновременно происходит исчезновение экситонного пика (кривые 2, 3).

Рис. 1. (*a*) Спектры пропускания GaSe при различных интенсивностях возбуждения: *1* — 0.1, *2* — 2.01, *3* — 12 MW/cm². (*b*) Зависимость коэффициента поглощения GaSe от интенсивности возбуждающего излучения с длиной волны 620 nm.

На рис. 4 представлена осциллограмма импульса фототока при возбуждении кристаллов GaSe 2-й гармоникой излучения Nd : YAG-лазера. Как видно из рисунка, наблюдается два канала рекомбинации: быстрый с $\tau_1 = 1.7 \,\mu$ s и медленный с $\tau_2 = 20 \,\mathrm{ms}$. Быстрый канал рекомбинации, по-видимому, связан с рекомбинацией свободных экситонов, а медленный участок, вероятно, обусловлен примесным центром.

Рис. 2. Спектры фотопроводимости кристаллов GaSe при различных интенсивностях возбуждения: *I* — 0.46, *2* — 2.28, *3* — 6.14, *4* — 12 MW/cm².

Рис. 3. Спектры фотолюминесценции $(I_{\rm fl})$ кристаллов GaSe при различных интенсивностях возбуждения: I - 0.12, 2 - 1.01, 3 - 10 MW/cm².

По нашему мнению, наблюдаемые особенности в спектрах пропускания, люминесценции и фотопроводимости кристаллов GaSe могут быть объяснены взаимодействием экситонов при высоких интенсивностях возбуждения и экранированием кулоновского взаимодействие свободными носителями, генерированными лазерным светом. Действительно, при резонансном возбуждении кристаллов GaSe лазерным светом электроны и дырки связываются в экситоны. В дальнейшем с увеличением интенсивности возбуждения плотность экситонов растет, и при ее достижении некоторого критического значения (переход Мотта) происходит взаимодействие между экситонами, что приводит к распаду экситонов и образованию свободных электронно-дырочных пар. Зная эффективные массы электронов и дырок, а также боровский радиус экситона $a_{\rm ex} = 37$ Å для GaSe, можно определить концентрацию экситонов ($n_{\rm Mott}$), при которой происходит взаимодействие экситонов [9]:

$$n_{\rm Mott} = \frac{\pi}{3} \left(\frac{1.46}{4a_{\rm ex}} \, \frac{m_0}{m_{\rm e} + m_h} \right)^3. \tag{1}$$

Критическая концентрация экситонов для GaSe, вычисленная по формуле (1), оказалась равной $n_{\text{Mott}} \sim 10^{18} \, \text{cm}^{-3}$. Плотность неравновесных носителей, создаваемых лазером с интенсивностью $I_0 =$ $= 1.5 \cdot 10^{25} \text{ photon/sm}^2 \cdot \text{s}$ и длительностью $\Delta t =$ $= 3 \cdot 10^{-9}$ s, равна $\Delta n = \alpha l_0 \Delta t = 4.5 \cdot 10^{19} \,\mathrm{cm}^{-3}$ (где $lpha \approx 10^{13} \,\mathrm{cm}^{-3}$ — коэффициент поглощения на краю собственного поглощения). Как видно, полученные нами значения концентрации неравновесных носителей намного превышаются экситонную плотность, необходимую для моттовского перехода [10].

Нами также была определена длина экранирования кулоновского взаимодействия свободными носителями. Длину экранирования можно определить по следующей формуле [11]:

$$L = (\hbar/2)(\pi/3)^{1/6} N^{-1/6} \frac{\varepsilon^{1/2}}{em^{*1/2}},$$
(2)

где ε — диэлектрическая проницаемость кристалла, m^* — эффективная масса, N — концентрация генерированных носителей.

Подставляя значения соответствующих параметров кристаллов GaSe, получим, что длина экранирования $L \sim 10$ Å намного меньше радиуса экситона (боровский радиус экситона в GaSe составляет ~ 37 Å).

Рис. 4. Осциллограмма импульса фототока при возбуждении кристаллов GaSe 2-й гармоникой Nd : YAG-лазера.

Заключение

Спектры поглощения, люминесценции и фотопроводимости кристаллов GaSe при низких интенсивностях возбуждения $\sim 1 \, \mathrm{MW/cm^2}$ содержат только линию поглощения, соответствующую свободному экситону. С ростом интенсивности возбуждения наблюдается нелинейное поглощение в области экситонного резонанса и происходит просветление образца на указанной частоте излучения. По нашему мнению, обнаруженные особенности в спектрах поглощения, люминесценции и фотопроводимости кристаллов GaSe при высоких уровнях оптического возбуждения обусловлены экранированием кулоновского взаимодействия свободными носителями и экситон-экситонным взаимодействием. Оценки показывают, что длина экранирования $(L \sim 10 \text{ Å})$ намного меньше боровского радиуса экситона в GaSe ($\sim 37 \, {\rm \AA}$). Плотность пар, генерированных лазерным светом в GaSe $(\sim 4.5\cdot 10^{19}\,\text{cm}^{-3}),$ значительно превышает плотность, необходимую для моттовского перехода в этих кристаллах.

Финансирование работы

Данная работа выполнена при финансовой поддержке Фонда Развития Науки при Призеденте Азербайджанской Республики — грант № Е.F/MQM/Elm-Tehsil-1-2016-1(26)-71/01/1.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Беленький Г.Л., Стопачинский В.Б. // УФН. 1983. Т. 140.
 № 2. С. 233.
- [2] Абдуллаев Г.Б., Кулевский Л.А., Прохоров А.М. и др. // Письма в ЖЭТФ. 1972. Т. 16. В. 3. С. 130.
- [3] Ахундов Г.А., Агаева А.А., Салманов В.М. и др. // ФТП. 1973. Т. 7. № 6. С. 1229.
- [4] Боброва Е.А., Вавилов В.С., Галкин Г.Н. и др. // ФТП. 1975. Т. 11. В. 1. С. 132.
- [5] Абдуллаев Г.Б., Аллахвердиев К.Р., Кулевский Л.А. и др. // Квант. электрон. 1975. Т. 2. № 6. С. 1228.
- [6] Берегулин Е.В., Валов П.М., Рыбакова Т.В., Салманов В.М., Ярошецкий И.Д. // ФТП. 1975. Т. 9. В. 12. С. 2288.
- [7] Peyghambarian N., Koch S.W., Mysyrowicz A. Introduction to Semiconductor Optics. Englewood Cliffc, N.J., London: Prentice Hall, 1993. 485 p.
- [8] Chikan V., Kelley D.F. // Nano Lett. 2002. N 2. P. 141.
- [9] Cingolani A. // Sol. Stat. Commun. 1985. V. 35. P. 1007.
- [10] Frova A., Schmid Ph., Crisel A., Levy F. // Sol. Stat. Commun. 1977. V. 23. P. 45.
- [11] *Гросс П.* Свободные электроны в твердых телах. М.: Мир, 1982. С. 35.